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Abstract

Background: Smoking is the most important cause for the development of COPD. Since not all
smokers develop COPD, it is obvious that other factors must be involved in disease development.
We hypothesize that heme oxygenase-|1 (HO-I), a protective enzyme against oxidative stress and
inflammation, is insufficiently upregulated in COPD.

The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were
tested in a smoking mouse model.

Methods: Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks.
Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit
HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and
cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed.

Results: Smoke exposure induced emphysema and increased the numbers of inflammatory cells
and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-
I modulation had no effects on smoke induced emphysema development, or the increases in
neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-| induction prevented
the development of smoke induced B-cell infiltrates and increased the levels of CD4*CD25* T cells
and Foxp3 positive cells in the lungs. Additionally, the CD4*CD25* T cells correlated positively
with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T
cells.

Conclusion: These results support the concept that HO-I expression influences regulatory T
cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell
infiltrates. The translation of this interaction to human COPD should now be pursued.
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Background

Chronic obstructive pulmonary disease (COPD) is a
major global health problem with increasing morbidity
and mortality. Smoking is widely accepted as the most
important cause for development of the disease, still
'only' 15-20% of the smoking population eventually
develops COPD [1]. COPD is characterized by a chronic
inflammatory process, which ultimately leads to airway
obstruction and emphysema. The important role of neu-
trophils, macrophages and cytotoxic T cells in its develop-
ment is well established [2], yet the role of CD4 T cells and
B cells has only recently re-attracted attention. We and
others have found oligoclonal T- and B cells in the lungs
of COPD patients suggesting an antigen driven immune
response [3,4]. These T-and B cells are aggregated in lym-
phoid infiltrates. Similar infiltrates have been shown in
the lungs of mice chronically exposed to cigarette smoke
[3]. We hypothesize that these lymphoid infiltrates con-
tribute to the development and/or persistence of the
inflammatory response in COPD [3].

Since not all patients with COPD have actively smoked,
cigarette smoke cannot be the sole contributing factor in
COPD development. Other factors involved are genetic
factors, such as a1 anti-trypsin deficiency, and environ-
mental factors, such as air pollution. Another intriguing
factor that may play a role in COPD development is the
'protective’ enzyme heme oxygenase-1 (HO-1). HO-1 is
the rate limiting enzyme involved in the breakdown of
heme to equimolar amounts of biliverdin, free iron and
carbon monoxide (CO). HO-1 is rapidly upregulated with
oxidative stress and has potent anti-inflammatory, anti-
apoptotic and anti-proliferative effects [5-7]. The anti-
inflammatory and cytoprotective effects of HO-1 are
mediated by its products, of which in particular CO [8-
10]. Notwithstanding this knowledge, the exact mecha-
nisms behind the protective effects of HO-1 are still
poorly understood.

Interestingly, a reduced HO-1 expression in macrophages
in lung tissue and bronchoalveolar lavage (BAL) in
patients with COPD has been shown [11,12]. In some
people this may be due to a genetic polymorphism in the
HO-1 promoter gene, which causes a lower HO-1 induci-
bility by reactive oxygen species (ROS) [13]. Additionally,
adenoviral mediated HO-1 overexpression in the lung
suppresses porcine pancreatic elastase induced emphy-
sema development in mice [14], again suggesting involve-
ment of HO-1 in emphysema development.

Our general hypothesis is that if HO-1 is insufficiently
upregulated, this contributes to a higher susceptibility to
noxious effects of cigarette smoke and subsequent devel-
opment of COPD. We tested whether HO-1 modulation
in our smoking mouse model [3] influences the develop-
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ment of cigarette smoke induced emphysema and lung
inflammation, in particular with respect to lymphoid
infiltrates. We hypothesized that HO-1 induction attenu-
ates cigarette smoke induced emphysema and inflamma-
tion and conversely HO-1 inhibition worsens the noxious
effects of cigarette smoke.

This study showed that long term HO-1 upregulation pre-
vented the development of cigarette smoke induced B-cell
infiltrates, while it had no effect on smoke induced
emphysema and increase in inflammatory cells and
cytokines. Increased numbers of CD4+CD25+ Tregs could
be an explanation for the reduced presence of these B-cell
infiltrates.

Methods

Study design

Female A/] mice were divided into six groups (n = 11 per
group); 1. Phosphate buffered saline (PBS) + smoke, 2.
Cobalt protoporphyrin (CoPP) + smoke, 3. Tin protopor-
phyrin (SnPP) + smoke, 4. PBS + sham smoke, 5. CoPP +
sham smoke, 6. SnPP + sham smoke. During 20 weeks the
mice were subjected to protoporphyrin (or PBS) treat-
ment and smoke (or sham smoke) exposure. After 20
weeks the mice were sacrificed, the trachea was cannu-
lated, the right lung was ligated, and lung lobes were
either snap-frozen and stored at -80°C (n = 7) or freshly
used for flow cytometry analysis (n = 7). The left lung was
inflated, and fixed for 24 h with formalin with a constant
pressure of 25 cm H,O (n = 8).

Experiments were approved by the local committee on
animal experimentation.

Smoke exposure

Mice were exposed to 24 puffs of cigarette smoke from
two 2R1 reference cigarettes (University of Kentucky) two
times per day, for 5 days a week during 20 weeks, as
described previously [3].

Protoporphyrin treatment

CoPP and SnPP (Frontier Scientific, Logan, USA) were dis-
solved in 1 M NaOH, diluted to the proper concentration
with PBS and adjusted to pH 7.3-7.5 with HCI. The mice
received a subcutaneous injection with CoPP (25 pM/kg =
16.4 mg/kg) every two weeks, or with SnPP (10 uM/kg =
7.5 mg/kg), or PBS weekly. These concentrations and dos-
ing regimens were based on a pilot, in which different pro-
toporphyrin concentrations were tested for a maximum
period of two weeks.

Morphometrical evaluation of emphysema

Alveolar airspace enlargement was assessed by mean lin-
ear intercept (Lmi) by two independent individuals in a
blinded manner, as described previously [3,15].
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Cytokines

Frozen lung tissue was homogenized in 50 mM Tris-HCI
buffer, containing 150 mM NaCl, and 0.002% Tween-20
(pH 7.5) and centrifuged at 12000 g for 10 min to remove
any insoluble material. Concentrations of TNF-qa, IL-1a,
IL-1B, IL-6, KC (mouse IL-8) and MCP-1 (monocyte che-
moattractant protein-1) in supernatants were measured
with a multiplex ELISA system (Lincoplex Systems, St
Charles, MO, USA).

Flow cytometry

Single-cell leukocyte suspensions were obtained from
lungs for flow cytometric analysis as described previously
[16]. Numbers of CD4+*CD25+ T cells and neutrophils
were calculated based on the label combinations: CD3-
APC, CD4-PE, CD25-FITC and Gr1-APC. All antibodies
were obtained from Pharmingen (San Diego, USA).

Histology

HO-1 expression was demonstrated with the rabbit poly-
clonal antibody anti-HO-1 (Stressgen, Victoria, Canada).
Macrophage numbers were identified with an anti-Mac3
antibody (Pharmingen) and were quantified by morpho-
metric analysis using Leica Qwin image analysis software
(Leica Microsystems BV, Rijswijk, the Netherlands). With
this computerized method the total Mac3 positive stained
surface area was measured and divided by the total surface
area lung tissue, and expressed as volume percentages
[16]. B-cell infiltrates were detected with an anti-B220
antibody (Pharmingen). The total surface of the B220
positive infiltrates (clusters of at least 10 cells) was quan-
tified by morphometric analysis and divided by the total
surface area lung tissue, and expressed as volume percent-
ages. Forkhead transcription factor 3 (Foxp3) expression,
a marker for regulatory T cells, was detected in 4 pm sec-
tions of frozen lung tissue by staining with a monoclonal
anti-Foxp3 antibody (Alexis, Breda, the Netherlands). The
total number of Foxp3 positive cells was counted at 25x
magnification and expressed per surface area lung tissue
determined by morphometric analysis. A fluorescent dou-
ble staining with hamster anti mouse-CD3 (Pharmingen),
followed by mouse anti hamster FITC-labeled (eBio-
science) and rat anti mouse-Foxp3 (Alexis) followed by
biotin conjugated goat anti rat (SBA, Birmingen, USA)
and Strep-APC (Pharmingen) was performed on 4 pm fro-
zen sections of spleen and lung tissue to confirm that
Foxp3 positive cells were T cells.

Western blot analysis

HO-1 protein expression was measured with western blot
in whole lung homogenate (see cytokine analysis). The
proteins were separated for molecular weight and blotted
on a nitrocellulose membrane. The membrane was
blocked overnight in 5% skim milk and incubated with
rabbit-anti-HO-1 (Stressgen) followed by a peroxidase
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labeled goat-anti-rabbit antibody (DakoCytomation,
Heverlee, Belgium). For protein loading control the mem-
brane was stripped using a 25 mM Glycine-HCl buffer
containing 1% SDS (pH:2) and stained for B-actin (load-
ing control, Abcam, Cambridge, UK) followed by a perox-
idase labeled goat-anti-rabbit antibody
(DakoCytomation). The bands of interest were visualized
using enhanced chemiluminescence according to stand-
ard methods.

Statistics

A multiple linear regression model was used to establish
importance of smoke exposure and protoporphyrin treat-
ment and their possible interactions [17]. First, the model
was tested with the effects of smoking, CoPP treatment,
SnPP treatment, together with the interactions between
smoking and CoPP, and smoking and SnPP. When the
interactions were not significant the model was tested
again without the interaction terms. Afterwards the nor-
mal distribution of the residuals was analyzed and when
needed the data were log or 1/x-transformed to normalize
distributions. A significant interaction signifies that the
effect of the combination is different (larger or smaller)
than the addition of the separate effects of the exposures.
Mann Whitney U tests were used for post-hoc analysis to
test whether significant effects of CoPP and SnPP treat-
ment were present only in smokers or sham smokers or in
both groups. CD4+CD25+T cells and Foxp3 positive cells
were evaluated with the Spearman correlation. A value of
p < 0.05 was considered significant.

Results

Protoporphyrin treatment and smoking upregulate HO-1
expression

CoPP resulted in a clear upregulation of HO-1 protein
expression in the lung, particularly in alveolar macro-
phages (Figure 1). Smoking also resulted in an increased
HO-1 protein expression, leading to highest levels of HO-
1 in smoke-exposed mice that also received CoPP. SnPP
resulted in a small increase in HO-1 expression, which
was not affected by smoking.

No effects of HO-1 modulation on smoke induced
emphysema development

Smoking induced emphysema after 5.5 months smoke
exposure, expressed as a significant increase in mean lin-
ear intercept (Figure 2, p < 0.01). There were no effects of
both protoporphyrins on the mean linear intercept.

Smoking increases the levels of inflammatory cytokines in
lung tissue

Smoking significantly increased the levels of the pro
inflammatory cytokines TNF-q, IL-1a, IL-1f, IL-6, KC, and
MCP-1 in lung homogenate (Figure 3, p < 0.01). CoPP
increased the levels of IL-6 and KC. Levels of IL-6 were sig-
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Figure |

HO-1 protein expression. A: Protein bands for HO-1 (above band) and B-actin (loading control) detected by western blot
analysis after long term smoke exposure and protoporphyrin treatment. Three animals per group are shown. B: A representa-
tive picture of the HO-I expression (dark red) in lung tissue is shown for each group (25x). Particularly, alveolar macrophages
(indicated with a closed arrow) show an increased HO-1 expression after CoPP treatment. The epithelium stains faintly in all
groups and no differences were observed between the groups. The brown cells (indicated with an open arrow) are pigmented
macrophages, a result of the smoke exposure. S: smoke, SS: Sham smoke. Mice were divided into 6 groups; |. Phosphate buff-
ered saline (PBS) + smoke, 2. Cobalt protoporphyrin (CoPP) + smoke, 3. Tin protoporphyrin (SnPP) + smoke, 4. PBS + sham
smoke, 5. CoPP + sham smoke, 6. SnPP + sham smoke.
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Emphysema development. Mean linear intercept (LMI)
after long term smoke exposure and protoporphyrin treat-
ment. Smoke groups are represented by closed symbols and
sham smoke groups by open symbols. * indicates a significant
effect of smoke exposure (p < 0.05). There were no interac-
tions and no effects of CoPP or SnPP treatment.

nificantly increased after CoPP only in the sham smokers
(PBS sham smoke vs. CoPP sham smoke p < 0.05). KC lev-
els were increased after CoPP in both smokers and sham
smokers (PBS sham smoke vs. CoPP sham smoke and PBS
smoke vs. CoPP smoke p < 0.01). In contrast, SnPP
reduced the levels of TNF-a, IL-1a, IL-1f3, KC and MCP-1.
Levels of these cytokines were significantly decreased after
SnPP in the sham smokers only (PBS sham smoke vs.
SnPP sham smoke p < 0.05). Additionally, there was a
positive interaction between SnPP and smoking for KC (p
< 0.01) leading to higher KC levels in the SnPP smokers
compared to the SnPP sham smokers.

Smoking increases neutrophils and macrophages in lung
tissue

Smoking increased the numbers of neutrophils and mac-
rophages in the lung (Figure 4, p < 0.01). There were no
effects of both protoporphyrins on the numbers of neu-
trophils and macrophages.

CoPP treatment prevents cigarette smoke induced B-cell
infiltrates

Smoking significantly increased the number of B-cell infil-
trates in lung tissue (Figure 5, p < 0.01). In addition, there
was a significant negative interaction between smoking
and CoPP (p < 0.01) signifying that the smoke induced
increase in B-cell infiltrates was reduced in the smoke-
exposed mice that also received CoPP (CoPP smokers).
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Reduced number of B-cell infiltrates in CoPP smokers is
accompanied by increased numbers of CD4*CD25* T cells
in lung homogenate

Smoking significantly increased the numbers of
CD4+CD25+T cells in lung homogenate (Figure 6A, p <
0.01). Additionally, there was a significant positive inter-
action between smoking and CoPP treatment for the
numbers of CD4+CD25+T cells (p < 0.05), signifying that
the increase of smoking was larger in combination with
CoPP, resulting in the highest numbers of CD4+CD25+ T
cells in the CoPP smokers. This higher expression of CD25
in the CD4+T-cell population of CoPP smoking compared
to PBS smoking mice is illustrated in Figure 6B.

The increase in CD4*CD25* T cells represents an increase

in regulatory T cells

To investigate whether the increased number of
CD4+CD25+* T cells in the CoPP smokers represented an
increase in regulatory T cells (Tregs), we stained lung tis-
sue for the Treg specific marker Foxp3 (Figure 7A). Smok-
ing significantly increased the numbers of Foxp3 positive
cells in lung tissue (Figure 7B, p < 0.01) with a trend (p =
0.07) for a similar effect of CoPP on the number of Foxp3
positive cells. Double staining for CD3 and Foxp3 in lung
and spleen tissue (Figure 7C) showed that Foxp3 positive
cells were indeed T cells. Furthermore, the number of
Foxp3 positive cells in lung tissue correlated positively
with the number of CD4+CD25+T cells in lung homoge-
nate (p=0.7, p<0.01).

Discussion

In this study we showed that HO-1 protein upregulation
by CoPP treatment reduced the number of cigarette
smoke induced B-cell infiltrates in mice. These B-cell infil-
trates were similar to the lymphoid follicles found in
COPD patients [3] and are suggested to contribute to
COPD development. The reduced number of B-cell infil-
trates in the CoPP smokers was accompanied by increased
numbers of CD4+CD25+T cells, which most likely are
Tregs. In contrast to our hypothesis, HO-1 upregulation
had no protective effect on cigarette smoke induced
increases in other inflammatory cells and inflammatory
cytokines and subsequent emphysema development.
Additionally, SnPP treatment did not aggravate smoke
induced damage.

We succeeded in long term HO-1 protein upregulation in
our smoking mouse model and to our knowledge this is
the first study using an intervention that leads to long
term HO-1 protein upregulation in vivo. Given the impor-
tance of macrophages and epithelium in the production
of inflammatory mediators after an inflammatory or oxi-
dative stimulus, these cells were carefully evaluated for
their HO-1 expression. In both in vitro and in vivo studies
oxidative stress and cigarette smoke have been shown to
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induce HO-1 expression in pulmonary epithelial cells and
alveolar macrophages [18-21]. Furthermore, HO-1 over-
expression in epithelial cells is protective against oxidative
stress [22]. Indeed, our study showed an increased HO-1
expression after both cigarette smoke exposure and CoPP
treatment. This increased HO-1 expression was highest in
CoPP treated smoking mice and particularly seen in alve-
olar macrophages yet not in epithelial cells. Unfortu-
nately, HO-1 upregulation provided no protective effects
against the smoke induced increases in inflammatory cells
and cytokines, nor did it protect against smoke induced
emphysema. These results do not fit with our hypothesis,
but might be explained in several ways. Firstly, the epithe-
lium did not show an increased HO-1 expression after
CoPP treatment, which still makes it possible for these
cells to respond to cigarette smoke by producing inflam-
matory mediators. In fact, the majority of the inflamma-
tory cytokines that were increased after smoke exposure in
our study can be produced by epithelial cells in response
to cigarette smoke [23-26], which supports this option.
Secondly, contrary to what we had expected, the levels of
IL-6 and KC increased after CoPP treatment in lung tissue,
which may suggest some toxicity of the long term dosing
of CoPP. Given the fact that the majority of the mice
showed irritation of the skin at the injection site after
approximately 4 months of CoPP treatment, the CoPP

dose indeed might have been too high. It is also conceiv-
able that long term exposure to CoPP, much longer than
performed by others, might have other unexpected effects.
For future long term experiments it is probably more
appropriate to use HO-1 transgenic mice, or use less toxic
downstream products of the HO-1 system e.g. CO or
bilirubin. Finally, it was not possible to reliably measure
HO-activity levels on the frozen material available in this
study; a sufficiently sensitive assessment of HO-activity
should certainly be included in future experiments.

SnPP treatment resulted in a slightly increased HO-1 pro-
tein expression, which was not affected by smoke expo-
sure. In contrast to our hypothesis, SnPP treatment did
not aggravate the damaging effects of smoke exposure, but
did decrease the levels of several inflammatory cytokines.
SnPP is known to inhibit the HO-1 activity, while it
increases HO-1 protein expression [27], which supports
the increased HO-1 expression after SnPP treatment in our
study. For SnPP treatment both inflammatory and anti-
inflammatory effects have been described [28-31]. Anti-
inflammatory effects were shown while the HO-1 protein
level was increased but the HO-1 activity downregulated,
suggesting that HO-1 induction by SnPP can have anti-
inflammatory and anti-apoptotic effects independently of
the HO-1 enzyme activity [30,31].
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The most important finding of this study was the protec-
tive effect of HO-1 upregulation on the development of
cigarette smoke induced B-cell infiltrates, leading to
reduced numbers of B-cell infiltrates in CoPP treated
smoking mice. The B-cell infiltrates consisted mainly of B
cells surrounded by T cells and were comparable to the B-
cell follicles found in patients with COPD [3]. B cells in
these follicles were found to be oligoclonal in nature [3],
suggesting an antigen driven immune response. Whether
the inflammatory response in COPD is a true antigen spe-
cific response is not fully proven, nor is it clear which anti-
gen(s) may be involved. We consider matrix degradation
products, microbial components, and cigarette smoke

http://respiratory-research.com/content/9/1/17

constituents as possible candidates. We hypothesize that
these lymphoid infiltrates contribute to the development
and/or persistence of the inflammatory response in
COPD. This study showed that reduced numbers of B-cell
infiltrates did not prevent smoke induced emphysema
development, which suggests that the presence of B-cell
infiltrates may not be a mandatory prerequisite for
emphysema development in this model. This is compati-
ble with the results of d'Hulst et al, showing smoke
induced emphysema development in scid mice, lacking
functional B- and T-cells [32]. To what extent B cells con-
tribute to the persistence of the inflammatory response in
COPD remains unclear. However, since these mouse
models of cigarette smoke induced emphysema resemble
mild disease, it is also possible that B cells might be more
important in severe than in mild disease. This would be
supported by the data of Hogg et al who found B-cells
especially in GOLD stage 3 and 4 [33].

In this study we extended our previous observations on B-
cell infiltrates [3] by the intriguing finding that the
reduced number of B-cell infiltrates was accompanied by
increased numbers of CD4+CD25+ T cells in the CoPP
smokers. The CD4+CD25+* T-cell population consists of a
mixture of activated T cells and Tregs. Tregs are important
in controlling immunological tolerance and preventing
auto-immune reactions by inhibiting T-cell responses
[34,35]. Dysfunction of Tregs can lead to auto-immune
diseases, allergy, and chronic inflammatory diseases. The
currently best described subset of Tregs is that of the natu-
rally occurring Tregs, expressing high levels of CD25 and
the transcription factor Foxp3 [34].

In this study, the number of CD4+*CD25+T cells correlated
positively with the number of Foxp3 positive cells and the
highest numbers of Foxp3 positive cells were present in
the CoPP smokers with a trend for an effect of CoPP treat-
ment. Together, this suggests that the increase in
CD4+CD25* T cells in the CoPP smokers represents an
increase in Tregs.

Interestingly, a direct link between Foxp3 and HO-1
expression and function of Tregs was reported recently;
both Foxp3 and HO-1 were shown to be expressed in
Tregs and the suppressive effects of Tregs were shown to
be mediated by HO-1 expression [36]. Furthermore, in a
model of allergic airway inflammation, HO-1 upregula-
tion was shown to increase Treg numbers and their sup-
pressive capacity [37].

Next to their effects on T cells, Tregs can also directly sup-
press B-cell responses without having to suppress the adja-
cent T cells [38,39]. This proves that activated T cells are
not the only target for Tregs and that Tregs can also be
involved in the reduced presence of B-cell infiltrates. Inter-
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Foxp3 positive cells in lung tissue. A: Foxp3 positive cells (red nuclear staining) present in lung tissue (100%). B: Foxp3
positive cells expressed as total numbers per mm? lung tissue after long term smoke exposure and protoporphyrin treatment.
Smoke groups are represented by closed symbols and sham smoke groups by open symbols. The significant results of the
regression analysis are depicted beneath the figure, as well as a trend for an effect of CoPP treatment. C: Fluorescent double
staining for CD3 (green) and Foxp3 (red) in lung (upper panel, 630x%) and spleen (lower panel, 400%) showing that Foxp3 spe-
cifically stains T cells. The orange cells in the lung are pigmented macrophages, which show auto fluorescence.

estingly, chronic cigarette smoke exposure was shown to
increase the numbers of Tregs in the airways of healthy
smokers and smokers with COPD [40], whereas decreased
Treg numbers were found in lung tissue of emphysema
patients [41]. Additionally, we found high numbers of
Foxp3 positive cells present in and surrounding B cell fol-
licles in the lungs of COPD patients (unpublished
results).

Altogether, these findings suggest a role for Tregs in COPD
in the smoke induced inflammatory response, and possi-
bly also B-cell follicle formation, and support the idea that
the HO-1 protein upregulation affected the Treg popula-
tion in our model thereby possibly contributing to the
observed reduced presence of B-cell infiltrates.
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Conclusion

Long term HO-1 upregulation prevented the development
of cigarette smoke induced B-cell infiltrates, while it had
no effect on smoke induced emphysema and increase in
neutrophils and macrophages and inflammatory
cytokines. A possible explanation for this effect of HO-1
upregulation on presence of B-cell infiltrates is the
increased presence of CD4+CD25+ Tregs. The exact role of
these Tregs in the smoke induced inflammatory response
has to be elucidated and the translation to human COPD
should now be pursued.
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