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The incidence of type 2 diabetes significantly increases with age. The relevance of this
association is dramatically magnified by the concomitant global aging of the population,
but the underlying mechanisms remain to be fully elucidated. Here, some recent advances
in this field are reviewed at the level of both the pathophysiology of glucose homeostasis
and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial
role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function
and delineate the possibility of new original therapeutic interventions.
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TYPE 2 DIABETES: AN AGE-RELATED DISEASE
Diabetes mellitus, a disease characterized by high blood glucose
levels resulting from a combination of genetic and acquired fac-
tors, represents the most prevalent metabolic disorders. Indeed,
the prevalence of the most common form, type 2 diabetes or non-
insulin-dependent diabetes mellitus (NIDDM), exploded over the
last several decades. Data from the World Health Organization
(WHO) and the International Diabetes Federation (IDF) show
that the prevalence of type 2 diabetes increased from 100–135
million affected adults worldwide in 1994–1995 to approximately
336 million in 2011, and it is expected to rise to 439 million by
2030 (1–3). These data are even more dramatic considered in the
light of the concomitant global aging of the population. Elderly
people (by definition, person of over 65 years of age) represented
12–15% of the population in 2008, whereas it has been estimated
that the same age group would account for 26% of the population
in 2026 and will reach 2 billion people in 2050 (4, 5). Population
aging is rapidly becoming a global issue with a major impact on
health policies and programs. Such a remarkable improvement in
life expectancy considerably contributed to a shift in the leading
causes of diseases and death from infectious and parasitic diseases
to non-communicable diseases (such as heart disease, cancer, and
diabetes) that more commonly affect adults and older adults (6, 7).
In particular, aging is an important risk factor for metabolic dis-
orders, including obesity, impaired glucose tolerance, and type-2
diabetes (8, 9). The prevalence of type 2 diabetes increases with age
(in older adults it is more than twice that of middle-aged adults)
and peaks at 60–74 years of age (10–12). In consideration of the
already mentioned nearly doubling of the numbers of elderly per-
sons by the year 2030, it is easy to see why diabetes in older adults
is considered as a growing public health concern.

Normal aging is usually associated with a progressive deterio-
ration in most endocrine functions that may be responsible for
serious disturbances of metabolic homeostasis (13–16). Actually,

an impairment of glucose tolerance has been recognized for a long
time as a well-known feature of aging in both humans and exper-
imental animals (17, 18). Nevertheless, the underlying biological
mechanism(s) is still not clearly understood.

AGING AND INSULIN RESISTANCE
Type 2 diabetes mellitus is a metabolic disorder characterized by
high blood glucose levels as a result of the complex interplay
of multiple genetic and environmental factors that cause both
impaired insulin action on target tissues and defective pancreatic
beta-cell insulin secretion in response to glucose (19).

Traditional views of type 2 diabetes pathophysiology indicated
peripheral insulin resistance, i.e., the inability of insulin-target
tissues to respond properly to the hormone, as the main driver
of altered glucose homeostasis (20). Clinically, the term insulin
resistance is utilized to indicate that higher-than-normal circu-
lating levels of insulin are required to maintain normoglycemia.
At the cellular level, insulin action, initiated by the binding to its
cell surface receptor, involves a series of signaling cascades that
can be schematically summarized as follows: receptor autophos-
phorylation and activation of receptor tyrosine kinase; tyrosine
phosphorylation of insulin receptor substrates (IRSs) 1 and 2; acti-
vation of phosphatidylinositol 3-kinase (PI3K); activation of Akt
and its downstream mediator,AS160, which stimulates the translo-
cation of insulin-mediated GLUT4 from intracellular vesicles to
the plasma membrane (21, 22).

It is well documented that aging is associated with a decline
of insulin action. Studies utilizing the euglycemic hyperinsuline-
mic clamp technique to assess insulin effectiveness in regulating
glucose transport usually stress the relevance of the diminished
insulin sensitivity on target tissues in the development of age-
related glucose intolerance (17, 20, 23, 24). Insulin resistance
could increase with age in relation to several well-known age-
related changes, such as: (i) increased adiposity (with particular
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reference to abdominal fat mass) (5); (ii) decreased lean muscle
mass (sarcopenia) (25–27); (iii) mitochondrial dysfunctions (28–
32); (iv) hormonal changes (33, 34); (v) increased oxidative stress
and inflammation (35–39); (vi) changes in dietary habits (40–42);
(vii) reduced physical activity (43, 44). However, it has also been
claimed that these factors alone cannot fully account for the age-
related glucose-intolerance (11), and other studies seem to indicate
that age per se could be not responsible for the increased insulin
resistance (45–47).

AGING AND INSULIN SECRETION
On the other hand, several observations clearly show that insulin
resistance alone is not sufficient to lead to type 2 diabetes in the
absence of a beta-cell defect associated with abnormal insulin
secretion. Consequently, beta-cell dysfunction is increasingly rec-
ognized to play a fundamental role in type 2 diabetes pathophysiol-
ogy (48, 49) and could represent another significant contributing
factor to abnormal glucose metabolism with age (9, 50). Indeed,
it has been repeatedly reported that the ability of pancreatic beta
cells to maintain an insulin secretory function adequate for meta-
bolic demand is impaired with increasing age in both experimental
animals (51–55) and humans (11, 56–65), although some of these
studies (especially in humans) were characterized by a significant
degree of variability (66).

This age-related impairment of beta-cell secretory capabilities
has been variously attributed to several factors, including: (i) mito-
chondrial dysfunction (34, 67–69); (ii) reduced GLUT2 levels (54,
70); (iii) accumulation of advanced glycation end products (AGEs)
(71, 72); (iv) telomerase deficiency and reduced telomere length
(73, 74): (v) reduced expression of β2-adrenergic receptors (75);
(vi) impaired Ca++ handling (76, 77); (vii) reduced response
to GLP-1 stimulation (62, 65, 78–83); (vii) increased autophagy
(84); (viii) reduced expression of beta-cell-specific genes and
transcription factors such as PDX-1 (54).

Among the above mentioned factors, mitochondrial dysfunc-
tion may deserve a particular discussion because mitochondria
play a crucial role in the physiological stimulus-secretion cou-
pling in beta cells. In these cells, mitochondria serve as nutrient
sensors and signal generators for insulin secretion. In particular,
the mitochondrial metabolism of pyruvate, glycolitically derived
from glucose, generates ATP, which in turn promotes the closure
of ATP-sensitive K+ channels and the consequent cell depolariza-
tion, inducing Ca2+ influx through voltage-gated Ca2+ channels,
increased cytosolic [Ca2+], and finally triggering insulin exocy-
tosis (85). On the other hand, due to the central role played in
the generation of reactive oxygen species (ROS) at the level of
the electron transport chain and ATP production, it has been
proposed that mitochondria could represent a primary target of
ROS damage (mitochondrial free radical theory of aging) (86).
Indeed, increasing evidence suggests that abnormal mitochondrial
ROS production and detoxification contribute to mitochondr-
ial dysfunction in old age (87). Thus, age-related impairment of
mitochondrial function could easily result in decreased beta-cell
function and insulin secretion (88).

We can tentatively conclude this brief survey of the patho-
physiology of glucose homeostasis by observing that several risk
factors for diabetes associated with aging likely contribute to the

development of age-related glucose intolerance and insulin resis-
tance. Adaptation to insulin resistance normally requires compen-
satory hyperinsulinemia to maintain normal glucose metabolism.
On the average, many studies show that, when considered in
light of the degree of insulin resistance, all the indexes of insulin
secretion appear to be decreased with age, indicating decreased
beta-cell secretory reserve. Thus, the main homeostatic defect
could be ascribed to age-dependent failure of the endocrine pan-
creas to provide enough insulin to overcome the state of increased
peripheral insulin resistance.

BETA-CELL SENESCENCE
Studies on the age-related glucose intolerance at the pathophysio-
logical level may be difficult to interpret because the development
of this condition could depend on a combination of many different
factors whose independent influence is not easily controlled, thus
making their relative importance a matter of debate. Therefore,
more recently several researchers shifted the focus of their interest
on the effect of aging on islet biology, with particular reference to
the proliferative and regenerative capacity of beta cells. This par-
adigmatic change arises mainly from the consideration that aging
represents a major risk factor for many generally chronic diseases
(including cancer, neurodegeneration, and diabetes) and from the
related possibility that these pathologies could be linked by a com-
mon biology. In the last few decades, a growing consensus has been
reached and now it is considered likely that one or more basic aging
processes underlie most, if not all, age-related pathologies (89).
One basic process that may contribute to age-related dysfunction,
including decreased secretory function (90), is cellular senescence.
Cellular senescence was firstly described more than 50 years ago
by Hayflick and Moorhead (91) as a process limiting the prolif-
eration of normal human fibroblasts in culture, and this term is
now generally used to indicate the essentially irreversible growth
arrest that occurs when cells that can divide are challenged by a
potentially oncogenic stress (92, 93). Senescent cells have clearly
been shown to disrupt normal tissue structures and differentiated
functions in complex cell culture models (89).

The growing interest in the cellular mechanisms responsible for
the age-related decline in beta-cell proliferation originated from
two distinct considerations with either fundamental or clinical
implications. (A) Since insulin secretion by pancreatic beta cells
represents the key point of the endocrine axis regulating glucose
homeostasis, it is obvious that maintenance of beta-cell number
and islet mass must be considered crucial in order to sustain nor-
moglycemia. (B) Beta-cell replication represents a major goal of
the cellular therapy of diabetes. Indeed, the promising attempt to
develop a therapy based on pancreatic islets transplantation is still
seriously hampered by the scarcity of cadaver-derived islets. The
possibility to enhance replication of islet cells in vitro has been pro-
posed as a solution to overcome the limited supply. Similarly, the
expansion of potentially reduced functional beta-cell mass in vivo
might represent another therapeutic strategy in type 1 and type 2
diabetes.

In normal healthy conditions, beta cells have a long lifespan
with a low proliferation rate (94). However, it has been shown that
in particular conditions, such as in response to increased meta-
bolic demand or after injury, the adult pancreas could be able to
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produce new cells, particularly beta cells. Recent experimental evi-
dences indicate that beta-cell mass, like many other tissues, could
be dynamically regulated with ongoing beta-cell regeneration
throughout life to replace lost or damaged beta cells (95).

MOLECULAR MECHANISM OF AGE-RELATED BETA-CELL
GROWTH ARREST
Beta-cell cycling is driven by cyclin D1/D2-Cdk activity and is
repressed by the Cdk-inhibitor p16INK4a (Figure 1) (96). In mice,
it has been shown that beta-cell proliferation is an age-related
process and that the expansion of beta-cell mass after pancreatic
injury is more robust in young than in old animals (97). How-
ever, several pieces of experimental evidence indicate that aging
mouse beta cells maintain a partially preserved ability to pro-
liferate when specifically stimulated, both after pancreas injury
(such as partial pancreatectomy or beta-cell-specific cell ablation)
(98–102) and after islet transplantation in hyperglycemic recip-
ients (103, 104). On the other hand, in recent years it became
increasingly apparent that many of the mechanisms identified

FIGURE 1 | Schematic representation of the molecular pathways
involved in the regulation of beta-cell proliferation is shown. P16INK4a is
a key regulator of cell cycle entry in aged beta cells through D-type cyclins
and cyclin-dependent kinases (CDK). P16INK4a is negatively regulated by the
polycomb proteins EHZ3 (enhancer of zeste homolog 2) and BMI1 (B
lymphoma Mo-MLV insertion region 1 homolog). BMI1 is stimulated by
p38 MAPK.

in these rodent models cannot be transferred easily to human
islet cells. Human studies generally consist of observations made
from pancreases obtained at autopsy, pancreas donation, and sur-
gical resection, and are mainly based on immunohistochemical
markers of proliferation (such as the nuclear Ki-67). As a conse-
quence, data obtained in humans are often less conclusive than
those obtained in rodent experimental models (105). It has been
shown that human beta-cell mass can increase in obesity, although
to a lesser degree than in rodents (30–40% estimated increase in
humans with respect to a 30-fold increase observed in mice) (106–
108). On the contrary, recent studies failed to detect an increased
rate of beta-cell proliferation in pregnant individuals and in type
2 diabetes patients (109).

A major difference between mice and humans is telomere short-
ening that limits proliferation and leads to cellular senescence
in humans (110, 111), whereas in mice that have long telomeres
no impairment of replication has been detected for several gen-
erations after ablation of telomerase (112, 113). This difference
may account for the differential response observed between mice
and humans (proliferation vs. differentiation from non-beta-cell
progenitors) in beta-cell compensation (114). Human beta cells
in adults appear to be largely postmitotic with very low rates of
cell proliferation after the age of 20–30 years, as determined by
Ki-67 content (115–117), thymidine analog incorporation (118),
and increased in vivo lipofuscin accumulation (119, 120). Growth
arrest of adult human beta cells cannot be reversed by procedures
inducing proliferation in vitro (121, 122). This decline in the pro-
liferative capacity of aging beta cells is directly associated with a
decreased expression of the pancreatic and duodenal homeobox 1
(Pdx1) (121, 123), a transcription factor that plays a crucial role in
beta-cell replication (124). Several experimental pieces of evidence
demonstrated a decreased expression of cell cycle activators (such
as, e.g., the transcription factor FoxM1) in aging beta cells with
a simultaneous decrease in the expression of cell cycle inhibitors
[for a review see Ref. (10)]. p16INK4a tumor suppressor protein
has emerged from these studies as a key control point for cell cycle
entry of beta cells. p16INK4a is a cyclin-dependent kinase inhibitor
(CDKI) encoded by the Cdkn2a locus, which sequesters cdk4 and
cdk6, thus preventing their interaction with the D cyclins. It has
been shown that p16INK4a expression increases with age in several
mouse tissues, including islets (125), and that proliferation of beta
cells in young mice was reduced to levels observed in older mice
when the transgenic overexpression of p16INK4a was induced (125,
126). On the other hand, in p16INK4a knockout mice, beta-cell pro-
liferation was significantly increased (126). In this context, it could
be very intriguing to mention that genome-wide association stud-
ies revealed an association between SNPs near Cdk2a (the locus
encoding p16INK4a) and increased risk of type 2 diabetes (113, 127,
128). It has also been shown that free fatty acids, whose levels were
typically increased in type 2 diabetes and that could be respon-
sible for beta-cell damage (129), can induce p16INK4a expression
in islets (130). Thus, p16INK4a could represent a potential link
between aging, metabolic derangements, and beta-cell failure in
type 2 diabets (131). More recently, it has been shown that the
age-associated decrease in p16INK4a expression in pancreatic islets
could be related to the decreased expression of BMI1 (132) and
EZH2 (133), two chromatin-regulating polycomb group proteins,
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indicating the crucial role that epigenetic regulation could play in
the control of cell cycle progression of beta cells in both aging and
type 2 diabetes (134). Indeed, mice with conditional gene inac-
tivation of EZH2 in beta cells exhibited a premature increase in
p16INK4a and p19arf expression and a reduced beta-cell prolifera-
tion, whereas no changes were observed in the levels of other CDK
inhibitors, suggesting a specific effect of EZH2 on the INK4a/arf
locus in beta cells (133). However, the transgenic expression of
EZH2 was unable to repress INK4a in mice older than 8 months,
unless EZH2 was expressed in conjunction with knockdown of
trithorax group (TrxG) protein complex components (135).

Overall, these results indicate that cellular senescence could be
responsible for the observed decline in the proliferative capacity
of pancreatic beta cells. It has been reported that Akita mice with
short telomeres are characterized by slower proliferation of beta
cells and accumulation of p16INK4a (74). More recently, Zeng et al.
(136) showed that in mice the beta-cell-specific genetic deletion
of Pten (phosphatase and tensin homolog), encoding a tumor
suppressor protein involved in the regulation of the cell cycle
(137), prevents the age-related decline in beta-cell proliferation
and restores the ability of beta cells to respond to injury-mediated
regeneration. Interestingly, the ability of Pten deletion to remove
the block in cell cycle re-entry seems to be mediated by a decrease
in p16INK4a expression.

The decline in beta-cell proliferation with age may also be the
result of an age-related impairment of mitotic signal transduc-
tion pathways. It has been shown that p38 MAPK signals are able
to influence CDKI expression in aged islets: the destruction of
p38 MAPK signals in aged mutant mice has as a consequence a
reduced expression of p16INK4a, p19arf , and other CDKI with a

related increase of beta-cell proliferation (138). This effect seems
to be counterbalanced by the p53-induced phosphatase 1 (WIP1),
whose overexpression in middle-aged transgenic mice causes a
reduced p16INK4a expression as well as an improved capacity of
beta-cell regeneration after selective beta-cell destruction by strep-
tozotocin (138). A further important component linking growth
signals to beta-cell expansion could likely be represented by Akt
activation and its downstream mTORC1 signaling (137). It is well
known that alterations in the nutrient-sensing pathways (such
as the insulin/IGF-1 and the TOR pathways) have been pro-
posed to underlie the aging process and modulate longevity (139).
mTOR is an evolutionarily conserved nutrient-sensing cytoplas-
mic protein kinase that regulates cell growth and metabolism in
response to mitogens, nutrients, and hormones in all eukaryotic
cells (140). However, later in life, when growth has been com-
pleted, mTOR can drive cellular and organismal aging (141) and
can be involved in age-related diseases (138). Indeed, the most
well-known TOR inhibitor, rapamycin, is able to extend lifespan
in yeast, flies, worms, and rodents (142). Glucose, amino acids,
and fatty acids activate mTOR in beta cells, and the consequent
increase in beta-cell mass and function may help to compensate
the age-related development of insulin resistance (143). However,
it has been proposed that, during aging, the chronic hyperstimu-
lation of mTOR could contribute to the development of beta-cell
failure (143). Interestingly, metformin, the most widely used anti-
diabetic drug, has been shown to be an inhibitor of mTORC1
and to decrease the phosphorylation of its substrates S6K1 and
4E-BP1 (144). Metformin was also shown to increase longevity in
species ranging from yeast to mice (145). The underlying mecha-
nism of this action of metformin is not fully understood. However,

FIGURE 2 | Schematic representation of the pathophysiological factors responsible of the age-related failure of glucose homeostasis is shown.
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it is known that metformin inhibits the activity of mitochondr-
ial complex I and increases the activity of AMPK, which in turn
inhibits mTORC1 complex activity, thus suggesting a possible link
between rapamycin and metformin actions on longevity.

Little is known about the upstream signals that could be respon-
sible for the regulation of beta-cell proliferation and its decline
with age. It has been reported that PDGF treatment increased beta-
cell proliferation in cultured human islets from young donors but
not in islets from adults. Interestingly, PDGF receptor signals seem
to act in part via EZH2 (146). Treatment with the glucagon-like
peptide 1 (GLP-1) analog, exendin-4 is able to increase beta-cell
mass and markedly decrease p16INK4a expression in young but
not in middle-aged mice (147). Recently, it has been shown with
parabiosis experiments that a systemic factor (whose exact nature
is still unknown) found in the circulation of young mice seems
to be able to increase the proliferation rate of old pancreatic beta
cells (148).

CONCLUSION
Alterations of glucose homeostasis increase with age and repre-
sent leading causes of morbidity and mortality, mainly linked to
both the complications associated with type 2 diabetes and the
increased risk for several other age-related diseases (149). The
classical pathophysiological factors responsible for this age-related
failure of glucose homeostasis (insulin resistance and decreased
secretory capability of beta cells) are quite well characterized, but
new mechanisms have recently been revealed (Figure 2). Central
to this new development is the key concept that loss or dysfunc-
tion of pancreatic beta cells plays a crucial role in the pathogenesis
of type 2 diabetes. Since the predominant mechanism of beta-cell
generation seems to be self-renewal, the senescence-associated cell
cycle dysregulation and the consequent proliferative arrest assume
a particular relevance. In recent years, some of the cellular and
molecular mechanisms associated with the decreased prolifera-
tion capability of senescent beta cells have been explored, but
some others remain to be fully elucidated, and a further effort
will be requested in order to efficiently translate this new insight
into successful new therapeutic strategies.
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