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Abstract: The widespread use of antibiotics in large-scale livestock production has led to serious
antibiotic resistance. Proteus mirabilis is an important pathogenic bacterium on large-scale farms.
Chromosomally localized mobilizable genetic elements (genomic islands) and mobile genetic ele-
ments (Tn7-like transposons) play an important role in the acquisition and transmission of resistance
genes by P. mirabilis. To study the prevalence and resistance characteristics of antibiotic-resistant
genomic islands in P. mirabilis of animal origin in China, we performed whole genome sequencing of
P. mirabilis isolated from large-scale pig and chicken farms. Three new variants of PmGRI1 (HN31,
YN8, and YN9), and a hybrid structure (HN2p) formed by the multidrug-resistant Tn7-like-HN2p
transposon and a genomic island PmGRI1-HN2p, were identified from P. mirabilis. All variants under-
went homologous recombination mediated by insertion sequence IS26. A genomic rearrangement in
the chromosome between the Tn7-like-HN2p transposon and PmGRI1-HN2p occurred in HN2p. The
heterozygous structure contained various antimicrobial resistance genes, including three copies of
fluoroquinolone resistance gene qnrA1 and 16S rRNA methylase gene rmtB, which are rarely found in
P. mirabilis. Our results highlight the structural genetic diversity of genomic islands by characterizing
the novel variants of PmGRI1 and enrich the research base of multidrug resistance genomic islands.

Keywords: Proteus mirabilis; antibiotic resistance; genomic island; PmGRI1; Tn7

1. Introduction

Proteus mirabilis belongs to the Enterobacteriaceae family and is widely distributed in the
environment and the intestinal tract of living organisms. It can carry numerous pathogenic
factors that may be associated with gastrointestinal pathogenicity [1,2]. P. mirabilis is inher-
ently resistant to antibiotics, such as nitrofurantoin, polymyxin, and tigecycline [3], often
exhibiting multidrug resistance under clinical settings. Previous studies have reported
multidrug resistance rates of 19.3–78.13% in P. mirabilis isolated from poultry [4–6]. Mobi-
lizable genetic elements (genomic islands (GIs) and Tn7-like transposons) play important
roles in the capture and transmission of multidrug resistance genes in P. mirabilis [7–10].
GIs, such as integrative and conjugative elements and integrative and mobilizable ele-
ments, can integrate gene fragments or single-stranded DNA into bacterial chromosomes
via horizontal gene transfer and often contain various genes that confer novel traits to
their hosts, such as antibiotic resistance, virulence, and enhanced adaptation of bacteria
to their environment [11–13]. Recently, traces of GIs have been identified in an increasing
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number of host bacteria. Multidrug-resistant GIs carrying the macrolide resistance gene
erm(B) have been reported in Campylobacter of animal origin, and erm(B) was found to be
prevalent and significantly increased in Campylobacter in Guangdong Province, China. It is
speculated that GIs may be widespread or play a role in the transmission of erm(B) [14]. A
GI carrying a new variant of tet(L) was identified in Campylobacter of chicken origin; the
variant was found to play an important role in tetracycline and doxycycline antibiotic resis-
tance and could make tigecycline less susceptible [15]. GIs associated with glycopeptides,
chloramphenicol, aminoglycosides, tetracyclines, sulfonamides, and β-lactam antibiotic
resistance were identified in Riemerella anatipestifer by pan-genomic analysis [16]. Several
novel multidrug-resistant GIs have been identified in Trueperella pyogenes of porcine origin,
carrying multidrug resistance genes, such as the tetracycline resistance gene tet(W) and the
macrolide resistance gene erm(X) [17]. Previous studies have reported that the most com-
mon genetic island in P. mirabilis is the Salmonella genomic island 1 (SGI1) [18–20] and the
Proteus genomic island 1 (PGI1; [21,22]). The host bacteria range of SGI1 is very broad, and
its presence in P. mirabilis, Morganella morganii, Providencia stuartii, and Escherichia coli, as re-
ported in previous studies, suggests that SGI1 could spread to Enterobacteriaceae [18,23–25].

It has been reported that novel multidrug-resistant GIs, including PGI1, PGI2, and
GIPmI1, were found in P. mirabilis [7,21,26]. PmGRI1 is a newly reported GI with variants
ranging in size from 26,073 to 150,977 bp that can carry multiple resistance genes and has
been identified in P. mirabilis and E. coli. It carries a tyrosine-type recombinant/integrase
(394 amino acids) and is predicted to catalyze the integration of PmGRI1 at the 3′ end of
tRNA(Sec). Different PmGRI1 variants with backbone alterations and/or variants in the
MDR region carrying the carbapenemase gene blaKPC-2 and the 16S rRNA methylesterase
gene armA have been identified in P. mirabilis, suggesting that PmGRI1 can carry clinically
important resistance genes [27].

The Tn7-like transposon can transfer resistance genes [10,28]. Sequences at both ends
of the Tn7-like transposon encode transposon modules and class 2 integrator systems.
The transposon module encodes five proteins required for both transposition pathways:
TnsA, TnsB, TnsC, TnsD, and TnsE [29]. Although these gene cassettes are fixed in Tn7
transposons due to mutations in homologous recombinases, they can be rearranged in hosts
expressing related recombinases, leading to alternative combinations of antibiotic resistance
genes. Tn7-like transposons can promote the spread of resistance levels in bacteria by
transferring various resistance genes between bacteria via transposases. Furthermore, a
Tn7-like transposon, Tn6450, contains 18 different antimicrobial resistance genes, including
the cephalosporinase blaDHA-1 and the fluoroquinolone resistance genes qnrA1 and aac(6′)-
Ib-cr [10].

2. Materials and Methods
2.1. Bacterial Strains

In 2019, 204 strains of Proteus mirabilis were isolated from the feces of large pig and
chicken farms in Henan and Yunnan Provinces, China. The strains were cultured using
Salmonella-Shigella agar (SS) at 37 ◦C for 16 h. The strains were identified using the
BD Phoenix™ 100 Automated Microbiology System (Becton Dickinson, Franklin Lakes,
NJ, USA).

2.2. Antimicrobial Susceptibility Testing

Antibiotic susceptibility testing of the strains was performed using the K-B diskdiffu-
sion method. The 27th edition of the Executive Standard for Antimicrobial Susceptibility
Testing (M100-S27), prepared by the Clinical and Laboratory Standards Institute, was used
as a reference (Table S1). Drug sensitivity testing was carried out using Oxoid Paper Dis-
penser Type ST6090 and the OXOID drug sensitivity disks (OXOID, Basingstoke, UK). The
quality control strain for the drug sensitivity test was E. coli ATCC25922. A total of 19 antibi-
otics were used for Antibiotic susceptibility testing. The antibiotics included ceftazidime
(CAZ), aztreonam (ATM), levofloxacin (LEV), ampicillin (AMP), amoxicillin-clavulanic
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acid (AMC), cefoxitin (FOX), cefotaxime (CTX), chloramphenicol (CHL), imipenem (IPM),
florfenicol (FFC), nalidixic acid (NAL), ciprofloxacin (CIP), streptomycin (STR), spectacu-
larin (SPT), gentamicin (GEN), amikacin (AMK), methicillin (TMP), sulforaphane (SUL),
and trimethoprim-sulfamethoxazole (SXT).

2.3. DNA Extraction

Bacterial genomic DNA was extracted using the QIAamp DNA Mini Stool kit (QIAamp,
Hilden, Germany) according to the manufacturer’s instructions, and the genomic DNA
concentration and quality were checked using a NanoDrop spectrophotometer and via
agarose gel electrophoresis. The obtained DNA was stored at −20 ◦C until further analysis.

2.4. Whole Genome Sequencing and Analysis

Whole genome sequencing of 7 strains of multidrug-resistant P. mirabilis was selected
from 204 strains of P. mirabilis. The whole genome of all strains was sequenced using
the Illumina HiSeq platform (San Diego, CA, USA) (400 bp paired-end reads with about
200-fold average coverage) and a Nanopore sequencing instrument (MinION, Oxford,
UK) (about 400-fold average read depth). After DNA extraction, 1 µg genomic DNA was
randomly fragmented by Covaris (Woburn, MA, USA), followed by purification by an
AxyPrep Mag PCR clean-up kit (Union City, CA, USA). The fragments were end-repaired
by End Repair Mix and purified afterward. The repaired DNAs were combined with
A-Tailing Mix, and then the Illumina adaptors were ligated to the Adenylate 3′Ends DNA
and followed by product purification. The products were selected based on the insert size.
Several rounds of PCR amplification with PCR Primer Cocktail and PCR Master Mix were
performed to enrich the Adapter-ligated DNA fragments. After purification, the library
was qualified by the Agilent Technologies 2100 (Palo Alto, CA, USA) bioanalyzer and ABI
StepOnePlus Realtime PCR System (Foster City, CA, USA). Finally, the qualified libraries
were sequenced pair-end using Hiseq System.

The raw sequencing data were processed using the following steps: (1) Removing
reads containing sequencing adapter; (2) Removing reads whose low-quality base ratio
(base quality less than or equal to 5) is more than 50%; (3) Removing reads whose unknown
base (‘N’ base) ratio is more than 10%. Clean data were aligned to the reference genome
using Burrows–Wheeler Aligner (BWA) [30]. Picard was used to remove duplicated se-
quence reads. Realignment was performed with the Genome Analysis Toolkit (GATK) [31].
Single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels) were called us-
ing HaplotypeCaller of GATK and annotated with SnpEff software [32]. The Copy Number
Variants (CNVs) were called using the CNVnator read-depth algorithm [33]. CREST was
used to identify structural variants (SVs) with standard settings [34].

The genomes were assembled using the Canu v1.5 software [35]. Antimicrobial resis-
tance genes were identified using CGE ResFinder 3.1 (https://cge.cbs.dtu.dk/services/
ResFinder/, accessed on 8 October 2021) [36]. Insertion sequences were identified using
ISfinder (https://www-is.biotoul.fr/, accessed on 8 October 2021) [37]. The plasmids were
identified using PlasmidFinder 2.1 [38,39]. The complete nucleotide sequence of the hybrid
structure was analyzed using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 8 October 2021).

3. Results and Discussion
3.1. Antibiotic Susceptibility and Detection of Antimicrobial Resistance Genes

In addition to intrinsic resistance to doxycycline and polymyxin, P. mirabilis strains
HN31, YN8, YN9, and HN2p are all insensitive to a variety of antibiotics and carry multiple
drug resistance genes (Table 1). In addition, they all carry the merEDACPTR mercury-
resistance operon. Our results highlight that PmGRI1 and the hybrid structure of Tn7-like
and PmGRI1 can carry numerous antibiotic resistance genes, which may be one of the
important reasons for the acquisition and spread of antibiotic resistance genes in P. mirabilis.
The PlasmidFinder results showed that YN8 did not carry a plasmid and that HN31, YN9,
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and HN2P all carried IncQ1 plasmids but did not carry resistance genes on the plasmids.
The resistance genes were relatively concentrated on PmGRI1.

Table 1. Resistance genes and profile of PmGRI1 in P. mirabilis.

Strain Source of
Samples

SGI1/SGI1-like
Gene Island Type Antibiotic Resistance Genes a Strain Resistance

Profile Size (bp)

HN31 Swine PmGRI1-HN31 catA1, dfrA12, aadA2, sul1, mph(A), aacC2d,
sul2, strA, strB, aphA1, floR, tet(A)

AMP-CHL-NAL-
STR-SPT-GEN-
TMP-SUL-SXT

62,862

YN8 Chicken PmGRI1-YN8 catA1, blaCTX-M-65, fosA3, sul1, aadA5,
dfrA17, aadA1, dfrA1, sul2

NAL-SPT-TMP-
SUL-SXT 62,784

YN9 Chicken PmGRI1-YN9

catA1, blaCTX-M-65, fosA3, sul1, arr-3, catB3,
blaOXA-1, aac(6′)-Ib-cr, blaTEM-1, floR, sul2,

hph, aphA1a, strA, strB, aacC2d, aadA5,
dfrA17, aadA1, dfrA1, aacC4

AMP-CHL-FFC-
NAL-CIP-STR-
SPT-GEN-TMP-

SUL-SXT

55,239

HN2p Swine
Hybrid structure
of Tn7-like and

PmGRI1

rmtB, hph, aacC4, aphA1a, strA, strB,
aadA1, aadA2, blaTEM-1b, qnrA1, lun(F),
erm(42), catA1, floR, sul1, sul2, tet(G),

dfrA12, dfrA1, blaCMY-2

AMP-AMC-AMK-
SXT-LEV-CIP-

NAL-FFC-CHL-
GEN

123,622

HN31 Swine PmGRI1-HN31 catA1, dfrA12, aadA2, sul1, mph(A), aacC2d,
sul2, strA, strB, aphA1, floR, tet(A)

AMP-CHL-NAL-
STR-SPT-GEN-
TMP-SUL-SXT

62,862

YN8 Chicken PmGRI1-YN8 catA1, blaCTX-M-65, fosA3, sul1, aadA5,
dfrA17, aadA1, dfrA1, sul2

NAL-SPT-TMP-
SUL-SXT 62,784

YN9 Chicken PmGRI1-YN9

catA1, blaCTX-M-65, fosA3, sul1, arr-3, catB3,
blaOXA-1, aac(6′)-Ib-cr, blaTEM-1, floR, sul2,

hph, aphA1a, strA, strB, aacC2d, aadA5,
dfrA17, aadA1, dfrA1, aacC4

AMP-CHL-FFC-
NAL-CIP-STR-
SPT-GEN-TMP-

SUL-SXT

55,239

HN2p Swine
Hybrid structure
of Tn7-like and

PmGRI1

rmtB, hph, aacC4, aphA1a, strA, strB,
aadA1, aadA2, blaTEM-1b, qnrA1, lun(F),
erm(42), catA1, floR, sul1, sul2, tet(G),

dfrA12, dfrA1, blaCMY-2

AMP-AMC-AMK-
SXT-LEV-CIP-

NAL-FFC-CHL-
GEN

123,622

a Antimicrobial resistance genes carried by PmGRI1 or hybrid structure are indicated in bold.

3.2. Analysis of Three Novel Variants of PmGRI1 in P. mirabilis

The whole genomes of strains HN31, YN8, and YN9 were compared by a BLAST search
through NCBI, and all carried novel variants of PmGRI1 (PmGRI1-HN31, PmGRI1-YN8,
and PmGRI1-YN9). The three novel variants of PmGRI1 were consistent with PmGRI1-
C55 (P. mirabilis strain C55 was isolated from cloacal swabs of a chicken with diarrhea
in Shandong Province, China, on 13 November 2018; NCBI GenBank MK861851.1, [27])
and were integrated downstream of tRNA(Sec) with 20 bp direct repeats (DR) at the left
and right ends. They all underwent homologous recombination mediated by the insertion
sequence IS26, due to which fragments from different plasmids or chromosomes were
inserted, conferring new antibiotic resistance genes to the strain (Figure 1).

The size of PmGRI1-HN31 was 62,862 bp. The region downstream of Tn21 tnpA is
similar to the fragment from Klebsiella pneumoniae plasmid pDA33144-220, both containing
the resistance genes dfrA12, aadA2, sul1, and mph(A). This result suggests that this region
may have been derived from pDA33144-220. Subsequently, insertions and reversals occur
in the region between four IS26; an additional insertion of the aminoglycoside resistance
gene aacC2d is upstream IS26, and the adjacent IS26-blaTEM-1b-IS26-aphA1a was reversed and
transferred to a downstream IS26. However, IS26 and blaTEM-1b were lost in PmGRI1-HN31
compared to those in PmGRI1-C55.
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with >99% identity. Antimicrobial resistance genes are shown in red, and transposase genes are shown in blue. The yellow
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of PmGRI1.

PmGRI1-YN8 is 55,239 bp. The Tn21 tnpA of PmGRI1-YN8 was truncated by IS26,
and a 14,852 bp sequence was inserted between the two IS26. This sequence carries five
antibiotic resistance genes—blaCTX-M-65, fosA3, sul1, aadA5, and dfrA17.

PmGRI1-YN9 is 99,907 bp. It contains two sequences that are highly similar to
P. mirabilis YPM35 and P. mirabilis L90-1 with a 99.9% nucleotide similarity. These two
sequences carry the mobile elements ISCR2 and ISVsa5. The sul1-qacE∆1 gene cassette
was observed on both ends of the inserted fragment, which may be associated with the
insertion of a large fragment in this region. PmGRI1-YN9 contained 18 antibiotic resistance
genes (Table 1).

IS26 moves through a replication mechanism and can be used to cause insertion or
deletion, or can flip adjacent DNA, playing an important role in pathogen evolution [40–42].
In addition, translocatable units containing only an IS26 and a resistance gene are pref-
erentially inserted into adjacent positions of the existing IS26 in the same cell, resulting
in an IS26-bounded class 1 transposon [43]. Previous studies have reported that IS26-
mediated excision of the IS26-aphA1a gene transposon resulted in the loss of kanamycin
resistance [44]. Our study showed that IS26-mediated homologous recombination of the
backbone region and multidrug resistance region promoted the diversity of PmGRI1-like
genomic island variants.

3.3. Characteristics of the Hybrid Structure in P. mirabilis

In the P. mirabilis strain HN2p, the SXT/R391 integrative and conjugative element
ICEPmiJpn1 (GenBank accession KT894734), existing alone and harboring blaCMY-2, was
integrated with the end of prfC. A resistant GI and a novel transposon derived from Tn7
exist together and undergo genome rearrangement between the two elements.
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The hybrid structure is formed by PmGRI1-HN2p and Tn7-like-HN2p (Figure 2).
In HN2p, PmGRI1-HN2p is located between PMI3004 and PMI3005 compared with the
P. mirabilis reference genome HI4320 (GenBank accession AM942759), and Tn7-like-HN2p
is located at PMI3067. The two genetic elements have a Tn21 region, one of which is incom-
plete, likely due to the truncation of IS26 upstream. We hypothesized that an incomplete
Tn21 transposon mediates the transfer of the gene fragment and divides the assemblies into
two parts (corresponding to bases 1537 to 76,562 bp and 148,476 to 197,071 bp in GenBank
accession number MT585156). This indicates that the Tn21 region might cause genome
rearrangement. The region corresponding to PMI3005 to PMI3067 in P. mirabilis HI4320
was reversed between the two parts, and the complete inverse part had a length of 145 kb.
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At the front end, PmGRI1-HN2p harbors the mobile element IS629 and partial
ISEc23 truncated by IS5 and carries a catA1 resistance gene followed by Tn7-like-HN2p,
which might be derived from Tn6450 by partial acquisition according to BLAST analy-
sis (Figure 2a). The acquired part showed high sequence identity to the corresponding
regions of four plasmids—pC16KP0098-1 (GenBank accession CP052444), pIncC-L117
(CP040034), pIncC-L121(CP040029), and pIncAC2_L111 (CP030132). The Tn7-like-HN2P
region includes three copies of qnrA1 and one copy of rmtB. Two of the three copies of
qnrA1 were downstream of ISCR1. The duplication of ISCR1 around qnrA1 might facili-
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tate the enhancement of the qnrA1 copy number and accompanying quinolone resistance
under conditions of quinolone stress, and it likely adds to the repertoire of mechanisms
that can improve quinolone resistance to clinically important levels. The presence of five
copies of qnrA1 was also reported in a previous study [45]. The presence of rmtB has been
detected in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens,
and P. mirabilis, and the prevalence of such resistance determinants has become concern-
ing [46–51]. The rmtB gene may be located between the Tn2 transposon and insertion
element [52,53]. In the Tn7-like-HN2p transposon, rmtB and blaTEM-1 coexist between the
Tn2 transposon and ISCR3.

At the back end (Figure 2b), a region similar to PmGRI1-C55 was inverted. An in-
complete segment of Tn2 and blaTEM-1b is included between the two IS26 and can confer
resistance to penicillin and first-generation cephalosporins. IS26 can promote the accumu-
lation of resistance genes on gene islands. Excluding the Tn21 region and five resistance
genes (blaTEM-1b, aphA1a, sul2, strA, and strB), PmGRI1-HN2p carries a mercury-resistance
operon. The 18,166-bp region of Tn7-like-HN2p (corresponding to bases 171,395 to 189,560
in MT585156), carrying floR, sul2, aph(4)-Ia, and aacC4 resistance genes, showed high iden-
tity to the corresponding regions of seven IncHI2 plasmids—pHNSHP45-2 (GenBank
accession KU341381), pHNYJC8 (KY019259), pWJ1 (KY924928), pHNLDF400 (KY019258),
pHXY0908 (KM877269), pXGE1mcr (KY990887), and pSJ_255 (CP011062). Similar to previ-
ous reports, a class 1 integron was present in Tn7-like-HN2p containing lun(F), dfrA1, and
aadA1 cassettes [54].

The GI and Tn7 transposons generate new variants through a series of molecular
module rearrangements, acquisitions, or losses. The involvement of IS3 and IS21 elements
in the rearrangement of multidrug resistance genes on GI has been reported in multidrug-
resistant E. coli isolates [42]. In Trueperella pyogenes isolated from the lung tissue of cows
in Jilin Province, China, multiple drug resistance genes were found to cluster on a 42 kb
genomic island. Two IS6100∆1 and a class 1 integron-like SGI1 mediated genetic rear-
rangements and formed a complex transposon [55]. However, genome rearrangement
occurring between the two genetic elements described in this study has seldom been re-
ported. Inversion meditated by transposons and insertion elements found in bacteria might
increase, and hybrid structures formed in this way might exist extensively in the natural
environment. The effects it will cause and whether it will aggravate the dissemination of
antimicrobial resistance genes require further research.

4. Conclusions

PmGRI1 is a novel GI that can carry multiple antibiotic resistance genes. The mon-
itoring of PmGRI1 in P. mirabilis and other pathogenic bacteria is currently underway.
In this study, we isolated and identified P. mirabilis from a large-scale farm using SS
medium and the BD Phoenix™ 100 Automated Microbiology System and screened for
multidrug-resistant P. mirabilis using the K-B disk diffusion method. We then performed
whole-genome sequencing of the screened P. mirabilis. This study describes the detailed
genetic structure of three novel variants of PmGRI1 and a hybrid structure in which the
Tn7-like-HN2p transposon coexists with PmGRI1-HN2p in P. mirabilis. They all carry var-
ious important antibiotic resistance genes, which may lead to a more severe spread of
antibiotic resistance genes in animals and the environment. This finding highlights the
important role of genetic elements (Tn7 and PmGRI1) in capturing and spreading resistance
genes in P. mirabilis. Therefore, strong measures are required to control the emergence and
spread of antibiotic resistance genes mediated by mobile genetic elements, and our study
provides an important reference for this purpose.
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