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Abstract: Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug
delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug
Administration (FDA). Common factors that influence PLGA particle properties have been extensively
studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta
potential, and drug loading efficiency. These properties have all been found to be key factors for
determining the drug release kinetics of the drug delivery particles. For drug delivery applications
the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued
with the issue of burst release when a large portion of the drug is suddenly released from the particle
rather than the controlled release the particles are designed for. Other properties of the particles
can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg,
however, is an underreported property of current PLGA based drug delivery systems. This review
summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors
that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of
the influence of Tg on drug delivery applications.

Keywords: glass transition temperature; PLGA copolymers; drug delivery; nanoparticles

1. Introduction

The application of polymeric particles in drug delivery has been rapidly developed
in the past several decades [1–9]. Particle-based therapeutics offer considerable benefits
compared with traditional pharmaceuticals, such as controlling release rates, overcom-
ing biological barriers, delivering hydrophobic drugs, and targeting specific sites [10–18].
Polymeric particles guard the encapsulated drugs from enzymatic reactions in order to
prolong the half-life of the encapsulated drugs [19–21]. The tunable size of the polymeric
particles enables the travel through cell membrane barriers [22–24]. Diverse manufacturing
approaches and surface modifications offer opportunities for the polymeric particles to
reach the desired organ, tissue, and cells, thus minimizing the toxicity at other sites [25–27].
All these benefits make polymeric particles a promising drug delivery strategy. Poly(lactic-
co-glycolic acid) (PLGA) has been proven to be a successful polymeric drug carrier and
widely used in drug delivery, tissue engineering, and cancer therapies [28,29] due to its
biocompatibility and biodegradability. Currently, more than 20 different PLGA formula-
tions have been approved by the U.S. FDA [30]. PLGA undergoes a hydrolysis process in
body fluid and generates biodegradable metabolite substances, lactic acid and glycolic acid,
which can be eliminated by the human body [31]. Additionally, the availability of different
PLGA polymer degradation rates, ranging from days to months, can be used to design
an appropriate release profile, keeping the drug concentration between maximum toxic
concentration (MTC) and minimum effective concentration (MEC), and increasing patient
compliance. In order to achieve promised pharmacodynamics, biodistribution, and toxicity
levels, the key physicochemical properties need to be appropriately studied. Particle size,
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size distribution, surface morphology, zeta potential, and loading efficiency are most com-
monly characterized because these parameters are the key factors that determine the drug
release behaviors [32,33]. It has been proposed, however, that the glass transition temper-
ature (Tg) will also impact the drug release behavior of polymeric nanoparticles [34–36].
During this transition, the increased polymer chain mobility allows the drug molecule
to escape from the polymer chain entanglement, resulting in an increased release rate.
Notably, during the preparation of PLGA particles, the nature of PLGA copolymer, reactant
components, and manufacturing process will contribute to changes in the Tg (Figure 1) [37].
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in a soft rubbery substance. It has been well studied that during the glass transition, spe-
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Skidmore, S.; Park, H.; Jhon, Y.K.; Qin, B.; Wang, Y., Formulation composition, manufacturing process,
and characterization of poly(lactide-co-glycolide) microparticles, 1150–1161, Copyright (2021), with
permission from Elsevier.

Glass transition temperature (Tg) is usually defined as the temperature range where
the polymer transitions from a hard glassy state to a relative rubbery state and is normally
detected by the rapid change in heat capacity, specific volume, or stiffness. The Tg is an
important indicator of the physical properties of semi-crystalline and amorphous polymers.
During the glass transition, the disordered chains in the amorphous portion start to escape
the entanglements, increasing the polymer mobility on a macro scale which results in a
soft rubbery substance. It has been well studied that during the glass transition, specific
enthalpy, specific volume, thermal expansivity, motions of the polymer chain, and other pa-
rameters experience a dramatic change [38–42]. Notably, previous literature demonstrated
that the Tg of drug loaded PLGA particles ranges from 30 ◦C to 60 ◦C [43,44], indicating that
PLGA particles could undergo a glass transition in a 37 ◦C drug release environment. The
substantial change in PLGA particle physicochemical properties could lead to a different
drug release rate from the particle matrix and an uncontrolled release profile. Nevertheless,
even though the drug release kinetics has been frequently investigated by researchers with
respect to the physicochemical properties of PLGA copolymer, drug type, manufacturing
process, and post-treatment, there is significantly less literature focusing on associating
drug release kinetics with the Tg of PLGA particles.

Quite a few reviews have recently been reported about PLGA nanoparticles in drug
delivery. Mir et al. summarized the application of PLGA nano carriers in cardiovascular
diseases, inflammatory disease, neurodegenerative diseases as well as cancer therapy and
theragnostic [45]. Xu et al. provides a review on experimental observations and theoretical
models, inferring the relation between the manufacturing factors and drug release pro-
files (Figure 2). These include the inherent properties of the PLGA polymer, influence of
the drug loaded into the particle, processing parameters, and release environment [46].
Ding et al. presented the approaches of PLGA particle preparation, which could be classi-
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fied as emulsification-solvent evaporation, nanoprecipitation, microfluidics, spray-drying,
and phase separation [47]. Rezvantalab et al. summarized passive targeting, active target-
ing, and magnetic targeting for PLGA drug delivery nanoparticles for cancer treatment. In
addition, PLGA nanoparticles can be used with other therapies, such as magnetic hyper-
thermia, photodynamic and photothermal therapy, and gene therapy [48]. Ghitman et al.
provided the comparison between the traditional approach of preparing PLGA-lipid nano
vehicles and novel approaches, which were soft lithography and spray drying. Ghitman’s
review highlights the current challenges to fully understand the physicochemical properties
of the nanocarriers and the interaction of targeting sites to determine the toxicity level
and clinic safety [49]. Cunha et al. investigated the application of PLGA nanocarriers in
neurodegenerative diseases, specifically the potential for PLGA nanocarriers to transport
neuroprotective medicines across the blood-brain barrier [50]. Though many reviews exist
exploring PLGA’s role as a drug delivery vehicle, none exist that take the glass transition
temperature of the particles into account. This review summaries the factors that influence
the Tg of the PLGA copolymer, bare particles, and drug loaded particles. In addition,
the connection of glass transition of PLGA particles and drug release behavior are dis-
cussed in terms of the mobility of PLGA particles, the physical ageing effect, and surface
reconfiguration.
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2. Glass Transition Temperature of PLGA Particles
2.1. PLGA Copolymer

PLGA is a linear random copolymer consisting of D,L-lactide and glycolide, which is
usually prepared by polycondensation reaction and ring-opening polymerization of the two
monomers (Figure 3) [51,52]. The physicochemical properties of the PLGA copolymer used
in preparation are the determining factors of the properties of the PLGA particles, including
monomer ratio, molecular weight, crystallinity, and end groups [35,53]. In addition, the
final PLGA products are also affected by the approaches, reaction environment, and process
parameters [54]. The molar ratio of the two monomers in the PLGA chains determines many
physicochemical properties, such as the glass transition temperature, degradation rate,
hydrophobicity, and degree of crystallinity [55,56]. In general, the Tg of PLGA increases
when the copolymer has a rich content of PLA. Peter In Pyo et al. reported that, among four
different ratio PLGAs, PLGA with a ratio of lactide to glycolide of 90:10 (PLGA90:10) had the
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highest Tg while PLGA with a ratio of 50:50 (PLGA50:50) had the lowest Tg of 35.7 ◦C [57].
Brostow et al. developed an equation to predict the glass transition temperature of physical
mixtures of binary systems and copolymers [58],

Tg = x1Tg1 + (1 − x1)Tg2 + x1(1 − x1)×
[

a0 + a1(2x1 − 1) + a2(2x1 − 1)2 + a3(2x1 − 1)3
]

(1)

where Tg is the glass transition temperature of the given sample, x1 is the weight fraction
of component 1, Tg1 is the glass transition temperature of component 1, x2 is the weight
fraction of component 1, Tg2 is the glass transition temperature of component 2, a0, a1, a2,
and a3 are parameters for the given copolymer or binary system.
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It has also been reported that PLGA50:50 has the fastest degradation rate, which is due
to the high percentage of hydrophilic glycolide, enabling water to penetrate the particle
matrix and promote hydrolysis [59,60]. The Flory-Fox equation is a well-known empirical
equation that describes the relationship between the number-average molecular weight
and glass transition temperature, which was reported by Thomas et al. in 1950 [61]:

Tg = Tg,∞ − K
Mn

(2)

where Tg,∞ is the highest glass transition temperature for a given polymer under the
theoretical condition that the molecular weight is infinitely high, K is an empirical parameter
for a given polymer sample which is related to the free volume, and Mn is the number-
average molecular weight.

Briefly, Tg has a positive correlation with polymer molecular weight. As the polymer
chains become longer, the concentration of chain ends decreases in a unit volume result-
ing in less free volume between chain ends, thus the Tg becomes higher [62]. Lee et al.
illustrated that PLGA with molecular weight (MW) of 8000 g/mol has a Tg of 42.17 ◦C,
and as the MW increased to 110,000 g/mol, the Tg rose to 52.62 ◦C [63]. Additionally, the
crystallinity and the mobility of the polymer chain ends have a significant impact on free
volume, and the Tg rises as the degree of crystallinity grows or as the density of end groups
decreases [64–66].

2.2. Glass Transition Temperature of Polymeric Particles

When considering properties of substances at a nanoscale level, it is expected that the
properties will be different from those of the bulk material, often because of the greater
surface-to-volume ratio the nano substances have. Keddie’s group reported the first
systematic study on the size-dependent glass transition temperature of thin polystyrene
films supported by silicon substrates. In their work, three different molecular weight
polystyrenes were used to create thin films and their Tg was measured by ellipsometry. It
was found that the Tg dropped substantially when the film became thinner [67]. Raegen
et al. further investigated PS thin films on substrates under ambient, dry nitrogen, and

http://creativecommons.org/licenses/by/4.0/
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vacuum environments (Figure 4) [68]. For all experiments, the Tg drop appeared with
decreasing film thickness suggesting that the Tg reduction in PS thin films was an intrinsic
property. The surface area to volume was greatly reduced in these thin films, however, the
two surfaces were different: one was the supporting substrate, and the other was a free
surface. In order to reduce the inequality from the free surface and interface of the thin film
and to better understand the interfacial effect on a polymer’s Tg, spherical nanoparticles
have been investigated by several research groups because a 3-dimensional geometry
reduces the interface to one and the increase of the surface area to volume ratio will exhibit
more obvious interfacial effects. Zhang et al. prepared polystyrene nanoparticles (PS NPs)
of different sizes and the Tg of the PS NPs suspended in water was measured by MDSC [69].
The results agreed with the trend of PS thin films, in which the PS nanoparticles of extremely
small size will show a significant reduction in Tg. It was well accepted that the Tg reduction
was caused by an enhanced mobile layer on the surface [67]. To further prove the interfacial
effects on Tg shift, they synthesized PS/silica core-shell structural nanoparticles, for which
the silica on the surface was defined as a hard shell. It was observed that the silica capped
nanoparticle samples did not have a size dependent Tg reduction, which reinforced the
conclusion that the mobile layer formed on the free surface will cause the Tg shift.
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from Springer Nature Customer Service Centre GmbH: Springer, The European Physical Journal E,
Effect of atmosphere on reductions in the glass transition of thin polystyrene films, Raegen, A.N.;
Massa, M.V.; Forrest, J.A.; Dalnoki-Veress, K., 2008.

Christie et al. investigated the effects of the measurement environment on Tg by
measuring the Tg of PS nanoparticles suspended in three different liquids: glycerol, ionic
liquid (1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMIM][CF3SO3]), and
water [70]. As shown in Figure 5, the Tg reduction of PS nanoparticles suspended in water,
ionic liquid and glycerol will have a strong, independent, and weak correlation with the size.
Also, the Tg reduction from particles suspended in water will be similar to those measured
in air, because the interfaces of water-PS and air-PS are considered “soft” due to their low
viscosities compared with the polymer. The higher viscosity of glycerol, however, will
inhibit the mobility of the glycerol-PS interface, resulting in a relatively inert polymer chain
in the mobile layer. When considering the suspension in ionic liquid, ionic interactions
dominate the mobility in the mobile layer because the positively charged [BMIM] molecule
will anchor onto the negatively charged PS surface, inhibiting the mobility of the polymer
chains at the interface.
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Feng et al. proposed investigation in aqueous environments by preparing PS nanoparti-
cles from a nonionic surfactant (Brij 98) and an anionic surfactant (sodium dodecyl benzene
sulfonate (SDBS)) as well as surfactant-free particles [71]. A substantial reduction in Tg with
decreasing size of surfactant-free particles was observed which corresponded to previous
studies. Nanoparticle surface softness is critical in Tg characterization because of the high
surface area to volume ratio in nano-size materials.

These studies demonstrate that polymeric particles under confinement exhibit varia-
tions in Tg as a result of surface and interfacial effects. Due to the challenges associated
with residual surfactant, size distributions, and other factors, the size-Tg correlation has not
been conducted explicitly on PLGA particles; nonetheless, similar trends are expected to
occur in PLGA particles.

2.3. Drug Effect

PLGA particles are extensively employed for a broad range of drugs, including hy-
drophobic and hydrophilic drugs. Drugs that are hydrophobic are easier to encapsulate
in PLGA than those that are hydrophilic. Hydrophilic medicines often have lower drug
loading efficiencies because the drug molecules enter the aqueous phase before the PLGA
chains form into particles [72]. For loading hydrophobic and hydrophilic drugs into PLGA
microparticles, the most extensively utilized methods are emulsion-evaporation technique
(oil/water or water/oil/water) (Figure 6) [73–75]. The single emulsion technique involves
an organic phase which contains PLGA polymer and the hydrophobic drug in a suitable or-
ganic solvent and an aqueous phase which contains a stabilizer. Mechanical force provided
by ultrasonication is utilized to form an oil in water emulsion, and the organic solvent is
then extracted to solidify PLGA particles [76]. On the other hand, hydrophilic drugs are
usually encapsulated by a double emulsion technique to prevent diffusion of the drug into
the aqueous phase. The inner water phase containing the hydrophilic drug is added into
the PLGA solution to form a primary water-in-oil emulsion. Then the primary emulsion
is injected into the outer water phase with the presence of a stabilizer to create a double
emulsion. The final step is similar to the single emulsion process, which is to evaporate the
organic solvent to obtain PLGA particles [77]. Another conventional preparation of PLGA
particles is nanoprecipitation, which involves mixing a miscible solvent and stabilizer in
water [77]. During the diffusion of organic solvent into the aqueous phase, nucleation,
nuclei growth, and aggregation are expected to occur in order to form final particles [78].
Microfluidic technology is a novel method to produce narrow size distribution PLGA
particles with high drug encapsulation. A microfluidic chip is made up of micro size
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channels which ensures the mixing of inlet flows to be completed within milliseconds [33].
Electrospray jetting can also be utilized to prepare PLGA particles. Electrospray jetting
usually consists of a high voltage source, syringe pump, and collector. By adjusting the
voltage, distance between collector and syringe, and flow rate, a Taylor-cone forms at the
needle, which results in a stable spray. Solvent in the small droplets experience evaporation
and solid particles reach the collector [79].
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The drug type is tightly associated with drug release behavior, as hydrophobic
molecules have a significantly lower degree of initial burst release than other pharma-
ceuticals due to their poor water solubility [80–82]. Steven et al. demonstrated the influence
of a hydrophilic drug (aspirin) and a hydrophobic drug (haloperidol) on PLGA matrices
release behavior, and the results showed that the drug with higher water solubility (aspirin)
would give a relatively higher diffusion efficiency [83]. Apart from the influence of drug
release behavior, the drug type will also determine the glass transition temperature of
PLGA particles. Svenja et al. encapsulated flurbiprofen into 200 nm PLGA nanoparticles,
and found that as the encapsulation efficiency increased, the Tg of PLGA nanoparticles
decreased from 28.8 ◦C to 19.9 ◦C, and that the overall mobility was improved by a higher
flurbiprofen loading efficiency. Furthermore, they prepared mTHPP-loaded PLGA nanopar-
ticles and measured the Tg, which turned out to have no effect compared with the unloaded
PLGA particles. Due to the higher molecular weight of mTHPP molecules, the rigid chem-
ical structure, and relatively hydrophobic compounds, the mTHPP is unable to form a
tight association with the polymer, preventing the polymer chain from becoming more
mobile [34]. In order to investigate the plasticizing effect of different drugs in polymeric
system, Siepmann et al. prepared thin films with metoprolol tartrate, chlorpheniramine
maleate, and ibuprofen [84]. The experimental data illustrated that Tg of the thin films
decreased with the increased drug loading efficiency, which demonstrated that three
drugs acted as plasticizers in the polymeric system, where ibuprofen contributed the most
plasticizing effect (Figure 7). It is expected that drug molecules penetrate in the spaces
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between the polymer chains, which increases the free volume and decrease the Tg of the
polymeric system.
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Recently, it has become more common to report the measured Tg of particles used
for drug delivery applications. In this review, the Tg of PLGA nanoparticles from recent
literature loaded with a drug are listed, along with the size, preparation, measurement, and
heating rate, as shown in Table 1.

2.4. Water Content

Water is well established as a plasticizer in polymeric systems [91] and it lowers
the Tg of many polymers. Passerini et al. reported that undried PLGA particles contain
approximate 4.47% of moisture content and have a Tg of 27.7 ◦C, which is about 15 ◦C
lower than that of bulk PLGA polymer Notably, the dried particles which undergo 3 days’
lyophilization still contain 3.5% of residual moisture, and the Tg is 33.1 ◦C [92]. Susan et al.
further investigated the influence of water uptake on the Tg of PLGA polymers. After
incubation in 0.5% PVA solution, the dried PLGA polymer had a Tg approximately 15 ◦C
higher than the wet polymer, and Tg recovery was achieved upon removing the moisture
content (Figure 8). After 14 days’ incubation, lower PLGA chains were found, indicating
that degradation of PLGA occurred [93].

2.5. Residual Surfactant

Amphiphilic compounds are widely utilized in PLGA particle manufacturing pro-
cesses to generate monodisperse particles, reduce surface tension of the particles, and
avoid aggregation among the particles [94]. The interaction between PLGA chains and
other substances such as encapsulated drugs, trapped stabilizer, and residual solvent, will
eventually influence the mobility of the PLGA matrix [95]. Sahoo et al. reported that it
was quite challenging to remove the remaining poly (vinyl alcohol) (PVA) from PLGA
particles before freeze-drying. A logical explanation would be that PVA filled in the inner
pockets and coated the surface of PLGA particles [96]. The remining surfactant had an effect
on the particle parameters of PLGA particles, including particle size, zeta potential, size
distribution, surface hydrophobicity, and protein loading, and also had a modest effect on
the encapsulated protein’s in vitro release. According to their report, the weight percentage
of residual PVA could be up to 5% of PLGA particles prepared by emulsion-solvent evapo-
ration technique [96]. Spek et al. illustrated the residual PVA present in PLGA particles
by 1H nuclear magnetic resonance spectroscopy (NMR), which turned out to be 9.9 wt.%
from the bulk of the particles. For the PEG-PLGA particles, PVA content could be as high



Polymers 2022, 14, 993 9 of 18

as 35 wt.% on the particles surface based on the X-ray photoelectron spectroscopy (XPS)
results [97]. In order to demonstrate the surfactant effect on the Tg of polymeric particles,
Feng et al. prepared PS nanoparticle with Brij 98 (nonionic surfactant) and sodium dodecyl
benzene sulfonate (anionic surfactant) as well as surfactant-free particles. A substantial
reduction in Tg with decreasing size of surfactant-free particles was observed which cor-
responded to previous studies. On the other hand, the PS nanoparticles prepared with
nonionic surfactant showed a weak correlation between size and Tg reduction while anionic
PS latex nanoparticles showed no correlation. The authors suggested that the incorporation
of surfactant into the mobile layer influenced the free volume, thus affecting the Tg of the
particles [71].

Table 1. Glass transition temperature of drug loaded PLGA nanoparticles.

PLGA
LA:GA
Mol wt.
(g/mol)

Diameter
(nm) Model Drug Preparation Tg (◦C) Measurement

Heating Rate Ref.

50:50
7000–17,000

Around 200 None STM 1 39.35
DSC

10 ◦C/min
[85]Around 180 Atorvastatin STM 42.49

Around 170 None SUM 2 30.24
Around 190 Atorvastatin SUM 35.02

50:50
54,000–69,000

Around 240 None STM 47.66
DSC

10 ◦C/min
[85]Around 230 Atorvastatin STM 47.62

Around 225 None SUM 25.98
Around 180 Atorvastatin SUM 28.00

85:15
Unknown 391+/−160 Menthol W/O/W 48.0 DSC

10 ◦C/min [86]

75:25
14,000 3 162+/−3 None Emulsion-evaporation 32.7+/−0.2 DSC

5 ◦C/min [53]

75:25
32,000 3 155+/−5 None Emulsion-evaporation 37.6+/−0.2 DSC

5 ◦C/min [53]

75:25
32,000 4 213+/−18 None Emulsion-evaporation 37.2+/−0.4 DSC

5 ◦C/min [53]

75:25
14,000 4 238+/−18 None Emulsion-evaporation 24.8+/−0.6 DSC

5 ◦C/min [53]

50:50
38,000–54,000

Unknown Enrofloxacin
Emulsification-diffusion

32.9+/−0.8 MDSC
5 ◦C/min

[87]Unknown None 31.26

62:38
18,400 282+/−43 Insulin Emulsification-diffusion 43.14 DSC

10 ◦C/min [88]

50:50
Unknown

211.9+/−2 Abiraterone acetate

Modified single emulsion

45.64
DSC

5 ◦C/min
[89]170.9+/−2.1 Docetaxel 45.93

256.3+/−9.4 Abiraterone
acetate/Docetaxel 46.61

50:50
Unknown

179+/−13 Rutin Single solvent
evaporation 46.19 DSC

5 ◦C/min
[33]

123+/−4 Rutin Microfluidics 44.03

75:25
Unknown Unknown Simvastatin Emulsion solvent

evaporation 51.5 DSC
10 ◦C/min [90]

Unknown

226.8+/−6.8 Flurbiprofen

Emulsion diffusion

28.8+/−0.6

DSC
20 ◦C/min

[34]

224.2+/−5.3 Flurbiprofen 26.9+/−0.5
222.8+/−4.8 Flurbiprofen 25.3+/−1.1
216.0+/−3.8 Flurbiprofen 22.4+/−1.5

223.3+/−11.7 Flurbiprofen 19.9+/−1.6
237.4+/−9.1 mTHPP 32.4+/−1.1

1 Standard method: modified emulsion diffusion evaporation method. 2 Sustainable method: modified solvent
displacement method. 3 PLGA polymer has acid terminal functional groups. 4 PLGA polymer has ester terminal
functional groups.
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3. Influence of Tg on Drug Delivery
3.1. Particle Mobility

Takeuchi et al. examined the effects of the glass transition temperature on drug
release behavior of drug loaded PLGA nanoparticles (Figure 9). 200 nm PLGA and PLLGA
nanoparticles were prepared with a Tg of 40.6 ◦C and 47.7 ◦C, respectively. The in vitro
drug release study was carried out by dispersing the drug-loaded nanoparticles into PBS at
37 ◦C. More than 90% of the drug was released from the PLGA nanoparticles in the first
two hours whereas only around 65% of the drug was released from PLLGA. The Tg of
PLLGA was 7 ◦C higher than PLGA and the crystallinity of these two samples was similar,
which demonstrated that the Tg strongly influenced the initial burst release [35].
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Lappe et al. studied the correlation between Tg and the release profile kinetics by
comparing the release of two model drugs from PLGA nanoparticles at different temper-
atures (Figure 10). At the initial incubation temperature of 37 ◦C, the FBP-NPs reached
around 93% drug release within a short time. Even after shifting the release medium
temperature to 10 ◦C, the released amount of drug was constant at 19%. When the starting
temperature was 10◦C, only 70% of the drug was released after the first 24 h of incubation
time, and an addition of 23% drug release was observed upon the changing the temperature
to 37 ◦C. mTHPP-NPs had the same release behavior while the total amount of released
drug was lower than FBP particles, which was mainly caused by the drug type. This
study demonstrated that when the release medium temperature is lower than the Tg of the
nanoparticles, only the drug absorbed on the particle surface led to burst release, while at a
higher temperature, the entrapped drug would also contribute to the burst release [34].
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3.2. Physical Ageing of Particles

Polymers are naturally non-equilibrium substances when they are in glassy states.
During the process of cooling or solidification, polymer chains will reach a threshold
where the thermal energy is inadequate for the polymer chains to rearrange on the given
time scales [98]. As a result, the system loses its equilibrium and becomes arrested. The
temperature where the glassy state develops is a cooling rate dependent parameter. Theo-
retically, the equilibrium state of a polymer can be achieved with an infinitely low cooling
rate. Polymer in the glassy state, a non-equilibrium state, experiences a gradual relaxing
process in order to achieve an equilibrium state, which is referred to as physical ageing
or structural relaxation [99]. According to Figure 11, free volume decreases along with
structural relaxation of the polymer (path A to B). As shown in Figure 12, in response to
this phenomenon, the overall polymer matrix experiences shrinkage and micro spaces
are created by rearranging of the local chains, which results in wide distribution of local
density and helps the diffusion of water into the polymer matrix. Therefore, ageing time
is very important to determine the penetration of water into polymeric particles. The
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time (t∞) needed to achieve thermodynamic equilibrium can be described in following
equation [100]:

t∞ ∼ 100 × 10Tg− T
3 = 100 × e1.77(Tg−T) (3)

According to the equation, ageing time is associated with the difference between Tg of
a given polymer and ageing temperature (T).

The extraction of solvent and solidification of PLGA chains during particle preparation
is comparable to the process of quenching PLGA polymers [101,102]. Faster extraction of
solvent leads to quicker rearrangement of PLGA chains; thus, particles will have more
internal energy compared with those with slower extraction processes. The extra internal
energy of PLGA particles is the driving force to relax the system toward thermodynamic
equilibrium [103]. As mentioned before, when PLGA particles are placed in human body
fluids, structural relaxation can be completed within a short time when the Tg is close to
37 ◦C, which indicates that the micro spaces are created immediately after the administra-
tion of drug loaded PLGA particles. The improved water penetration will carry more drug
molecules and enhance the diffusion, which leads to the initial burst release. Therefore,
Kinam et al. stated that glass transition temperature and time it takes to complete structural
relaxation significantly influence drug release behavior at the early stage.
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3.3. Surface Reconfiguration

Hydration is the first and most important phase in the drug release process since water
is required for drug disintegration and diffusion via the drug delivery system, whether
in the form of biologic fluid or in vitro release medium [105]. Studies have shown that
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water penetration into PLGA particles can be completed within seconds through the porous
structure [106]. The appearance of micro spaces during physical ageing of PLGA particles
improves water absorption, resulting in an initial burst release of the drug. Water, on the
other hand, acts as a plasticizer which decreases the glass transition temperature of PLGA
particles, thus PLGA particles would be softer than the dry polymer state [92]. In addition,
upon placement in release medium, a mobile layer forms on the particle surface, further
softening the structure. All these plasticizing effects lead to surface reconfiguration, which
closes the surface channels and inhibits the diffusion of drug and water penetration. This
could explain the observed relative slow release rate following the initial burst [107].

4. Conclusions

PLGA-based nanoparticles have received a great deal of interest as drug delivery
vehicles for a variety of therapeutic purposes. It has been shown that the Tg of polymeric
nanoparticles has an impact on the drug release behavior, despite the fact that this physico-
chemical feature is often absent from many pharmaceutical research investigations. This
review provides a comprehensive summary of variables affecting the Tg of the PLGA
copolymer, including molecular weight and monomer ratio. Additionally, research with PS
particles was highlighted to demonstrate the size effect on the Tg of polymeric particles and
how that could affect PLGA particles. Drug type, moisture content, and residual surfactant
are considerable parameters in altering Tg during drug release processes. Finally, the
connection of drug release and glass transition temperature are illustrated by three different
aspects, which are the mobility of PLGA particles, ageing time on structural relaxation,
and surface reconfiguration. The investigation into the effect of Tg on drug release reveals
that the Tg of PLGA particles may account for the majority of the drug release profiles
observed. In summary, the glass transition temperature, as an excellent indicator of drug
release profiles, could be utilized in manufacturing PLGA particles for designed controlled
drug release (Figure 13).
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Looking forward in the field, the Tg of particles for drug delivery should be reported
in literature as it is critical to the behavior of the particles. Additionally, the factors affecting
the Tg should also be routinely reported to bring reproducibility to the particle synthesis
process and consistent behavior in drug delivery applications.
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