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Interannual climate variations have been important drivers of wildfire occur-

rence in ponderosa pine forests across western North America for at least

400 years, but at finer scales of mountain ranges and landscapes human

land uses sometimes over-rode climate influences. We reconstruct and analyse

effects of high human population densities in forests of the Jemez Mountains,

New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt,

human land uses reduced the occurrence of widespread fires while simul-

taneously adding more ignitions resulting in many small-extent fires.

During the 18th and 19th centuries, wet/dry oscillations and their effects on

fuels dynamics controlled widespread fire occurrence. In the late 19th century,

intensive livestock grazing disrupted fuels continuity and fire spread and then

active fire suppression maintained the absence of widespread surface fires

during most of the 20th century. The abundance and continuity of fuels is

the most important controlling variable in fire regimes of these semi-arid

forests. Reduction of widespread fires owing to reduction of fuel continuity

emerges as a hallmark of extensive human impacts on past forests and

fire regimes.

This article is part of the themed issue ‘The interaction of fire and mankind’.
1. Introduction
People living within fire-prone forested environments over long periods of time

have profound impacts on forest structures and fire regimes, and vice versa.

Prior to the Industrial Age, long-term fuelwood and timber harvesting, agriculture,

livestock grazing and the use of trails and roads tended to reduce fuels in woodland

and forest landscapes [1,2]. These land uses were especially effective in reducing

fire spread in semi-arid landscapes of the south-western USA, where vegetation

productivity was relatively low [3–5]. At the same time that fuel connectivity

and widespread fires were reduced by human land uses, purposeful and accidental

ignitions were added to those occurring from lightning strikes [6]. Hence, there

were counteracting effects of human actions on fire frequency versus extent.

Myriad human land uses and their effects were superimposed upon broad-scale

climate patterns controlling lightning ignition rates, fuel productivity, continuity

and moisture content. Climate variability also affected human populations through

agricultural productivity and in other ways [7].

Given these complex interactions and their temporal and spatial variability,

it is not surprising that it has proven difficult to disentangle the relative roles of

human and non-human factors in controlling fire regimes [8]. Although there
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are extensive historical narratives of human interactions with

fire worldwide [9,10], progress has been slow in developing

general ecological theory or dynamical models of climate–

fire–human interactions (but see recent attempts to derive

various foundational concepts: [11–17]).

One of the difficulties in developing and testing general

theory is a lack of sufficiently detailed and long-term chronolo-

gies of the key variables from the same landscapes. In particular,

assessments of patterns and associations in forest ecosystems

require multi-century, high-resolution chronologies of precipi-

tation, temperature, numbers of fires, area burned, human

population sizes and land uses. There are many examples in

the palaeo-ecological literature where these interactions have

been interpreted, but there are relatively few cases where

long-term, seasonal to annual resolution records of most or all

key variables were simultaneously compared [18–23].

The importance of improved understanding of these

dynamics has increased as very large, high-severity wildfires

(more than 200 000 ha in some cases) are increasing in some

parts of western North America and elsewhere, with substantial

and growing impacts on forest ecosystems and people living

within them [24–26]. Scientists, fire managers and policy-

makers in the USA have recognized the role of human-caused

forest structure (fuels) changes in many western forests, as

well as the role of warming temperatures and drought

[27–30]. Although there is a general consensus among forest

and fire ecologists that wildfire trends are related to increases

in both fuels and drought magnitude, there is some debate

about the relative roles of past fire suppression leading to

fuels increases, or changes in fire-fighting tactics versus climatic

variability. Some have argued, for example, that recent large,

high-severity wildfires in semi-arid ponderosa pine forests of

the western USA are not driven by past fire exclusion and

fuels changes. Further, it is claimed that these events are

within the ‘historical range of variability’ in this type, and that

there is no ecological basis for forest restoration aimed at redu-

cing fire severity [31,32]. This remains a minority viewpoint,

however, with a large body of ecological literature extending

back to the 1950s demonstrating human-induced forest and

related fire regime changes in semi-arid forests of western

North America [33–40]. There are also multiple rebuttals to

the recent interpretations that modern changes in fire regimes

are unrelated to human-induced forest changes [39,41–47].

Although the general understanding is robust that both

human-induced changes in fuels and warming climate are key

drivers of recent wildfire trends in some regions and forest

types, it is notable that some Native American communities per-

sisted for centuries within fire-prone forests during major

droughts. In contrast, modern communities in many of these

same landscapes are now experiencing catastrophic events,

destroying hundreds of homes, and in some cases resulting in

major type changes in vegetation, extreme post-fire geomorphic

responses and other unsustainable changes [25,30,48,49].

Here we evaluate climate and human controls over past fire

regimes using recently compiled networks of fire scar-based

chronologies from three spatial scales: (i) a subcontinental

region of western North America, (ii) landscapes within the

Jemez Mountains, a large mountain range in north central

New Mexico, USA, and (iii) forest stands within areas of differ-

ent human land-use intensities and timing within the Jemez

Mountains. The Jemez Mountains is especially useful as a land-

scape scale exemplar of human–fire–climate interactions. Here,

human populations—specifically the Jemez, a Towa-speaking
Pueblo people—have lived within upland forests and wood-

lands in relatively high densities. We estimate that 5000–8000

people lived within this area from ca 1300 to 1640 CE [50–52].

There were at least 10 large villages of more than 500 rooms

each and at least 2700 small, 1–3 room houses (in ruins now)

distributed over this area (about 500 km2) at ca 1600 CE.

This density of human occupation would easily qualify as a

so-called wildland urban interface under modern definitions

in the USA (i.e. 6.17 housing units km22, [53]). The spatial

and temporal variability of high, medium and low human

population densities and land uses in the Jemez Mountains pro-

vides a unique opportunity to evaluate fire regime responses

with an especially well developed set of climatic, human and

fire chronologies spanning the past 700 years.
2. Study area/methods
For broad-scale context, we use the largest network of tree-

ring-based fire scar chronologies in the world to assess inter-

annual fire–climate relations at the subcontinental scale. This

data network has recently been compiled from western North

America and it provides dates and estimates of the relative

extent of fires within forests and woodlands (figure 1 and

electronic supplementary material, figure S1 [54]). These

data are from more than 800 forest stands and landscapes

(during the period of our analyses, 1500–2000 CE), spanning

approximately 4.1 million km2. Fire-scarred trees have been

widely used in North and South America, Scandinavia, and

parts of Eurasia to reconstruct multiscale histories of surface,

mixed-severity and crown fire regimes (see Falk et al. [55] for

a review of applications and examples, and see other papers

[56–58] for detailed testing of the accuracy and resolution of

surface fire history methods as applied in this paper).

We also use one of the largest mountain range-scale net-

works of fire scar chronologies in existence from the Jemez

Mountains of New Mexico. This network comprises 1377 trees

collected over an area of about 180 000 ha. Most of these

collections are from ponderosa pine-dominated forests (Pinus
ponderosa), but other forest types and woodlands are also

included (e.g. mixed-conifer forests, containing Pinus, Abies
and Pseudotsuga species, and spruce-fir forests of Picea and

Abies species). Although these chronologies primarily reflect

frequent, low-severity surface fire regimes, they also include

so-called mixed-severity and high-severity fire regime types.

Comparative studies of high-severity, stand-replacing fire

event chronologies at landscape and regional scales with

low severity, surface fire event chronologies show that, in gen-

eral, the large fire years tend to correspond between these

types. That is, regionally synchronous high-severity fire years

are a subset of the regionally synchronous low-severity fire

years [5,39,59,60].

The Jemez Mountains fire scar network includes fire scar

collections from three types of sites where human occupation

(population) density was relatively high, medium and low,

respectively, during the pre-1680 Pueblo Revolt period (back

to about 1300 CE in the earliest fire scar records). The

high-density sites were large village areas (villages with more

than 500 rooms, 3–4 story room blocks and now in ruins)

which were generally occupied until the early- or mid-1600s.

The medium density sites were agricultural areas with only

seasonal use and small houses (1–3 rooms, known as ‘field-

houses’), and the low-density sites were forest stands
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Figure 1. Map of western North America (a) shows locations of tree-ring-based fire chronologies (red dots). Sites typically range from 10 to 100 ha in size (forest
stands) with 10 – 30 fire-scarred trees sampled (see electronic supplementary material, figure S1), but some sites are larger (100 – 1000 ha) with more than 100
trees sampled. The yellow box on the western North America map is the Jemez Mountains of north central New Mexico, shown in the map (b). Sampled fire-scarred
trees and sites are indicated by symbols and are labelled in the legend. The example sites from a seasonally used agricultural site (Monument Canyon Research
Natural Area) and a site distant from villages or agricultural areas (East Fork) are labelled.
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relatively distant from both large villages and seasonally

used agricultural areas. We used terminus ante quem methods

to establish or refine human occupation chronologies by

crossdating innermost rings of living and dead trees to deter-

mine the earliest establishment dates of trees on and near

village footprints and agricultural areas following human de-

population (see electronic supplementary material, figure S2

and S3 and [61]). The occupation histories of village sites

were also determined from ceramics-based chronologies,

tree-ring dating of surviving roof timbers and documentary

evidence [50–52,61].

Further description and analyses of the large western

North American fire chronology network is underway (see

[54] for a preliminary description), and most of these chron-

ologies are deposited in the International Multiproxy

Paleofire Database. For the purposes of this study, we focus

on only the broadest, common patterns across the entire

network, and relationships with independently developed

drought indices. The reconstructed drought time series are

from the North American Drought Atlas project [62]. These

records are tree-ring width-based reconstructions of the

summer (June, July, August) Palmer drought severity

index (PDSI). The Atlas is composed of a set of evenly

spaced grid points (separated by 2.5 degrees latitude and

longitude) spanning the continent, with a PDSI time series

available from each grid point covering periods from ca 1

to 2004 CE (the grid point time series vary in length within

this period).

We used a drought area index (DAI) compilation of the

PDSI data for our assessment of climate–fire relations at the

western North American scale in a superposed epoch analy-

sis (SEA). The DAI time series [62] is the percentage of PDSI

grid points with annual values less than 21.00 (i.e. all

droughts of moderate to severe magnitude) over the western

states for each year of the record. Hence, this is an area-

weighted estimate of drought magnitude over this broad

region of western North America. A declining number of

sites have old enough trees to represent comprehensive
spatial patterns in earlier times, so we extended our analyses

only back to 1600 CE at this scale. For climate–fire analysis of

the Jemez Mountains fire scar chronology network, we use a

recent tree-ring width-based October–June (i.e. the cool

season, plus spring) precipitation reconstruction developed

specifically from trees growing within the Jemez Mountains

[63]. Using SEAs, we tested the relations between the largest

and smallest fire years at the scales of the entire western

North American fire chronology network, the entire Jemez

Mountains network, and at finer spatial scales in two

example forest stands from the Jemez Mountains. The SEA

that we employed computed the average climate (DAI and

October–June precipitation) conditions (and departures

from averages) during the largest and smallest fire years

during the entire period or subperiods of time, as well as

lagged years prior to and following these years. The SEA

uses a bootstrap method to estimate significance of the

wet/dry patterns in each of the lagged years and the fire

event year [64,65]. We used the 30 largest and smallest fire

years in the fire scar network, as estimated by percentages

of sites or trees recording fires each year during the period

1500–1860 CE in the Jemez Mountains, and during subper-

iods before and after the Pueblo Revolt of 1680 CE. The

pre- versus post-1680 periods in the Jemez Mountains rep-

resent a major change in human population density in the

upland areas of this mountain range [52].

Last, we compared fire frequency variations between

different historical time periods at the different spatial

scales of analyses. To account for changes in sample sizes

between periods and potential effects on fire frequency esti-

mates, we used a bootstrap resampling of the master fire

chronologies, assessing fire frequency variations as a function

of sample size. A more detailed explanation of this method

and results of these assessments are in electronic supplemen-

tary material, figure S6. We used the software program called

FHAES to carry out the SEA, the sample size/fire frequency

assessment, and to produce initial versions of the fire scar

chronology graphics [66,67].
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3. Results
(a) Western North America: broad-scale patterns
The western North American fire chronology network shows

a strong pattern of synchronous, large and small fire

years extending back to at least 1600 CE (figure 2). Overall,

the synchrony of large and small fire events is quite remark-

able; the most common fire dates were recorded in more

than 25% of the 800 sites, and the largest fire year, i.e. 1748,

was recorded in nearly 40% of all sites. The chances of obtain-

ing this degree of synchrony among this number of random

time series of events and frequencies are exceedingly small.

The strong coherence of the fire occurrence signal across

this large portion of western North America demonstrates

the high degree to which interannual climate patterns are

controlling fire activity. There are no other known envi-

ronmental variables operating at this spatial extent and

long time period that could drive such a high degree of fire

occurrence synchrony across forests occurring in separate

mountain ranges.

As demonstrated in similar studies at finer spatial scales

[23,68–70], the highly synchronous high/low fire years in the

western North American fire chronology network are well

correlated with independently derived interannual climate

time series from the same region (figure 3a). Moreover,

there is also a weak but significant correlation (Spearman

rank R ¼ 0.37, p , 0.01, as also shown in figure 3a) of the fire

scar-based chronology with modern area burned time series

from the western USA, as recorded by government agencies

in the period of overlap (1960–2003, figure 3a and see [71] for

a similar comparison for subregions of the western USA).

The SEA shows a strong wet/dry pattern in the compilation

of largest fire years spanning this large region of western North

America (figure 3b). The pattern of several years of wetter than

average conditions preceding a dry year in which widespread

fire events occurred has been observed in many ponderosa

pine-dominant forests in the western USA ([65] and see

examples cited in the previous paragraph). Conversely, smallest

fire occurrence years are typically wet, and usually showing no

association with conditions during prior years, as evident in

the overall western North American network (figure 3b). The
wet/dry switching of climate conditions in association with

the largest fire years is interpreted to be a reflection of the

importance of fine fuel production (i.e. tree needles, leaves

and grasses) in these frequent surface fire regime forests. This

pattern is probably related in part to switching between the

wet/dry conditions of western North America owing to La

Niña/El Niño states of the Pacific Ocean [72]. This pattern

was robustly demonstrated in multi-century-length tree-ring

studies [73,74], and is also evident in shorter-term, modern

analyses of area burned records in the western USA [75,76].

The wet/dry pattern in association with extensive fires appears

to be strongest in lower elevation ponderosa pine forests and

in semi-arid grasslands of the Great Basin and south-western

regions, where grasses are a critical component of fire igni-

tion and spread dynamics [75,77,78]. The wet/dry pattern

tends to be weak or non-existent in higher-elevation, more

mesic forests, e.g. mixed-conifer and spruce-fir forest types,

where only a strong dry, current year (fire year) signal is

typically observed [39,65,79].

Overall, the wet/dry switching pattern as expressed over

multiple centuries and large spatial extents is an important

clue and indicator of the sensitivity of these systems to fuel

continuity/connectivity. Wet prior years leading to increased

fine fuel production and high spatial connectivity is critical

for widespread fire occurrence during drier than average

years. Likewise, the rapid elimination of widespread fires in

pine-dominant forests in many locations of the western

USA at the time of introduction of intensive livestock grazing

during the late 19th century also points to the importance of

fine-fuel connectivity. Very large herds of sheep and cattle

were introduced in many lowland and upland areas after

the railroads were built [80], with a close timing in cessation

of widespread fires in many different examples in south-

western mountain ranges [3,4,81], including within the

Jemez Mountains [82–85]. As such, changes in frequency of

widespread fires in ponderosa pine forests emerges as a

useful indicator of intensive human land-use changes affect-

ing fuels connectivity, as will also become apparent in

analyses of fire extent patterns in the Jemez Mountains long

before the introduction of intensive livestock grazing by

Europeans colonists.
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(b) Jemez Mountains: medium and fine scales
The Jemez Mountains collection of fire-scarred trees shows an

even greater degree of synchrony of large and small fire event

years than in the western North American network (in which

the Jemez Mountains data are included). The largest fire years

in the Jemez, for example, were recorded by 30% or more of

the sampled trees, and as high as 44% for the largest fire year

in 1748 (figure 4a). This is not surprising given there is greater

coherency of interannual climate patterns over the relatively

smaller regional scale of the Jemez Mountains versus the sub-

continental scale of western North America. High synchrony

is also owing to the scale and connectivity of the Jemez

Mountains, where fires could spread readily between trees

and stands [82–85]. In contrast, many of the western North

American network sites were separated by deserts, canyons,

rivers and great distances, which inhibited fire spread

between sites.

A clear pattern of reduced widespread fires was evident

during two time periods in the Jemez Mountains network:

prior to ca 1680 and after ca 1860 CE (table 1 and figure 4a,b).

The post-1860 decline in widespread fires was probably

caused by the rise of intensive sheep grazing. Land-use his-

tories of the Jemez region discuss the fact that grazing of

upland areas was limited prior to the military subjugation of

the Navajo people by the US Army in the mid and late 1860s

[80]. Prior to that time, raiding and the theft of livestock and

killing of herdsmen were common, resulting in low or no live-

stock grazing in the interior portions of the Jemez until
sometime after the late 1860s. Also, as noted earlier, the arrival

of railroads for shipping livestock (after the late 1870s) resulted

in great expansion of sheep herds, especially in the great valle
grasslands of the Jemez Mountains. After World War I, the

sheep markets declined, but government fire fighting became

more active and effective. Grass fuels were mostly removed

by intensive livestock grazing, and landscape-scale discontinu-

ity of fuels was created by the proliferation of ‘driveways’ used

for seasonal movement of thousands of sheep up and down

the mountains (transhumance), and the daily back and forth

herding to water sources [6,81,83].

The other period showing reduced widespread fires was

during the pre-1680 period (table 1 and figure 4). In August

of 1680, the Puebloan people of the south-west rose up in a

coordinated revolt against the Spanish colonists, who had

held the region under an authoritarian regime, subjugating

and taxing the native populations since the late 1590s [51,80].

A severe and sustained drought occurred in the 1580s, and

then again in the 1660s–1670s [28,62,63], which also undoubt-

edly placed additional stress on indigenous populations.

Introduced diseases and conflicts with the Spanish colonists

and with various other groups (and especially with Navajo,

Apache and Utes) also drastically reduced Puebloan popu-

lations in the south-west. By the late 1600s, populations were

reduced by more than 80% [52]. From the Pueblo Revolt of

1680 until the early 1690s, Spanish colonists were absent

from northern New Mexico, and after the Reconquista of the

1690s they returned. By about 1700 CE, no permanent
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settlements of Jemez people remained in the uplands of the

Jemez Mountains [50–52].

We now have relatively detailed, site-specific chronologies

of human presence and land uses in the Jemez Mountains,

because recent studies have compiled archaeological and docu-

mentary sources in considerable detail [50–52,61,86]. We
employed extensive surface ceramics analysis and terminus
ante quem tree-ring studies to determine human occupation

chronology on the same sites where we conducted tree-ring-

based fire history analyses (electronic supplementary material,

figure S3; [61]). Until the 1590s–1620s CE, when the first Catho-

lic mission churches were built in the Jemez Mountains, the



Table 1. Number of fires during periods before and after the 1680 Pueblo Revolt (n ¼ 181 years for 1500 – 1680, n ¼ 180 years for 1681 – 1860) for three
spatial scales in the Jemez Mountains. Fire dates recorded by any tree in the composite chronology (all fires), fires recorded by only a single tree (one tree) and
fires recorded by 25% or more of all trees are listed for each spatial scale. The statistical significance of a test of differences between the mean fire intervals in
the two periods (using the non-parametric Mann – Whitney rank-sum test) is shown in the column on the far right ( prob.).

intervals between fires (years)

area (ha) 1500 – 1680 1681 – 1860

trees sampled n mean median n mean median prob.

Jemez Mountains 180 000

1377

all fires 147 1.25 1 173 1.05 1 0.001

1 tree fires 44 4.10 3 22 8.95 5 0.019

.1 tree fires 105 1.76 1 153 1.19 1 0.001

�25% fires 2 122.00 122 9 27.83 27 0.001

Monument Canyon 260

198

all fires 50 3.57 3 70 2.57 2 0.152

1 tree fires 26 6.28 5 15 11.14 4 0.825

.1 tree fires 24 6.48 3 54 3.26 3 0.343

�25% fires 9 19.13 18 26 13.20 10 0.199

East Fork 5

26

all fires 46 3.98 4 29 6.07 7 0.002

1 tree fires 37 4.86 4 5 16.75 15 0.003

.1 tree fires 9 21.00 16 24 7.26 8 0.001

�25% fires 8 21.00 16 24 7.26 8 0.001
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Jemez people occupied at least half a dozen large villages (from

500 to 1500þ rooms each) and many smaller villages within

forests and woodlands on mesa tops of the southern Jemez

Plateau. They had lived within some of these villages and

forested landscapes for 200–300 years or longer. The upland

village sites were depopulated by the early to mid-1600s

owing to a combination of declining populations caused by

disease and conflict, and to the forced or unforced congrega-

tion (‘congregación’ in Spanish) of Jemez people at Catholic

missions in lower elevations [50–52,86], and see electronic

supplementary material, figure S3).

Tree age structure and fire scar chronologies developed

from specimens taken directly on and near a set of large vil-

lage ruin sites in the Jemez Mountains generally show a lack

of spreading fires within or immediately adjacent to the vil-

lages during the occupation periods (i.e. pre-1650s, see

electronic supplementary material, figure S3; [52,61]). This

stands to reason, because the occupation of the village areas

by hundreds of people for multiple centuries (in some

cases) would have left little or no continuous fuels available

in the vicinity for fire ignitions and spread. The largest village

sites in the uplands are all above 2100 m in elevation with

relatively cold winters, requiring substantial amounts of fuel-

wood for heating and cooking. Moreover, many thousands of

timbers were used in construction of the large, multi-story

room blocks, as well as for other purposes. As a consequence,

the village footprints were probably essentially treeless
during occupation. We generally observed trees recruiting

on the village sites one to several decades after the likely

departure of most or all people from the site, as corroborated

by independent documentary evidence of depopulation of

one of the villages at the time of the Reconquest in the

early 1690s [52,61]. Fire scars also begin to be recorded on

the post-occupation trees after one to several decades, indicat-

ing that widespread fires became possible on the village sites

once people had left and continuous fuel layers established

(electronic supplementary material, figure S3; [52,61]).

At sites relatively distant from villages, where seasonal agri-

culture was practiced and small house sites (‘fieldhouses’) are

commonly present, we detect a different pattern. Many small

fire events (i.e. non-synchronous fire scar dates among sampled

trees) and relatively few widespread fires occurred prior to 1680

(e.g. at Monument Canyon Research Natural Area, table 1, elec-

tronic supplementary material, figure S4 [85]). Many more

widespread fires (i.e. synchronous fire events, as estimated by

greater than or equal to 25% of trees scarred per event within

a sampled site) occurred after ca 1680 CE than before. In the

Jemez-wide fire scar chronology compilation, only two wide-

spread fires were recorded from 1500 to 1680 CE (181 years),

whereas nine widespread fires were recorded from 1681 to

1860 CE (180 years, table 1 and figure 4a,b).

A similar pattern is evident in sites that were relatively

distant from both villages and seasonal agriculture and

fieldhouses, and where we have been able to find ancient
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fire-scarred tree specimens (table 1 and figure 4c,d). Perhaps

in these marginal sites, which tend to be rocky and steep,

more trees survived fuelwood gathering and timber harvest-

ing during the major occupation period by Jemez people (i.e.

ca 1300–1680 CE) than in places closer to the villages and

agricultural sites. In these locations the resinous, basal por-

tions of long-dead fire-scarred trees persisted on the ground

as logs because of rocky and dry conditions, slowing decay

processes and protecting the logs somewhat from surface

fires. Hence, we were able to find, sample and reconstruct

unusually long fire scar chronologies from these old speci-

mens. Figure 4c,d shows the 1500–2010 CE portion of one

of these sites named ‘East Fork’ (see map in figure 1), and a

more detailed presentation of the individual tree records

extending back into the 1300s CE from this site is in the

electronic supplementary material, figure S5.

Although the Jemez-wide fire chronology (figure 4a,b) and

the Monument Canyon site chronology (electronic supplemen-

tary material, figure S4) show a general decline in sample sizes

prior to 1700 CE, the East Fork site sample size decreases less

abruptly before this time, with at least 11 trees in the data set

back to about 1500 CE (figure 4c,d and electronic supplementary

material, figure S5). In addition, fire scars are recorded on four or

more trees at the East Fork site back into the 1300s CE. This

chronology shows the same general pattern as the Jemez-wide

and Monument Canyon chronologies with many small fires

recorded during the pre-1680 period, but relatively few wide-

spread fires during this period compared with after 1680 CE

(table 1). Further, we assessed fire frequency changes over the

entire Jemez Mountains, and separately within the Monument

Canyon and East Fork sites, while also accounting for sample

size effects through time (see supplementary material, figure

S6). We found that, in general, the patterns identified in these

areas (i.e. few widespread fires prior to 1680 and more small

fires prior to 1680 than later) are consistent, even when account-

ing for sample size changes between periods (electronic

supplementary material, figure S6).

One additional analysis illustrates important differences

between the pre- and post-1680 periods: an SEA of cli-

mate–fire associations (figure 5). The results for the Jemez

Mountains-wide chronology show that prior to 1680 there

is only a weak association between fires and interannual cli-

mate (cool season precipitation, i.e. prior October to current

June rainfall) variations. Dry conditions were typical during

fire years (as recorded by two or more trees), and there was

the typical and strong wet/dry pattern of association with

fire occurrence after 1680. The seasonal agricultural/field-

house site at Monument Canyon site, and the distant,

ancient fire scar site at East Fork, show no association with

fire events (recorded by two or more trees) prior to 1680,

but a significant ( p , 0.05) wet/dry association with fire

after 1680 is evident (figure 5). These findings point to the

likely overriding role of human-set fires and disruption of

fuels continuity in the pre-1680 period relative to the post-

1680 period, when, in the absence of extensive human land

uses, interannual climate variations were more dominant.
4. Discussion and conclusions
Both the broad-scale, Jemez-wide fire occurrence record and

the finer-scale example from Monument Canyon Research

Natural Area show general patterns of reduced frequency
of widespread fires prior to the 1680 Pueblo Revolt with

many small (low-synchrony or single-tree) fire events occur-

ring in this earlier period. It is notable that the relatively

low number of widespread fires pre-1680 and high number

of low-synchrony fire events (small fires) during that period

coincides with decreased numbers of samples in the Jemez-

wide and Monument Canyon datasets. This so-called

fading-record problem [87] potentially biases the observed

fire occurrence patterns in the pre-1680 period. However,

the expected effect of sample sizes in composite fire scar

chronologies is that fewer fire dates will be recorded overall

with smaller sample sizes, and fewer small fires will be

detected in particular. That is, as sample sizes (and amount

of area sampled) increase, the odds of detecting more fires

in the sampled fire-scarred trees increases [58,85]. The pattern

observed in the Jemez, however, was the opposite of this

expectation. That is, there were actually more small-fire

events (single-tree fire events) recorded in the pre-1680

versus the post-1680 period (of the same length) despite the

fading-record problem. This suggests that, in fact, many

small fires did occur during the earlier (pre-1680 period).

Also, as previously noted, the East Fork site contained

ancient tree-ring specimens extending well back into the

1300s CE. Sample sizes here remained relatively robust

from the 2000s back to the 1500s, and the same fire occur-

rence patterns were observed, i.e. there were frequent small

fires and relatively few widespread fires pre-1680, with

more widespread fires after 1680 CE and until the livestock

grazing/fire suppression era. Hence, we are confident that

this general pattern is genuine, reflecting a high abundance

of small fires and reduced widespread fires during the

high-to-medium Jemez population density periods

(i.e. 1300–1680 CE) in this portion of the Jemez Mountains.

Moreover, SEA results support a general conclusion that

human land uses (timber harvesting, fuel wood use, trails,

agriculture and purposeful/accidental setting of fires) probably

overrode climate–fire associations in the pre-1680 period.

After 1680 CE, with very reduced human populations and

lack of extensive land uses, climate–fire associations were

more strongly expressed. The wet/dry pattern typical of

many semi-arid pine-dominant sites across western North

America emerges as the common pattern in the Jemez Moun-

tains only after 1680 CE. The specific role of human

interference with climate–fire patterns within the Jemez Moun-

tains is further indicated by SEA results using the much

broader-scale records over the western North American net-

work during similar time periods. This analysis shows no

major change in interannual climate–fire associations when

pre- and post-1680 periods are tested (results not shown).

Although the SEA results support an interpretation of

human interference with interannual climate–fire associations

before 1680 CE, it is possible that longer-term climate patterns

could have played some role in changing fire patterns. Decades

of the early 1600s, for example are commonly referred to as the

early portion of the ‘Little Ice Age’. Estimated trends of bio-

mass burning in western North America from sedimentary

charcoal show decreased fire activity during the early 1600s

and increased burning trends during the 1700s and 1800s

[88]. Temperature-specific palaeoclimate reconstructions rel-

evant to the south-west [89] do show the early decades of the

1600s had relatively cool summers during this period of infre-

quent widespread fires in the Jemez Mountains. However,

decade to multi-decade temperature and fire trends in our
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Figure 5. SEA using a tree-ring width-based precipitation reconstruction from the Jemez Mountains [63] and largest and smallest fire event years at three spatial
scales in the Jemez Mountains. There is a weak or non-existent relationship between largest fire years’ and current or lagging years’ moisture prior to 1680, but a
strong wet/dry pattern afterwards. Human influences on fire timing probably overrode climate influences prior to 1680.
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study region were not consistent in sign over the whole period

of analyses. For example, temperatures were generally near

average or warm during the 1500s but few fires were wide-

spread, and early decades of the 1800s were relatively cool

again, but many widespread fires occurred.

The overall western North American network undoubtedly

includes many forest stands, landscapes and fire regimes that

were likewise strongly influenced by human land uses. The

very broad (coarse-scale) compilation of hundreds of fire

chronologies over this subcontinental area, however, shows

that the classic interannual climate–fire association was the

clearest general pattern prior to ca 1900. In particular, the

wet/dry pattern was typical of the most extensive fire years

(figures 2 and 3a,b). This result does not imply that humans

were unimportant in altering fire regimes over western North

America prior to the major Euro-American settlement era
(i.e. 19th and early 20th centuries), but rather that the most pro-

nounced effects were likely to be expressed at finer spatial

scales and times. That is, human impacts on fire history are

highly place- and time-specific. The most profound effects of

human land use on fire regimes in western North America at

the broadest scale are evident in the near complete cessation

of widespread surface fires ca 1860–1900 within semi-arid pon-

derosa pine-dominant forests. This change coincided with, and

was most likely associated with, the population declines and

near complete removal of most Native Americans from ances-

tral lands, and their relocation onto reservations generally

located in non-forested lowlands, arrival of railroads, the rise

of intensive livestock grazing and fire suppression.

Given our broad- and fine-scale observations, we con-

clude that a generalized chronology of climate–human–fire

interactions in relatively distinct time periods can be
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described for the south-west Jemez Mountains (electronic

supplementary material, table S1). In summary, we label

these periods and interpret their narratives as follows:

(i) Pre-colonial period (pre-1590), characterized by relatively

high human population densities in the uplands, intensive

land uses (e.g. fuelwood and timber harvesting, agriculture,

and trails) resulting in reduced fuel connectivity; essentially,

no spreading fires near villages, but many small fires and

very few widespread fires in more distant, seasonal agricul-

tural areas or more distant areas; weak association of fire

events with interannual climate variations; (ii) Congregación
(1590–1680), characterized by depopulation of large village

sites in the uplands; recovery of forests on village sites;

increased mass and connectivity of fuels overall and a rise

in number of widespread fires in some areas; weak associ-

ation of fire events with interannual climate variations;

(iii) Free-range fire period (1680s–1860s), characterized by

open ponderosa pine-dominant forests with free-ranging,

widespread surface fires (i.e. wildfires were not generally

impeded by human actions) at decadal or subdecadal inter-

vals; strong interannual climate–fire associations, especially

with wet/dry oscillations related to large fire years; (iv) Live-
stock grazing and fire suppression period (1860s–present),

characterized by intensive livestock grazing; leading to

greatly reduced fine-fuel mass and continuity; subsequently,

direct suppression of fires by government agents, leading to

near elimination of widespread surface fires; timber harvest-

ing, road building and lack of widespread fires leads to

multiple cohorts of trees establishing, especially during wet

periods; many homes and other structures built within

forested areas (especially after World War II); fuel accumu-

lations of live and dead trees increase and thickets of

small-diameter, stunted pines become common; very large,

high-severity wildfires occur during extreme drought years,

especially after 1980 as temperatures rise.

These narratives emphasize the particulars of time and

place in the Jemez Mountains, but we note several general pat-

terns that relate to broader concepts relevant to fire regimes and

humans. The high degree of sensitivity of fire regimes in the

Jemez to fuel connectivity is illustrative of a potentially

global characteristic of landscapes where fire occurrence and

spread tends to be fuel-limited (i.e. semi-arid forests and wood-

lands). Archibald et al. [14] show similar effects of high human

densities in southern Africa, where a combination of fuelwood

use, livestock grazing and increased number of fire ignitions by

people results in high frequencies of small fires of very limited

extent, individually or cumulatively. This pattern contrasts

sharply with an adjacent managed landscape (Kruger National

Park), where human population densities are much lower, fires

are allowed to spread only intermittently, and when they occur

they are very widespread, burning large total areas. Archibald

et al. [14] also show in model simulations that the effect of

fuel connectivity in reducing (or enhancing) fire spread is

nonlinear, with a threshold near 60%. That is, when fuel con-

nectivity drops below this threshold (defined as continuous

fuels between adjacent modelled cells of relatively fine spatial

resolution) then adding many more ignitions or increasing

the flammability of fuels (e.g. moisture content) have little

effect on increasing the total area burned. The implications of

these empirical observations and simulations then is that fire

regimes can shift rather abruptly from landscapes with suffi-

cient fuel connectivity that will sustain widespread fires, to

landscapes with insufficient fuel connectivity to support
spreading fires, regardless of how many additional local

fires are started by people or how dry it gets [6,83]. The key

controlling variable affected by people is fuel connectivity.

Overall, these results emphasize the importance of histori-

cal contingencies and geographical particularities on fire

regime characteristics, hinging to a considerable degree on

human population densities and land uses, and the timing

of these human variables. Climate controls over fire activity

are pervasive but can be swamped out by high-intensity

land uses (and see an interesting and different example

described in Australia, involving purposeful burning for

hunting by the Martu people [90]). Furthermore, our results

demonstrate that the commonly assumed effects of Native

Americans on past fire regimes—namely, increased fire

frequency—is an overly simplistic construct. The most signifi-

cant impact of humans on fire activity in south-western

US forests during the pre-modern era (before 1900 CE)

and during the late 19th and 20th centuries was the reduction

of widespread fires through the effects of land uses on

fuels connectivity.

Debates over the appropriateness of forest management

involving restoration of lower forest densities and the re-

introduction of surface fires to mitigate wildfire problems

would benefit from the broader perspectives of history,

including long-time human land uses. The Jemez landscape

is not unique in the south-west, or in other parts of North

America, in having sustained significant human populations

for multiple centuries within fire-prone forests prior to Euro-

American settlement [15,91,92]. Our evidence indicates that

intensive wood utilization and other practices resulted in a

landscape with more heterogeneous (and lower-connectivity)

fuels distribution than today. Intensive human land use in the

past in these landscapes, with no evidence to date of occu-

pied villages having burned over in past wildfires, suggests

that judicious human management of forests today could

be based at least in part on more detailed understanding of

the importance of how climate and people interact to affect

fire frequency and fuels.
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