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Discriminative, generative artificial 
intelligence, and foundation models in 
retina imaging
Paisan Ruamviboonsuk1*, Niracha Arjkongharn1, Nattaporn Vongsa1, 
Pawin Pakaymaskul1, Natsuda Kaothanthong2

Abstract:
Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major 
categories: discriminative and generative AI. For discriminative tasks, conventional convolutional 
neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the 
transformer architecture in natural language processing, has emerged as useful techniques for 
discriminating retinal images. ViT can attain excellent results when pretrained at sufficient scale 
and transferred to specific tasks with fewer images, compared to conventional CNN. Many studies 
found better performance of ViT, compared to CNN, for common tasks such as diabetic retinopathy 
screening on color fundus photographs (CFP) and segmentation of retinal fluid on optical coherence 
tomography (OCT) images. Generative Adversarial Network (GAN) is the main AI technique in 
generative AI in retinal imaging. Novel images generated by GAN can be applied for training AI 
models in imbalanced or inadequate datasets. Foundation models are also recent advances in retinal 
imaging. They are pretrained with huge datasets, such as millions of CFP and OCT images and 
fine‑tuned for downstream tasks with much smaller datasets. A foundation model, RETFound, which 
was self‑supervised and found to discriminate many eye and systemic diseases better than supervised 
models. Large language models are foundation models that may be applied for text‑related tasks, 
like reports of retinal angiography. Whereas AI technology moves forward fast, real‑world use of AI 
models moves slowly, making the gap between development and deployment even wider. Strong 
evidence showing AI models can prevent visual loss may be required to close this gap.
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Introduction

Re c e n t  a d v a n c e s  o f  a r t i f i c i a l 
intelligence (AI) in retinal imaging 

found its application in two major categories: 
discriminative and generative AI.[1] This 
classification is practically based on the task 
of an AI model: discrimination of contents 
or generation of new contents.

In general, discriminative AI relies on 
labeled trained data tailored for specific 
tasks (supervised learning approach),[2,3] 

such as the classification of severity of 
diabetic retinopathy (DR)[4] or the prediction 
of referrable DR from retinal images,[5] 
without novel content generation. It learns 
the decision boundary to classify the existing 
data. Support Vector Machine, Decision 
Tree, or Logistic Regression are the common 
AI techniques for training on labeled data to 
perform discriminative tasks.[2,3]

Generative AI, on the other hand, aims 
to create new data, such as reports of 
fluorescein angiography (FA)[6] or generating 
indocyanine green angiography images 
from color retinal photographs.[7] The 
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task can be done with minimal, or without, labeled 
trained data (semi‑supervised or unsupervised learning 
approach).[2,3] Generative Adversarial Network (GAN) 
is a common generative technique applied in retinal 
imaging.[8] Convolutional neural network (CNN),[9] 
although well known for discrimination, can be set up for 
content generation. The difference between discriminative 
and generative AI is summarized in Table 1.

Another term, foundation models, is recently well 
recognized due to the popularity of Chat Generative 
Pre‑Trained Transformer (ChatGPT). The term was 
established by Stanford Institute for Human‑Centered 
AI.[10] A foundation model is trained on board data to be 
used in a wide range of applications.[11] Some foundation 
models are built in specific fields, such as astronomy,[12] 
radiology,[13] and retinal imaging.[14] ChatGPT, built on 
Generative Pre‑trained Transformer (GPT) technique,[15] 
is considered a large language model (LLM), a category 
of foundation models which has been trained on 
billions of web pages [Figure 1]. A foundation model 
can be adapted (e.g., fine‑tuned) for a wide range of 
downstream tasks,[16] either discrimination or generation.

In this narrative review, we focused on the recent 
advances of discriminative AI, generative AI, and 
foundation models in retinal imaging.

Methods

We conducted a systematic search following the 
Preferred Reporting Items for Systematic reviews 
and Meta‑Analyses guideline from the databases of 
PubMed and Scopus and included mainly recent articles 
published in the past 6 months, from November 1, 2023, 
to April 30, 2024. The search flow diagram is in Figure 2.

The search terms included retinal imaging, DR, age‑related 
macular degeneration, retinal vein occlusion (RVO), 
retinopathy of prematurity, AI, LLM, foundation model, 
GAN, and vision transformer (ViT).

Our inclusion criteria were original peer‑reviewed 
publications and papers in computer engineering in the 

English language. The exclusion criteria were conference 
abstract, short commentary, and no full text availability. 
Three authors independently screened papers and 
collected data. Articles on oculomics were not included.

Discriminative Artificial Intelligence

Convolutional neural network
Color fundus photographs
Diabetic retinopathy
CNN models for the discrimination of referable or 
sight‑threatening DR have been available for some time. 
Many researchers still explored and investigated various 
CNN techniques to improve performances and address 
the challenges of the models. A study proposed CNNs 
to address two primary challenges, (1) insensitivity to 
minority classes due to imbalanced data distribution 
and (2) neglecting the relationship between the left and 
right eyes by utilizing the fundus image of only one eye 
for training in DR datasets.[17]

CNN models for predicting the progression of DR 
generally have the accuracy of the prediction around 
0.7–0.8 using color fundus photographs (CFPs) alone. 
The accuracy is somewhat improved by adding risk 
factors into the models; however, the accuracy of this 
prediction is still lower than that for detecting referable 
DR.[5]

A recent DR prediction model was developed using a 
large dataset of more than 700,000 CFPs and validated 
from more than 100,000 CFPs of multiethnic datasets. 
The 5‑year prediction of DR progression from this model 
had the area under the receiving operator characteristics 
curve (AUROC) in the range of 0.72–0.86. The authors 
suggested that this model could potentially extend the 
mean screening interval from 12 to 31.97 months when 
integrated into clinical workflows.[18]

Another recent study prospectively implemented a DR 
prediction model in a clinical workflow for prioritizing 
patients to be screened for DR in their next screening 
visits. The patients with no DR and mild nonproliferative 
DR (NPDR) were then called for the next visits according 

Table  1: The difference between discriminative and generative artificial  intelligence
Factors Discriminative AI Generative AI
Objective Aim to model the decision boundary of the classes 

in the dataset
Capture the actual distribution of the classes in the 
dataset

Data dependency Depends on labeled and structured data Capable to handle unstructured data
Training Learn the conditional probability ‑ P (y|x) Predict the joint probability distribution ‑ P (x, y)
Application Classification or regression based on existing data Generating novel or innovative contents
Computational complexity Computationally cheaper Computationally more expensive
Learning approach Useful for supervised learning Useful for unsupervised learning
Strengths Robust to outliers Effectively deal with uncertainty and changing or 

scarce data. More creativity, prompt and flexible
AI=Artificial intelligence
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to the rank provided by the prediction model, whereas 
the ground truth was based on the examination of DR 
grades in the next screening visits in the clinic. Many 
ranking strategies were compared. The outcome measure 
was the sensitivity for detecting referrals, defined as 
moderate NPDR or worse, based on the ground truth, in 
the first 50% of patients in the next visits in each ranking 
strategy. The rank proposed by the model had the highest 
sensitivity of 90.38%. The rank by the DR grades and 
HbA1C levels from the previous visits had the sensitivity 
of 86.54%, whereas the rank by the DR grades from the 
previous visits only had the sensitivity of 68.95%. The 
sensitivity based on random visits was 50%.[19]

Other diseases
For age‑related macular degeneration (AMD), an 
ML‑based computer‑aided diagnosis framework was 
developed to classify CFPs as normal, intermediate 
AMD, geographic atrophy (GA), and wet AMD, based 
on the extraction of both global and local markers on 
the CFPs. This study employed many ML classifiers and 
applied weighted majority voting on the best classifiers 
to improve the performance, resulting in an accuracy 
of 96.85%, sensitivity of 93.72%, and specificity of 
97.89% for the classification.[20] In another recent study, 
EfficientNet_b2 model and GradCAM were applied to 
train and explain an AI tool in differentiating normal 
and GA on CFPs.[21]

A recent study on AI for retinopathy of prematurity (ROP) 
screening using CFPs (a model from the Imaging and 
Informatics in ROP Study) was in the phase of validation 
on the external multinational datasets. The investigators 
showed that the model, with further training and 
calibration, could achieve AUROC of 83.5% and 82.2% 
for more‑than‑mild ROP (mtmROP) and type 1 ROP, 
respectively, for the dataset from the Stanford University 
Network for Diagnosis of ROP which had >76,000 
images. The validation was also conducted on another 
dataset from Aravind Eye Hospital with >69,000 images, 
the AUROC of 80.8% and 87.8% for mtmROP and type 1 
ROP, was achieved respectively. These performances 
suggested the readiness for the deployment of the 
model.[22]

Although the pandemic of myopia is an issue of interest 
worldwide, there have not yet been too many AI models 
for detecting myopic maculopathy (MM) on CFPs. 
A recent study applied EfficientNet to develop an AI 
model, which achieved sensitivities of 96.86%, 75.98%, 
64.67%, and 88.75% for classifying tessellated fundus, 
diffuse chorioretinal atrophy, patchy chorioretinal 
atrophy, and macular atrophy, according to the 
International Photographic Classification of MM,[23] 
whereas the specificity for each severity level was higher 
than 93%.[24]

Optical coherence tomography
For optical coherence tomography (OCT) images, there 
have been more discriminative AI studies for AMD 
than DR. Recent publications of discriminative models 
on OCT images for either DR or diabetic macular 
edema (DME) were still on improving the classification 
of DR,[25] segmentation of macular area in DME,[26] and 
prediction of response to anti‑VEGF medications in 
DME.[27]

For AMD, real‑world OCT scans were used for training 
and testing an AI classifier to classify the entire OCT 
volume as normal, intermediate AMD, GA, or wet 
AMD. Initially, a 2D ResNet50 was trained to identify 
the disease category on an individual OCT B‑scan, then, 
four smaller ResNet models were trained to use the 
concatenated B‑scan‑wise output from the initial stage 
to classify the entire OCT volume.[28] Another recent 
study demonstrated high accuracy for the segmentation 
of retinal fluid and sub‑retinal pigment epithelium fluid 
by DL.[29]

In another segmentation task on OCT scans, a previously 
published DL for detecting retinal fluid in AMD, DME, 
and RVO,[30] was further trained to quantify macular 
fluid volumes at baseline and under therapy of patients 
with neovascular AMD (nAMD); high concordance of 
more than 0.83–0.95 of AUROC between the DL model 
and human experts was found for both intraretinal and 
subretinal fluid.[31] For predictive task, a CNN model 
was found to be able to predict the progression from 
intermediate AMD to GA within a month providing 
the AUROC of 0.94, sensitivity of 91%, and specificity of 
80%.[32] Whereas the prediction of recurrence of nAMD 
within 3 months after 1‑month dry‑up and the prediction 
of the first recurrence after three loading doses achieved 
the accuracy around 60%–70%, respectively.[33,34]

There were attempts to train CNN to classify epiretinal 
membrane (ERM). In the first paper, ERM was classified 
by a model as no ERM, small ERM, large ERM, with 
AUROC more than 0.9 in each category.[35] In the second 
paper, ERM was classified as normal and five severity 
levels; the accuracy for classifying normal and stage 3 
severity was 98% and 84%, respectively, whereas the 
overall accuracy was 81.3%.[36]

Another self‑supervised model fine‑tuned with labeled 
data for macular telangiectasia type II (MacTel Type II), 
achieved the area under precision‑recall curve (AUPRC) 
of 0.971, AUROC of 0.970, accuracy of 0.898%, sensitivity 
of 0.898, and specificity of 0.949 for detecting the disease 
from OCT scans.[37] Another group of investigators used 
CNN to classify the severity of MacTel Type II, originally 
proposed as 7‑class scheme[38] into a uniform continuous 
scale. Kappa statistics for agreement between the model 
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and ophthalmologists for grading according to this scale 
were 0.56–0.63.[39]

Other imaging
Other recent publications on discriminative AI for 
other retinal image domains included optical coherence 
tomography (OCTA) and ultra‑widefield (UWF) images. 
EfficientNet was used for classifying normal, dry, active 
wet AMD, and remitted wet AMD in OCTA.[40] For UWF, 
ResNet50 was recently applied for grading the severity 
of DR,[41] and for detecting early peripheral retinal 
degeneration, hyperpigmentation, and white without 
pressure areas.[42] EfficientNet‑b was used for detecting 
retinal breaks and retinal detachment in UWF.[43]

A ResNet101 model was used for differentiation between 
extensive macular atrophy and pseudodrusen‑like 
appearance,[44] a rare clinical entity with marked absence 
of choriocapillaris flow on OCTA,[45] and macular atrophy 
in AMD on fundus autofluorescence images.[46] Another 
study found VGG‑16 provided the best performance 
for detecting rhegmatogenous retinal detachment from 
ophthalmic ultrasound images.[47]

For fundus FA, there was an interesting paper applied 
three different CNN models to perform automated 
standardized labeling on FA images. The predicted 
labels included image quality, lesion location, laterality 
of eye, phases of the angiography, and five lesions 
identification (microaneurysms, nonperfusion [NP] 
areas, leakage, laser scar, and hemorrhage). ResNet18 
was identified as the best performance among the 
three models.[48] In another paper for UWF fluorescein 
angiography (UWFA), DeepLab v3+ networks (based 
on ResNet‑18, ResNet‑50, Xception, InceptionResNet‑v2, 
and Inception‑v3) and SegNet networks (based on 
VGG‑16 and VGG‑19) were trained to detect retinal 
capillary NP and neovascularization (NV) from UWFA of 
patients with severe NPDR and proliferative DR (PDR). 
DeepLab v3+ gave the best performance, whereas the 
highest accuracy for detecting NP and NV was 0.8208 
and 0.8338, respectively.[49]

A study for multimodal retinal imaging (CFP, OCT, 
and FA) trained five ML models (support vector 
machine, random forest, extreme gradient boosting, 
multilayer perceptron neural network, and lasso) for 
prediction of 2‑year visual response to anti‑VEGF 
treatments (ranibizumab and bevacizumab) in nAMD. 
The dataset was from the comparison of Age‑related 
Macular Degeneration Treatments Trials.[50] In average, 
the models gave an R2 of 0.33–0.38 for predicting visual 
acuity (VA) change, an R2 of 0.37–0.45 for predicting actual 
VA at 2 years, and AUROCs of 0.85–0.87 and 0.67–0.79 for 
predicting 15‑letter visual gain and 15‑letter visual loss, 
respectively.[51]

Vision transformer
Transformers are ML architectures developed for Natural 
Language Processing (NLP).[52] They learn context and 
track relationships between the sequence components 
of words in a sentence.[53] When applied to recognize 
images, an image is split into patches, the sequence 
of linear embeddings is provided to these patches as 
inputs to a transformer. These image “patches” are then 
treated the same way as “words” in NLP[54] [Figure 3]. 
This so‑called ViT can be pretrained on large amounts 
of data and transferred to mid‑sized or small image 
recognition benchmarks while requiring substantially 
fewer computational resources for training.[54] ViT has 
recently played a dominant role in medical imaging.[55]

Vision transformer for color fundus photographs
Diabetic retinopathy
In one of the first studies on ViT for DR grading on 
CFPs, ViT was compared with classic CNN models, 
such as ResNet50 and ResNet101, and shown a 
better performance with an accuracy of 91.4%, 
whereas the sensitivity was 0.926 and specificity was 
0.977.[56] The authors suggested that ViT might replace 
the conventional CNN in the future. Another study 
showed that ViT, pretrained with Masked Autoencoders 
with 100,000 publicly available retinal images, could 
outperform conventional CNN, pretrained with 
much larger datasets with weights from ImageNet 
for grading DR severity, despite the smaller training 
datasets.[57]

Another study used ViT and residual attention to classify 
DR in the five severity scales, the performance for the 
four DR levels, except mild NPDR, was better than five 
conventional CNNs: VGG‑16, ResNet‑18, GoogLeNet, 
DenseNet‑121, and SE‑BN‑Inception, despite the fact that 
the two open‑sourced training and testing datasets[58,59] 
had imbalanced and limited labeled data.[60] Another 
study also aimed to overcome the imbalanced classes 
in a DR dataset by training ViT with a novel category 
attention block that enhanced feature information within 
a DR class, and a lesion relation attention block that 
captured relationships between lesions.[61] This method 
achieved better performance than CNNs: ResNet‑50, 
MobileNet 1.0, Xception and Inception V3.

Saliency‑guided Self‑supervised Image Transformer 
(SSiT), which is another ViT with self‑supervised 
learning (SSL) pre‑trained without annotation 
outperformed other SSLs at least 9.48% with a high kappa 
score of 81.88% for DR classification. This SSiT model 
can be generalized for AMD detection and segmentation 
for pathologic myopia.[62] Generalizability of this type 
of model was demonstrated in another study when a 
Symmetric Mask Pre‑training Vision Transformer model, 
initially trained to classify histological findings in colon 
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cancer, could be generalized to classify DR severity in 
CFPs with F‑1 scores of 86.91% and 72.85%, for colon 
cancer and DR, respectively.[63]

Segmentation in CFPs to identify various lesions of DR is 
another task for ViT and segmentation of hard exudates 
was found to achieve the highest accuracy among 
the lesions in a study.[64] Another study incorporated 
hyperbolic embeddings and a spatial prior module in 
ViT for the segmentation. The hyperbolic embeddings 
were used to classify feature matrices in CFPs at the pixel 

level whereas the spatial prior module was for image 
convolution and feature continuity.[65]

Age‑related macular degeneration and other 
diseases
For AMD, a hierarchical ViT‑based model that integrated 
data augmentation techniques and SwinTransformer 
was used to classify dry and wet AMD, and wet AMD 
into type I and type II macular NV in CFPs. The AUROC 
for the latter classification could reach 99.36%.[66] On 
the other hand, a head‑to‑head comparison between 

Figure 1: Generative artificial intelligence and its derivatives. LLM: Large language models, ChatGPT: Chat Generative Pretrained Transformer, AI: Artificial intelligence

Figure 2: Preferred Reporting Items for Systematic reviews and Meta‑Analyses flow diagram
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8 CNN models and 9 ViT models to classify referrable 
and non‑ referrable AMD in CFPs found all the CNN 
models performed better than all the ViT models, with 
sensitivity and specificity of the CNN models reaching 
90% or more, whereas the ViT models could achieve 
63%–94% sensitivity and 24%–48% specificity. The 
multi‑classed classification of the severity of AMD (no 
AMD, early AMD, intermediate AMD, and advanced 
AMD) by the CNN and ViT models in the same study 
found similar trends. The authors concluded that the 
performances of the CNNs were boosted by test‑time 
augmentation for both the binary and multi‑class 
models.[67]

Vision transformer for optical coherence tomography
ViT was trained to classify diabetic maculopathy as 
early DME, advanced DME, severe DME, and atrophic 
maculopathy, in OCT scans achieving an AUROC of 
0.96 and the accuracy of 90% or more.[68] Another ViT 
model was trained for segmenting and classifying 
drusen and double layer sign in macular OCT scans. This 
model achieved 82% and 90% sensitivity and specificity, 
respectively, when tested on a separate dataset, whereas 
the agreement with senior human graders provided a 
kappa score of 0.83.[69]

Other studies demonstrated that a hybrid fusion model 
of ViT and CNN could achieve better performance 
than an end‑to‑end model of ViT or CNN alone for 
feature extractions or classifying drusen, choroidal 
neovascularization (CNV), and DME in OCT scans.[70‑72] 
One of these studies could extend the classification by 
the hybrid model to other diseases in the new dataset, 
such as drusen, macular hole (MH), DR, central serous 
chorioretinopathy (CSC), and normal with the average 
accuracy of 97.11%.[72] These hybrid models took 
advantages of better extraction of local features, such 
as textures and shapes, by CNN, which may be more 
useful in OCT scans.

Another group of investigators proposed a novel 
Structure‑Oriented Transformer (SoT) framework to 
construct the relationship between lesions and retina in OCT 
scans of a clinical dataset of nAMD in which they were able 
to effectively classify MNV into type I and type II. The same 
model was able to classify DME and early AMD in another 
dataset.[73] Another ViT technique, multiscale Model‑based 
Transformer (MBT), was proposed for the classification 
of multiple diseases: normal, MH, AMD, CSC, DR, DME, 
and ERM, in OCT videos. The MBT outperformed several 
conventional state‑of‑the‑art CNNs.[74]

Segmentation of fluid in OCT scans was also conducted 
using ViT in fusion with CNN in many recent studies. 
These included segmentation of retinal layers in healthy 
individuals and DME,[75] segmentation of retinal fluid[76] 
to create fluid score,[77] and segmentation of pigment 
epithelial detachment.[78] Another study applied ViT for 
assisting in OCT image acquisition and registration to 
reduce misalignment and improve generalizability in 
different devices in different modes similar to brain MRI.[79]

Vision transformer for ultra‑widefield and multimodal 
imaging
Other retinal image domains for ViT included UWF 
in which a study found ViT outperformed most basic 
ResNet50 models for DR detection.[80] Another study 
employed ViT for classifying UWF images as normal or 
abnormal, which included AMD, DR, ERM, and RVO, 
whereas some images contained more than one disease. 
ResNet152, was found to perform better than ViT and 
other CNNs with the AUROC of 96.47% for classifying 
normal and the retinal diseases in this study.[81] Another 
study found ViT to detect retinal tears from B‑scan 
ultrasound images with accuracy of 83.8%, sensitivity 
of 82.7%, and specificity of 82.4%.[82]

A study performed retinal vessel segmentation in CFPs 
applying a hybrid CNN and ViT trained with data from 

Figure 3: Architecture of vision transformer
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both CFPs and OCTA. The training with CFPs and tested 
with OCTA yielded the highest accuracy of 92.51%, 
whereas the training with CFPs and tested with both 
CFPs and OCTA, and the training with OCTA and tested 
with CFPs, had the accuracy >90%.[83]

Another study compared three CNN models and 
eight ViT models for classifying DR in both CFPs 
and OCT scans. The investigators not only found 
that the performance of ViT exceeded CNN in certain 
cases but also found that the attributable heatmaps 
generated by ViT obtained higher clinical acceptance by 
ophthalmologists.[84]

Generative Artificial Intelligence

Large language model
The public launch of ChatGPT (OpenAI, San Francisco, 
CA, USA) on November 30, 2022, was considered another 
milestone in information technology revolution.[85] 
Within a year, a simple search using the term “ChatGPT” 
in PubMed database yielded more than 2000 results. 
In the year 2023, there were already at least four major 
review articles on ChatGPT in ophthalmology. ChatGPT 
can be used for advanced data analysis since it is 
equipped with Data Analyst features.[86]

A recent study assessed the use of ChatGPT to assist 
in developing AI models for DR detection and DR 
severity classification without coding requirement.[87] The 
authors in this paper demonstrated how they queried 
the Chatbot step‑by‑step for CFP preprocessing; the 
processed CFPs were then classified into two datasets, 
one for DR detection and another for DR severity 
classification, for training two AI models using online 
automated ML platform via VertexAI platform in Google 
Cloud. ChatGPT was also used for generating computer 
language scripts, and analyzing data to generate 
diagnostic parameters, such as sensitivity and specificity. 
Trained on only 1700 CPFs from Messidor‑2 database, the 
first model for the severity of DR achieved an AUPRC 
of 0.81, a precision of 81.81% and recall of 72.83%. The 
second model for the detecting DR achieved a precision 
and recall of 84.48%, and an AUPRC of 0.90. Limitations 
of ChatGPT for coding included inconsistent and errored 
scripts. If programming errors occurred when running 
the scripts, a query to ChatGPT to request a revised script 
was still possible.[87]

The typical use of ChatGPT was for consultations. 
These included recommendation for DR screening,[88] 
management of DME,[89] intravitreal injections for 
nAMD,[90] general queries for common retinal diseases,[91] 
such as DR, AMD, RVO, CSC, and vitreoretinal 
surgery.[92] The agreements with clinicians in these papers 
varied from fair to substantial depending on research 

methods and outcome measures. Another study assessed 
the diagnosis of six common retinal diseases generated 
from the input of Chinese FFA reports through ChatGPT 
using Chinese Prompt and English Prompt. The authors 
found that the English prompt performed better than 
Chinese prompt in terms of reasoning and diagnoses.[6] 
Hallucination was found frequently and should be aware 
for ChatGPT.

Generative adversarial network
GAN consists of two competing types of CNN: a 
generator and a discriminator for reinforcement. The 
generator and the discriminator compete during training 
to generate more authentic new data from a given training 
dataset. GAN demonstrated remarkable performance 
in image synthesis and image‑to‑image translation. 
A comprehensive review published in early 2022 found 
the most common tasks of GAN in ophthalmology were 
segmentation, data augmentation, denoising, domain 
transfer, super‑resolution, postintervention prediction, 
and feature extraction. The four most common ocular 
imaging domains for GAN were CFPs, macular OCT, 
retinal angiography, and UWF.[93]

Generative adversarial network for color fundus 
photographs
Many recent studies of GAN in retinal imaging still 
focused on CFPs and DR, for which one of the tasks 
was high‑resolution CFPs synthesis of severe NPDR 
and PDR since these severity levels are scarce in general 
training datasets.[94] In another study, to overcome the 
similar problem of imbalanced data, the investigators 
proposed a novel framework, Class‑Imbalanced 
Semi‑Supervised Learning‑GANs, by leveraging a 
dynamic class‑rebalancing sampler. This framework 
exploited the property that the classifier trained on 
class‑imbalanced data to produce high‑precision 
pseudo‑labels on minority classes to leverage the bias 
inherent in pseudo‑labels.[95]

In another study, the investigators developed a model 
integrated ResNet50 with UGAN (GAN for feature 
extraction), and convolutional block attention module 
to enhance the performance of the ResNet50 to screen 
DR at a community level.[96] Another study trained GAN 
for segmentation of subretinal fluid on the 2‑D CFPs in 
CSC.[97] Another study trained GAN to mark drusen 
on CFPs for AMD detection,[98] whereas enhancing the 
detection of ERM on CPFs was also conducted using 
GAN.[99]

Another study developed 16 AI models to discriminate 
referable DR in CFPs, 12 were GANs and 4 were CNNs. 
The training dataset in this study contained only retinal 
images of nonreferrable DR, whereas the testing was 
conducted on the images of both nonreferrable and 
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referrable DR. The best performance across all the models 
was from InfoStyleGAN, a self‑supervised network, with 
an AUROC of 0.808.[100] Methods of synthesizing CFPs 
using GAN for training models for discriminating ROP 
were also investigated.[101]

Generative adversarial network for optical coherence 
tomography
GAN was also used to address a problem of 
imbalanced dataset for OCT. The models trained on 
the synthesis‑balanced public dataset were found to 
outperform the models trained on the unbalanced public 
dataset in the training set, validation set, fivefold cross 
validation, and external test set for classifying normal, 
drusen, DME, and CNV.[102] Another study also showed 
that performances of the model trained with the mixed 
synthetic and authentic OCT scans for classifying 
normal, AMD, DME, was better than that trained with 
only authentic images; the accuracy, sensitivity, and 
specificity were improved by 5.56%, 8.89%, and 2.22%, 
respectively.[103]

Other studies used GAN to predict treatment outcomes, 
such as generating posttreatment macular OCT scans 
from pretreatment scans, after three loading doses 
of anti‑VEGF treatment in nAMD.[104] Another study 
used pretreatment OCT scans to generate longitudinal 
evolution of the macula in nAMD after anti‑VEGF 
treatments.[105]

GAN was also used for generating color‑coded macular 
OCT scans from corresponding FA images of DME and 
vice versa.[106] A newly proposed segmentation strategy 
called a Dual Stream Segmentation network was studied 
for embedding into a conditional GAN to improve the 
accuracy of retinal lesion segmentation.[107]

Techniques other than GAN that may be used in 
generative AI include Variational Autoencoder (VAE) 
and Latent Diffusion Model. Compared to GAN, they 
are used much less frequently in retinal imaging. 
A recent paper applied VAE to generate macular 
OCT scans after full‑thickness MH surgery based 
on preoperative scans.[108] In another recent paper, 
VAE‑based model was used to determine clinically 
relevant latent spaces for retinal disease diagnosis, 
particularly wet AMD, CSC, and polypoidal choroidal 
vasculopathy. The input to this model was a patient 
profile vector containing clinical examination findings 
and demographic information.[109]

Foundation Models

The first paper demonstrating the application of a 
foundation model in ophthalmology was published in 
2023,[14] 7 years after the breakthrough performances of 

CNN in detecting referable DR were published.[110,111] 
The foundation model in this paper, RETFound, was 
pretrained with 1.6 million retinal images of CFPs and 
OCT, then fine‑tuned and validated in many small 
datasets for specific tasks, such as detecting referrable DR, 
AMD, glaucoma, conversion to nAMD, and predicting 
systemic diseases. This self‑supervised model was found 
to outperform traditional supervised and self‑supervised 
models pretrained on ImageNet datasets for the same 
tasks in both internal and external validations.[14] Another 
study on RETFound, validated in real‑world retinal 
images, also found a robust performance.[112] The codes 
and datasets of this model are available online.[113]

In another study, a large pretrained text‑to‑image 
foundation model, SD V.1.4,[114] was fine‑tuned on 
UWF using DreamBooth[115] to produce novel, synthetic 
UWFs to train trainee orthoptists to diagnose common 
retinal diseases in a web‑based course. After finishing 
the course, the students significantly improved their 
diagnostic accuracy from 43.6% to 74.1%.[116]

Another emerging foundation model is the open‑sourced 
Segment Anything Model (SAM) developed by Meta. 
SAM has been trained on a huge number of images 
(11 million) and masks (1 billion), and built on an 
architecture that contained image encoder, prompt 
encoder, and mask decoder. The aim of SAM is to 
perform segmentation on any kinds of images by 
anybody without training.[117] SAM has the potential 
to be very useful for medical image segmentation. An 
early work on SAM in retinal imaging found its use as 
a basis of GlanceSeg, an AI framework which enabled 
ophthalmologists to detect inconspicuous or minute 
microaneurysms (MAs) in real time. This framework 
integrated the gaze maps for rough localization of the 
MAs by ophthalmologists and saliency maps generated 
based on the located region of interest. These maps 
provided prompt points to assist the model to efficiently 
segment the MAs. The human‑in‑the‑loop experiment 
of GlanceSeg on two public datasets demonstrated its 
feasibility and superiority through visualized illustrations 
and quantitative measures. This AI framework improved 
annotation efficiency for ophthalmologists and further 
enhanced segmentation performance on small lesions on 
CFPs for detecting early DR in real time.[118]

Challenges of Artificial Intelligence in 
Retinal Imaging

As of the end of April 2024, there have been only 
three ophthalmic AI devices, IDx‑DR, EyeArt, 
AEYE‑DS, approved by the U.S. Food and Drug 
Administration (FDA). Considering the first AI model 
approved was in 2021, this means there is an approval 
rate of a model a year. All these models were approved 
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for DR screening without human supervision and 
approved for specific cameras. Steps beyond approval 
would be deliveries of the AI models for patient care in 
the real world. A comprehensive review on prospective 
application of AI models for DR screening published in 
2023[119] revealed only eight publications,[120‑127] and some 
of these might not be prospective implementation in 
the real world. Whereas the number of studies on new 
techniques of AI in retinal imaging keeps increasing 
exponentially in recent years, the adoption of AI in 
ophthalmic care, not specifically for retinal patients, 
increases at a much lower rate in comparison. This 
means the gap between development and deployment 
is widening.

If DR screening is a case study, there are at least four 
challenging areas in deployment of AI: (1) the lack 
of more head‑to‑head comparisons of the available 
models,[128] (2) no clear evidence of cost‑effectiveness of 
AI compared to human screeners although many studies 
suggested the trend towards more cost‑effectiveness of 
AI,[129] (3) equity and bias issues, and (4) medicolegal 
considerations. To leverage on the equity of AI in health 
care, the AI tools should be inclusive and accessed by 
people disregard for population, socioeconomic status, 
and geographical area. The data for training and testing of 
AI tools should be representative of the population they 
serve; the reports of their performances should follow 
the standard guidelines. A robust regulatory framework 
is pivotal to ensure AI tools adhere to rigorous equity 
standards.[130] This framework should not include only 
FDA but also national or international bodies of policy 
makers who are driving health‑care forward. One of the 
main concerns in AI deployment rests on a possibility 
that AI may enhance, instead of addressing, health 
disparities.[131] In medicolegal standpoint, it is still unclear 
how responsibility and liability will be shared among 
clinicians, developers, model sellers, and regulating 
bodies if there is a serious misdiagnosis made by AI.[119]

Democratizing AI may be an answer to some of these 
challenges.[132] However, the term is complicated and may 
require interpretation. The simpler term with a similar 
meaning may be “general increase the accessibility of 
AI”[132] and this involves increasing AI development, use, 
profits, and most important, increasing accessibility to 
AI governance.[133]

In a bigger picture, a real challenge of AI in ophthalmology 
may lie not on the aspect of engineering research but on 
the aspect of clinical research in proving that AI models 
can prevent visual loss. At presence, research on AI is 
trying to prove that AI is on par with human experts in 
various tasks; very few uses vision as an outcome measure. 
In DR screening, for example, well‑designed clinical 
research proving that populations screened with AI are 

less likely to have visual loss compared with manual 
screening is essential. Such research may finally be able 
to close the gap between development and deployment.

Conclusions

Many recent studies on AI in retinal imaging still 
focused on enhancing performances of discriminative AI 
using different techniques, with DR being the primary 
disease and CFPs and OCT being the image domains of 
choice. ViTs have emerged as powerful AI techniques 
for image recognition such as transformers for texts in 
NLP. Many studies found ViTs outperformed CNNs for 
common discriminative tasks in retinal imaging. Many 
studies fused CNNs with ViTs taking advantages of 
both techniques.

For generative AI, LLMs are useful for text‑related tasks, 
whereas GAN is useful for image synthesis to fill the 
gap of imbalanced and inadequate datasets for model 
development. With huge amount of pretrained data, 
foundation models are becoming game changers for their 
generalizability to be fine‑tuned for specific tasks with 
unlabeled, smaller datasets of images.

The trend toward democratizing AI would further 
advance research in this field and tentatively reduce 
AI disparities. The rapid advance in AI research may 
unfortunately widen the gap between “development” 
and “deployment” even more, considering only a few 
AI models are deployed in the real world. To close this 
gap, the evidence showing AI models could prevent 
visual loss, particularly in marginalized populations, 
might be required.
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