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Abstract

Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of
hepatic triglycerides contribute to the development of hepatic steatosis. G,/G, switch gene 2 (G0S2) is a target of
peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes.
Therefore, we investigated whether GOS2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression
of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly
increased with excess triglyceride content compared to the control mice. GOS2 did not change cellular cholesterol
levels in hepatocytes. GOS2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid
droplets. Hepatic GOS2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-
density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body
levels were slightly decreased in Ad-G0S2 injected mice. GOS2 also increased the accumulation of neutral lipids in
cultured HepG2 and L02 cells. However, GOS2 overexpression in the liver significantly improved glucose tolerance in
mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose
uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence
supporting an important role for GOS2 as a regulator of triglyceride content in the liver and suggest that G0OS2 may be
a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.
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Introduction

Hepatic steatosis, also called fatty liver, is caused by the
abnormal retention of triglycerides and other fats within liver
cells. Obesity, diabetes, and excessive alcohol consumption
may contribute to hepatic steatosis [1-3]; more than 50% of all
cases with type 2 diabetes have hepatic steatosis. High hepatic
triglyceride concentrations are significantly associated with
increased fasting insulin levels. It is recognized that hepatic
steatosis is a predictor of insulin resistance [1,2]; moreover,
hepatic steatosis is also independently associated with the
presence and extent of coronary artery disease and other
illnesses [4-6].

Within the liver, triglycerides accumulate in lipid droplets, and
their deposition is dependent on their biosynthesis and
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elimination rates [7]. A decreased rate of triglyceride turnover
facilitates triglyceride accumulation in the liver [8,9]. A large
number of molecules can regulate the generation or disposal of
hepatic triglycerides.

G,/G; switch gene 2 (G0S2) was initially found to be
differentially expressed in lymphocytes during the lectin-
induced switch from the G, to G, phase of the cell cycle
[10,11]. Both human and mouse G0S2 genes encode a protein
of 103 amino acids with 78% sequence homology. Later, it was
reported that GOS2 mRNA is also highly expressed in brown
and white adipose tissue and up-regulated during growth arrest
in 3T3-L1 fibroblasts [12]. The activation of peroxisome
proliferator-activated receptors (PPAR)-y and -a [12], PPAR-
[3/d [13], and retinoic acid [14,15] as well as insulin stimulation
can upregulate GOS2 expression in 3T3-L1 cells and human
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Figure 1. Effects of G0S2 overexpression on lipid accumulation in mice. The mice were injected via the tail vein with an Ad
vector at a dose of 3.0 x 10° pfu and were killed at various time points. (A) GOS2 protein levels in the liver and fat tissues were
determined with western blotting. (B) Livers of mice infected with Ad-G0S2 (right) or Ad-LacZ (left) for 4 days. Scale bar = 10 mm.
(C) The liver weight of mice infected with Ad-LacZ or Ad-G0S2. (D) The liver sections were stained with Oil Red O (magnification
400%). Fasting hepatic and plasma lipid levels were measured. (E) Liver triglyceride content. (F) Plasma triglyceride levels. (G) Liver
glycerol content. (H) Liver free fatty acid levels. Each bar represents the mean + SEM (n = 6). *P < 0.05; **P < 0.01.

doi: 10.1371/journal.pone.0072315.g001

acute promyelocytic leukemia cells. Recently, Yang et al.
reported that GOS2 inhibits the triglyceride hydrolase activity of
adipose triglyceride lipase (ATGL), a major regulator of lipid
metabolism in mammals [8], suggesting that GOS2 may play an
important role in regulating lipolysis in adipocytes [16]. ATGL is
also a major lipase in the liver. However, the expression and
function of GOS2 in the liver are still unknown at the present
time; therefore, in this study, we examined the biological role of
GO0S2 in lipid homeostasis in the liver.

Materials and Methods

Cell culture and reagents

HepG2, a hepatocytoma cell line, and L02, a normal hepatic
cell line (China Center for Type Culture Collection, Wuhan,
China), were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS),
100 U/mL penicillin, 100 pg/mL streptomycin, and 2 mM L-
glutamine in 5% CO, at 37° C. DMEM and FBS were
purchased from Invitrogen (Carlsbad, CA, USA). Antibodies
against G0S2 (N-13), ATGL (F-7), and horseradish peroxidase-
conjugated goat anti-rabbit and anti-mouse secondary
antibodies were obtained from Santa Cruz Biotechnology
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(Santa Cruz, CA, USA). FITC-conjugated donkey anti-rabbit
and TRITC-conjugated goat anti-mouse antibodies were from
Proteintech Group, Inc. (Chicago, IL, USA).

Adenovirus construction and infection

An adenovirus (Ad) expressing G0S2 was constructed using
Adeno-X Expression System 2 following the manufacturer’s
instruction (Clontech, CA, USA). Briefly, the full-length coding
region of GOS2 was subcloned into the pPDNR-CMV vector and
transferred to the pLP-Adeno-X-CMV Acceptor Vector via Cre-
loxP-mediated recombination. The Ad was amplified and
purified using the cesium chloride method. Cells were infected
with the Ad at a multiplicity of infection (MOI) of 100.

Plasmid construction and transfection

We used the pAc-GFP-C1 vector to construct plasmids for
the eukaryotic expression of the full-length coding region of the
human G0S2 gene. All plasmids were constructed using an In-
Fusion™ Dry-Down PCR Cloning Kit according to the
manufacturer's protocol (Clontech, CA, USA). Plasmids were
purified using the Promega PureYield Plasmid System.
Cultured cells were transfected with the Ac-GFP-G0S2 plasmid
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Figure 2. Plasma HDL cholesterol, LDL/VLDL cholesterol, and ketone body levels in Ad-infected mice. Mice were infected
with the indicated adenovirus vector for 4 days. Fasting plasma HDL cholesterol (A), LDL/VLDL cholesterol (B), free fatty acids (C),
glycerol (D) and ketone body (E) levels were detected. Each bar represents the mean + SEM (n = 6). *P < 0.05; **P < 0.01; ns, not
significant.

doi: 10.1371/journal.pone.0072315.g002
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Figure 3. G0S2 binds to ATGL in the liver. Mice were injected via the tail vein with an Ad-G0S2 vector and killed 4 days later. (A)
Immunofluorescent analysis of liver sections with the anti-G0S2 and anti-ATGL antibodies. Bound primary antibodies were
visualized, respectively, with FITC-conjugated anti-rabbit IgG or TRITC-conjugated anti-mouse IgG. The sections were visualized
under laser confocal microscopy. LDs in the livers were visualized under a phase-contrast microscope. The arrows indicate positive
staining. Scale bar = 10 ym. (B) Anti-G0S2 and anti-ATGL western blot (WB) analyses were performed on ATGL or mouse
monoclonal IgG immunoprecipitates (IP) prepared with the anti-ATGL antibody or IgG affinity Dynabeads (left panel). To control for
equal loading, equal amounts by volume of crude extract for the immunoprecipitation experiments were loaded onto the SDS-PAGE
gel for immunoblotting (right panel).

doi: 10.1371/journal.pone.0072315.g003

using the Lipofectamine™ LTX Reagent (Invitrogen, Carlsbad, Animal experiments
CA, USA) and incubated for 24 h. Immunofluorescence was
visualized using a laser scanning confocal microscope (Zeiss,
Leusden, the Netherlands).

All experiments using mice were conducted according to the
Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH Publications No.
85-23, revised 1996) and approved by the Animal Care and
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Figure 4. Changes in PPAR-a activated gene expression in mice overexpressing G0S2 in the liver. Mice were injected via
the tail vein with the Ad-G0S2 vector and killed 4 days later. Relative mRNA levels of aP2 (A), Cyp4a10 (B), Ehhadh (C), Aldh3a2
(D), Cgi58 (E), Atgl (F), and Lipe (G) in the liver after fasting. *P < 0.05, compared with the Ad-LacZ-infected mice (n = 5); ns, not

significant.
doi: 10.1371/journal.pone.0072315.g004

Use Committee of Hubei University of Medicine. Male 4-week-
old Swiss mice were used in all experiments. The animals were
fed with standard rodent chow and maintained on a 12-h
artificial light-dark cycle. Ad-LacZ or Ad-G0S2 (3.0 x 10° pfu) in
100 pL sterilized phosphate-buffered saline (PBS) was
delivered by tail vein injection. Diabetes was induced by
multiple subdiabetogenic intraperitoneal (i.p.) injections of
streptozotocin (STZ) freshly dissolved in 10 mM Na-citrate
buffer (pH 4.5) (50 mg STZ/kg body weight daily for 5
consecutive days) (Sigma, MO, USA). The experimental group
of mice had food withdrawn for 16 h, with ad libitum access to
water, previous to sacrifice. Liver tissue was removed for the
measurements of organ weight and triglyceride content, RNA
and protein extraction, and histological examinations.

Glucose tolerance test and insulin tolerance test (ITT)
For the oral glucose tolerance test, the mice were fasted
overnight, and then, a 2 g/kg body weight glucose solution was
administered orally. Blood samples were collected from the tail
before and at 30, 60, and 90 min after the glucose challenge
for determination of blood glucose levels. For the ITT, the mice
were fasted overnight. After measuring body weight and
glucose levels, insulin (Sigma) was injected into each mouse
i.p. (0.2 U/kg body weight). Blood glucose levels were
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measured using a glucose meter at 15, 30, 60, and 90 min
after the insulin challenge.

Oil Red O staining

Freshly dissected liver was fixed overnight in 4%
paraformaldehyde, cryoprotected in 30% sucrose in PBS for
another day, and then frozen in OCT blocks. Cryostat sections
7 um thick were processed for Oil Red O staining; thereafter,
the slices were fractionated with 60% isopropanol for 1 min and
washed with PBS for 2 min. To measure the cellular
accumulation of neutral lipid droplets, HepG2 and L02 cells
were fixed in 4% paraformaldehyde and stained with Oil Red O
solution for 30 min at room temperature. The cells were
washed with 60% isopropanol. After staining, the cells were
washed with PBS to remove unbound dye. To quantify Oil Red
O content, the samples were treated with isopropanol and read
using a spectrophotometer at 510 nm.

Hepatic and serum parameters

Triglyceride and cholesterol levels in the liver and cells were
measured using colorimetric kits from Abcam (Cambridge, MA,
USA) according to the manufacturer’s instructions. Blood for
the determination of lipid parameters was obtained from fasted
mice. High-density lipoprotein (HDL) cholesterol, low-density
lipoprotein (LDL)/very-low-density (VLDL) lipoprotein
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Figure 5. Overexpression of G0S2 improves glucose tolerance in mice. (A) GOS2 mRNA levels in liver following ad libitum
feeding, a 12 h fast, or ad libitum refeeding for 12 h following the 12 h fast. (B) The expression of GOS2 mRNA in the liver of control
mice and mice treated with STZ. Blood glucose levels and the inverse integrated area under the glucose curve of mice at 4 (C, D) or
8 (E, F) days after injection with Ad-LacZ or Ad-G0S2. Change in plasma glucose levels (G) and the mean area under the curve (H)
after an ITT in mice. *P < 0.05, compared with the Ad-LacZ-infected mice (n = 6).

doi: 10.1371/journal.pone.0072315.g005

cholesterol, and ketone bodies in serum samples were according to the manufacturer’s instruction. A Free Fatty Acid
evaluated, respectively, using colorimetric kits from BioAssay Quantification Kit was purchased from BioVision (Milpitas, CA,
Systems (Hayward, CA, USA) and a B-Hydroxybutyrate USA).

Colorimetric Assay Kit from Abcam (Cambridge, MA, USA)
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Figure 6. Effects of G0S2 overexpression on hepatic
glucose uptake. The fluorescence intensity of 6-NBDG in Ad-
G0S2- or Ad-LacZ-infected livers was detected. Each bar
represents the mean + SEM (n = 5). *P < 0.05.

doi: 10.1371/journal.pone.0072315.g006

Co-immunoprecipitation and western blot analyses

For the co-immunoprecipitation assays, 300 pg of total
protein extract from mouse livers were immunoprecipitated with
the anti-ATGL antibody or pre-immune IgG by using a
Dynabeads® Co-Immunoprecipitation Kit (Invitrogen, CA, USA)
and then subjected to western blot analysis with the anti-G0S2
antibody. Equal amounts of total protein (30 pg) were also
resolved by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to nitrocellulose
membranes for western blot analysis. The membranes were
probed with a primary antibody followed by a secondary
antibody conjugated with horseradish peroxidase. The
immunocomplexes  were  visualized  with Enhanced
Chemiluminescence Plus (Amersham Pharmacia Biotech, NJ,
USA).

Measurement of glucose uptake

Glucose uptake by hepatic cells was assessed in vivo. A
fluorescent d-glucose analog, 6-(N-(7-nitrobenz-2-oxa-1,3-
diaxol-4-yl) amino)-6-deoxyglucose (6-NBDG; Invitrogen, CA,
USA), was used to detect glucose uptake by the liver. LacZ- or
GO0S2-infected mice were fasted overnight and then a glucose
solution (2 g/kg) was administered orally. Fifty minutes later,
100 pL of 2 mM 6-NBDG was injected intravenously via the tail
vein into each mouse. Another 15 min later, the animals were
perfused with PBS via the left ventricle. The liver was minced
and homogenized in a lysis buffer supplemented with a
protease inhibitor cocktail. The soluble fraction was obtained by
centrifugation. The 6-NBDG content in equal amounts of
protein lysate was measured by fluorescence intensity
(excitation/emission of ~465/540 nm).
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Statistical analysis

Data are expressed as the mean + standard error of the
mean (SEM). Differences were assessed by analysis of the
variance or Student’s t-test. P-values less than 0.05 were
considered statistically significant.

Results

Overexpression of G0S2 induced hepatic steatosis

To determine the in vivo hepatic function of GO0S2, a
recombinant Ad expressing G0S2 was generated. The mice
were injected via the tail vein with the Ad vectors. The
expression of GOS2 protein in the liver and fat tissues were
verified by western blot analysis (Figure 1A). After 4 or 8 days
of infection, the livers were harvested and weighed. The Ad-
G0S2-infected mice exhibited typically larger livers than the Ad-
LacZ-infected animals (Figure 1B). Liver weight in the Ad-
G0S2-infected mice was approximately 1.4-fold greater than
that of the Ad-LacZ control mice (Figure 1C). The livers were
subsequently sectioned and stained with Oil Red O, which
stains neutral lipids. The number and size of lipid droplets were
significantly increased in the Ad-G0S2-infected livers compared
to the Ad-LacZ-infected livers (Figure 1D).

We further analyzed the effect of GOS2 overexpression on
lipid content. The triglyceride content of Ad-G0S2-infected
livers was significantly increased compared to the Ad-LacZ-
infected livers (30.30 + 4.72 pmol/g tissue vs. 10.71 + 2.14
umol/g tissue at day 4; 27.57 + 5.05 pymol/g tissue vs. 9.00 +
1.40 ymol/g tissue at day 8, respectively) (Figure 1E). The Ad-
G0S2-infected animals also exhibited elevated plasma
triglyceride levels (Figure 1F). Glycerol levels in the Ad-G0S2-
infected livers were lower than in the control livers (Figure 1G);
however, the Ad-G0S2-infected animals exhibited elevated
hepatic free fatty acid levels (Figure 1H). The levels of free
cholesterol and esterified cholesterol in the liver remained
unchanged (data not shown). These results suggest that G0OS2
overexpression induced the accumulation of triglycerides and
promoted fatty liver formation.

Effect of G0S2 on the levels of plasma HDL cholesterol,
LDL/VLDL cholesterol, and ketone bodies

Systemic free fatty acids are the major substrate for VLDL-
TAG and ketone body 3-hydroxybutyrate production. HDL
cholesterol and LDL cholesterol are two major components of
cholesterol. We first examined the effect of GO0S2
overexpression on HDL cholesterol and LDL/VLDL cholesterol
levels in plasma. The resulting data showed that G0S2
overexpression increased LDL/VLDL cholesterol levels, while it
slightly decreased HDL cholesterol levels in plasma (Figure 2A,
2B). However, the levels of plasma free fatty acids and glycerol
remained unchanged (Figure 2C, 2D). Reportedly, ATGL
regulates fatty acid oxidation. We further investigated the effect
of G0S2 overexpression on ketone body production. Reduced
ketone body production was observed in the mice injected with
Ad-G0S2 compared to the control mice (Figure 2E).
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Figure 7. G0S2 causes lipid accumulation in hepatocyte cell lines. (A) L02 cells were transfected with the Ad-GFP-G0S2
plasmid and incubated under normal growth conditions for 24 h. The cells were fixed and stained with Oil Red O and then observed
under fluorescence microscopy. (B) GOS2 protein levels in the L02 cells were determined with western blotting. (C) HepG2 or L02
cells were infected with Ad-LacZ or Ad-G0S2 for 48 h before they were fixed and stained with Oil Red O. Representative images are
shown (magnification 400x%). (D) Oil Red O content in HepG2 and L02 cells. (E and F) Triglyceride and cholesterol levels in L02
cells. Each bar represents the mean + SEM (n = 3). *P < 0.05; ns, not significant.

doi: 10.1371/journal.pone.0072315.g007

G0S2 was coupled with ATGL in the mouse liver

Since GO0S2 functionally associates with ATGL and regulates
its action in adipocytes, we examined whether GOS2 physically
interacts with ATGL in the mouse liver. The subcellular
localization of G0S2 and ATGL was determined by using
immunofluorescence staining. LDs in the liver were visualized
under a phase-contrast microscope and confirmed using Oil
Red O staining. GO0S2 was found to be localized at the surface
of lipid droplets and co-localized with ATGL (Figure 3A). To
confirm this observation, we evaluated the interaction between
G0S2 and ATGL using a co-immunoprecipitation assay.
Immunoblotting of the ATGL-immunoprecipitates from the liver
lysates showed that GOS2 co-precipitated with ATGL (Figure
3B), confirming that GOS2 interacts with ATGL in the liver.

Changes in the expression levels of mMRNAs encoded
by PPAR target genes

Lipolysis of cellular triglycerides by ATGL generates
mediators involved in the generation of lipid ligands for PPAR
activation. ATGL deficiency in mice can decrease the mRNA
levels of PPAR-a and PPAR-3 target genes in cardiomyocytes.
We examined the expression of aP2, Cyp4a10, Ehhadh, Fgf21,
and Aldh3a2 mRNA in the liver. The resulting data showed that
the mRNA levels of Ehhadh and Aldh3a2 in the liver were
reduced in the Ad-G0S2-infected mice compared to the control
mice. GOS2 overexpression did not alter aP2 or Cyp4a10
expression (Figure 4A-D). We further investigated the effect of
GO0S2 overexpression on the mRNA levels of genes involved in
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lipolysis, e.g., Lipe and Cgi58. The data showed that hepatic
G0S2 overexpression in mice decreased the mRNA levels of
Lipe, but did not alter Cgi58 or Atgl expression (Figure 4E-G).

G0S2 overexpression improves glucose tolerance

Hepatic steatosis is associated with insulin resistance. To
study the regulation of G0S2 expression by insulin, we
performed a fasting/refeeding experiment. GOS2 mRNA levels
fell slightly upon fasting and were restored by refeeding (Figure
5A). Furthermore, STZ injection caused G0S2 levels to
decrease by 30% in the liver (Figure 5B). We next investigated
the ability of GOS2 overexpression to influence glucose
tolerance in vivo. We found that overexpression of GOS2 in the
liver significantly improved glucose tolerance (P < 0.05 at 30
and 60 min) at days 4 (Figure 5C, 5D) and 8 (Figure 5E, 5F)
post-infection. Fasting glucose levels were not significantly
different between the Ad-G0S2- and Ad-LacZ-infected groups.
These results demonstrate that GOS2 modulates glucose as
well as lipid homeostasis in vivo. We further carried out an ITT
in mice fed a chow diet. Overexpression of GOS2 in the liver
resulted in a slightly, but not significantly, hypoglycemic
response to insulin compared with the control mice (Figure 5G,
5H). Therefore, hepatic G0S2 overexpression improves
glucose disposal in vivo.

G0S2 overexpression increases hepatic glucose uptake

To further assess whether GOS2 affect glucose uptake by
the liver, we examined the fluorescence intensity of 6-NBDG in
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equal amounts of hepatic protein lysate. It was shown that the
fluorescence intensity of 6-NBDG was significantly increased in
the Ad-G0S2-infected livers compared to the Ad-LacZ-infected
livers (Figure 6). These data indicate that G0OS2 enhances
glucose tolerance by increasing hepatic glucose uptake.

G0S2 resulted in lipid accumulation in hepatocytes in
vitro

Whether G0S2 directly modulates the lipid content of
hepatocytes was further examined in vitro. The GFP-G0S2
fusion protein was expressed in L02 cells; lipid droplets were
stained with Oil Red O. Here, we found that GFP-G0S2 protein
was located in the proximity of the lipid droplets of L0O2 cells
(Figure 7A). The overexpression of GOS2 protein in the Ad-
infected LO2 cells was verified by western blot analysis (Figure
7B). In accordance with the in vivo results, GO0S2
overexpression significantly increased neutral lipid content in
L0O2 and HepG2 cells compared with control cells (Figure 7C,
7D). Cholesterol and triglyceride content in the LO2 cells was
analyzed subsequently. The resulting data showed that G0S2
overexpression caused an approximately 1.5-fold increase in
cellular triglyceride content, but did not change cellular
cholesterol levels in hepatocytes (Figure 7E, 7F).

Discussion

In the present study, we found that the overexpression of
GO0S2 induces triglyceride accumulation in the mouse liver and
results in the development of hepatic steatosis. G0S2
overexpression can increase LDL/VLDL cholesterol levels and
decrease HDL cholesterol and ketone body levels in the blood.
GO0S2 couples with ATGL and promotes lipid accumulation in
hepatocytes. However, GOS2 overexpression in the liver has
beneficial effects on glucose homeostasis. These findings
suggest that G0S2 is a crucial regulator of hepatic triglyceride
metabolism.

Although G0S2 was first identified as a potential cell cycle
regulator, it has been shown that GOS2 expression is restricted
to forming brown adipose tissue and liver during murine
embryonic development [17]. Similarly, Zandbergen et al.
showed that GOS2 is a PPAR target gene; GOS2 mRNA levels
were the highest in brown and white adipose tissue and were
greatly up-regulated during the adipogenesis of mouse 3T3-L1
cells [12]. These data give a clue that GOS2 may participate in
lipid metabolism. Yang et al. recently reported that G0S2
localizes to lipid droplets and prevents their ATGL-mediated
turnover in Hela cells and adipocytes [16]. The liver and
adipose tissue are the main sites of triglyceride synthesis. In
the present study, we provided direct evidence that G0S2
induced liver triglyceride accumulation and severe hepatic
steatosis under basal conditions.

It is known that PPAR agonists decrease hepatic lipid
content in humans and rodents [18,19]. A therapeutic dose of a
PPAR-a agonist increased the liver triglyceride levels in mice
[20]. Fenofibrate treatment of rats resulted in a 50% increase in
liver triglyceride levels [21]. Moreover, bezafibrate, an agonist
of murine PPAR-a and a partial agonist of PPAR-y, increased
cellular triglyceride mass in primary rat hepatocytes [22]. On
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the contrary, a PPAR-a agonist increased hepatic triglyceride
content less in animals that received a high-fat diet [23—-26]. In
this study, we also found that the mRNA expression of GOS2 in
the liver was up-regulated (approximately 2-fold induction) by
fenofibrate (data not show). Therefore, GOS2 is likely to play a
role in the maintenance of the liver triglyceride pool under
physiological conditions. It is possible that the modulation of
liver triglyceride levels by PPAR-a agonists is at least partially
achieved via the induction of G0S2. Moreover, it is likely that
GO0S2 is also a negative regulator of PPAR agonists and may
counterbalance the triglyceride lowering effects of PPAR under
pathophysiological conditions.

Fatty acids are broken down enzymatically by (-oxidation to
form acetyl-CoA. The ATGL-mediated hydrolysis of
triglycerides generates fatty acids and diacylglycerol (DAG).
Reportedly, fatty acid oxidation was increased by ATGL
overexpression and decreased by ATGL knockdown [27]. The
current study provided evidence that the overexpression of
GO0S2 in the liver partly decreased the levels of serum ketone
bodies. Given that GO0S2 interacts directly with ATGL to
suppress its enzymatic activity, it is speculated that G0S2
mediated the down-regulation of ketone body production by
suppressing free fatty acid levels or hepatic fatty acid oxidation.
Reportedly, the lipolysis of cellular triglycerides by ATGL
generates mediators that are involved in the generation of lipid
ligands for PPAR activation. ATGL could also influence PPAR-
a activity independent of ligand-induced activation [28]. We
found that the administration of Ad-G0S2 decreased Ehhadh
and Aldh3a2 mRNA levels, but did not significantly change
Acot1 or Cyp4a10 mRNA expression in the liver. Therefore, it
is suggested that GOS2 influenced ketone body formation
partly independently of PPAR ligand-induced activation.

Endogenous ATGL is localized to the external surface of lipid
droplets in adipocytes, and it plays a key role in lipid droplet/
adiposome degradation in mammalian cells. G0OS2 couples
with ATGL and prevents ATGL-mediated basal lipid droplet
degradation in adipocytes and HeLa cells [16]. Recent work by
Lu et al. demonstrated that GOS2 binds to ATGL in a manner
that is dependent on the intact 3-dimensional structure of the
patatin-like domain and may block the substrate accessibility of
ATGL [29]. In this study, we demonstrated that GOS2 and
ATGL were colocalized on the surface of lipid droplets. Co-
immunoprecipitation confirmed that GOS2 binds directly with
ATGL in hepatocytes. A previous study showed that hepatic
overexpression of ATGL stimulates the direct release of free
fatty acids. Here, we found that Ad-G0S2-infected animals
exhibit elevated hepatic free fatty acid levels. We hypothesize
that increased hepatic triglyceride storage pools and decreased
direct release of free fatty acids could result in elevated hepatic
free fatty acid levels. Furthermore, glycerol levels in Ad-G0S2-
infected livers were decreased compared with controls.
Collectively, these observations indicate that G0S2 can
decrease ftriglyceride degradation in hepatocytes through
binding with ATGL and inhibiting its activity.

It is worth noting that GOS2-induced hepatic steatosis was
very potent (by 3-fold) in vivo, but to a lesser extent (1.5-fold) in
hepatocytes in vitro. Lipid droplets of Ad-G0S2-infected livers
in vivo were also significantly larger than those seen in Ad-
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G0S2-infected HepG2 and L02 cells in vitro. To address this
discrepancy, physiological concentrations of oleic acid were
added to the culture media; however, G0S2-induced hepatic
lipid accumulation in hepatocytes in vitro was still much weaker
than in vivo (data not shown). Furthermore, a high MOI still
could not increase lipid accumulation in hepatocytes. The
differences between the in vitro and in vivo results may indicate
that internal conditions can modulate G0S2 activity and the
global metabolic effects of GOS2 may also contribute to the
development of hepatic steatosis.

A number of studies have documented a strong relationship
between hepatic steatosis and insulin resistance. Hepatic
steatosis is thought to be part of metabolic syndrome [2,30].
G0S2 expression in fat tissue was found to be decreased in
db/db mice and mice fed with a high-fat diet. We reported here
that STZ treatment also decreased the expression of G0S2
mRNA in the liver. Insulin increased but TNF-a decreased the
GO0S2 levels in 3T3-L1 adipocytes [16]. On the contrary, G0S2
was also identified as a target of carbohydrate response
element-binding protein/Max-like factor X [31]. Its mRNA
expression in hepatocytes was upregulated by high glucose.
Here, we unexpectedly found that the overexpression of GOS2
in the liver increased glucose disposal in vivo. Discrepant
effects on insulin sensitivity and hepatic steatosis have been
observed in several recent studies. Reportedly, liver-specific
Akt activation [32], angiopoietin-like protein 4 overexpression
[33], and inhibition of phosphatase and tensin homolog [34]
improved glucose tolerance, but induced hyperlipidemia and
hepatic steatosis in mice. Moreover, GOS2 attenuates ATGL
action. ATGL null mice store vast amounts of triacylglycerol in
key glucoregulatory tissues, yet exhibit enhanced insulin
sensitivity and glucose tolerance [35]. Previous evidence also
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