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Abstract

Background: The complement component C3a activates human mast cells via its cell surface G protein coupled receptor
(GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization
as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected
COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6
participate in agonist-induced C3aR phosphorylation. However, the roles of these GRKs on the regulation of C3aR signaling
and mediator release in human mast cells remain unknown.

Methodology/Principal Findings: We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of GRK2,
GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and LAD2, that endogenously express C3aR. Silencing GRK2 or GRK3
expression caused a more sustained Ca2+ mobilization, attenuated C3aR desensitization, and enhanced degranulation as
well as ERK1/2 phosphorylation when compared to shRNA control cells. By contrast, GRK5 or GRK6 knockdown had no
effect on C3aR desensitization, but caused a significant decrease in C3a-induced mast cell degranulation. Interestingly, GRK5
or GRK6 knockdown rendered mast cells more responsive to C3a for ERK1/2 phosphorylation.

Conclusion/Significance: This study demonstrates that GRK2 and GRK3 are involved in C3aR desensitization. Furthermore, it
reveals the novel finding that GRK5 and GRK6 promote C3a-induced mast cell degranulation but inhibit ERK1/2
phosphorylation via C3aR desensitization-independent mechanisms. These findings thus reveal a new level of complexity
for C3aR regulation by GRKs in human mast cells.
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Introduction

The complement component C3a plays an important role in

innate immunity and also promotes allergic diseases such as

bronchial asthma [1,2,3]. G protein coupled receptors for C3a

(C3aR) are expressed in human mast cell lines (HMC-1, LAD2),

differentiated CD34+-derived primary human mast cells as well as

skin mast cells [4,5,6]. C3a induces Ca2+ mobilization, causes

substantial degranulation and chemokine generation in human

mast cells via the activation of Gi-family of G proteins. Removal of

potential phosphorylation sites within the carboxyl terminus of

C3aR leads to more robust degranulation when compared to wild-

type receptors [7]. These findings are consistent with the idea that,

as in many other cell types, receptor phosphorylation desensitizes

C3aR expressed in mast cells [8].

Agonist occupied GPCRs are phosphorylated by a family of

protein kinases, collectively known as G protein coupled receptor

kinases (GRKs). Of the seven known GRKs, four (GRK2, GRK3,

GRK5 and GRK6) are expressed ubiquitously. It is well

established that GPCR phosphorylation by GRKs leads to the

recruitment of b-arrestin, which results in receptor desensitization

and internalization [8,9]. However, the role of specific GRKs on

receptor regulation has only been appreciated recently. Studies

with siRNA-mediated knockdown of GRKs in HEK293 cells have

shown that agonist-induced phosphorylation of angiotensin II type

1A receptor (Gq-coupled) and V2 vasopressin receptors (Gs-

coupled) are predominantly mediated by GRK2 and GRK3

[10,11]. Furthermore, knockdown of these GRKs attenuated both

agonist-induced b-arrestin recruitment and receptor desensitiza-

tion [10,11].

In addition to desensitization, receptor phosphorylation by

GRKs leads to the activation of extracellular signal-regulated

kinases (ERK1/2) in a b-arrestin-dependent manner. In HEK293

cells, knockdown of GRK5 and GRK6 inhibits angiotensin II and

vasopressin-induced b-arrestin-dependent ERK1/2 phosphoryla-

tion [12,13]. These findings suggest that for angiotensin type IA

and vasopressin receptors, agonist-induced receptor phosphoryla-

tion by GRK2/GRK3 leads to receptor desensitization but their

phosphorylation by GRK5/GRK6 promotes b-arrestin-depen-

dent ERK1/2 phosphorylation. However, for the chemokine

receptor CXCR4, GRK2/GRK6 are involved in receptor

desensitization whereas GRK3/GRK6 play an important role in

positively regulating ERK1/2 activation [14]. In transfected COS

cells, overexpression of GRK2, GRK3, GRK5 or GRK6 results in

enhancement of agonist-induced C3aR phosphorylation [15]. Our

previous studies in a transfected mast cell line, RBL-2H3 indicated
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that GRK2 may participate in C3aR desensitization [7]. However,

the roles of other GRKs on the regulation of receptor function in

mast cells remain unknown.

In the present study, we utilized lentivirus shRNA to

knockdown the expression of GRK2, GRK3, GRK5 and GRK6

in human mast cells (HMC-1 and LAD2) that endogenously

express functional C3aR. Using this system, we report unexpected

findings regarding the roles of GRKs on signaling and mediator

release in mast cells via both receptor desensitization-dependent

and independent pathways.

Results

Stable knockdown of GRK2, GRK3, GRK5 and GRK6
expression in the human mast cell line HMC-1 cells

To determine the roles of GRKs on the regulation of C3aR

signaling in human mast cells, we used the Mission shRNA

lentiviral system to stably knockdown the expression of GRK2,

GRK3, GRK5 or GRK6 in a human mast cell line, HMC-1 cells.

Cells were separately transduced with 5 different shRNA

constructs targeting different regions of each GRK, and the

construct that gave the most efficient knockdown was selected for

further study. For control, we used a scrambled shRNA construct

purchased from Sigma. Although all 5 constructs reduced the

expression of each GRK to variable levels, TRCN0000230149 for

GRK2, TRCN0000159482 for GRK3, TRCN0000000842 for

GRK5 and TRCN0000001368 for GRK6 were the most efficient

in knocking down GRKs in HMC-1 cells. These constructs were

therefore used for all subsequent studies in HMC-1 and LAD2

mast cells. Using real time quantitative PCR we found that the

mRNA levels of GRK2 and GRK5 were reduced by .90% in

HMC-1 cells (Fig. 1A and 1C). However, GRK3 and GRK6

mRNA levels were reduced by .80% (Fig. 1B and 1D). Western

blot data confirmed almost complete knockdown of GRK2

(Fig. 1E) and GRK5/GRK6 (Fig. 1F). We were not able to detect

GRK3 expression with available antibodies.

GRK2 and GRK3 cause C3aR desensitization in HMC-1
cells but GRK5 and GRK6 do not

Intracellular Ca2+ mobilization provides a rapid, sensitive and

real-time assay to measure desensitization [16]. We have

previously shown that GPCRs that undergo desensitization

respond to agonist with an initial Ca2+ spike, which decays rapidly

and reaches baseline within ,3 min [16]. By contrast, phosphor-

ylation-deficient receptors respond to agonist for a similar initial

Ca2+ spike, which is followed by a sustained response that remains

elevated for an extended period of time. We therefore used Ca2+

mobilization as an assay to determine the effect of GRK2, GRK3,

GRK5, GRK6 silencing on C3aR desensitization. C3a caused a

transient Ca2+ mobilization in shRNA control cells (Fig. 2). In

GRK2 or GRK3 knockdown (KD) cells the initial Ca2+ response

to C3a (100 nM) was similar to shRNA control cells. However, the

response remained elevated for longer time period (Fig. 2; A–C).

By contrast, knockdown of GRK5 or GRK6 had no effect on the

magnitude or the time course of C3a -induced Ca2+ response

(Fig. 2; D–F). To rule out the possibility that GRK5 and GRK6

could modulate Ca2+ response to C3a at lower concentrations, we

determined the effects of silencing these GRKs on responses to

Figure 1. Stable knockdown of GRK2, GRK3, GRK5 and GRK6 in human mast cells. HMC-1 cells were stably transduced with scrambled
shRNA control lentivirus (Control) or shRNA lentivirus targeted against GRK2, GRK3, GRK5 and GRK6. (A–D) Quantitative PCR was performed to assess
GRK2, GRK3, GRK5 and GRK6 mRNA levels in shRNA control and GRK knockdown (KD) cells. Results are expressed as a ratio of GRK to GAPDH mRNA
levels. Data represent the mean 6 SEM from three independent experiments. Statistical significance was determined by unpaired two-tailed t test.
***, p,0.001. Representative immunoblots of HMC-1 cells with knockdown of (E) GRK2 and (F) GRK5/GRK6 are shown.
doi:10.1371/journal.pone.0022559.g001

C3a Receptor Regulation by GRKs in Human Mast Cell

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22559



0.01 nM and 0.1 nM C3a. As shown in Fig. 3, absence of these

GRKs had no effect on Ca2+ responses to C3a even at very low

concentrations.

GPCRs that undergo desensitization display reduced respon-

siveness to a second stimulation with the same agonist [16]. To test

further the effects of GRKs on desensitization, shRNA control or

GRK KD cells were exposed to C3a and washed 3 times before

re-exposure to the same concentration of C3a. shRNA control

cells displayed ,88% reduction in the calcium peak to the second

stimulation (Fig. 4A and 4F). By contrast GRK2 and GRK3 KD

cells showed ,45% and ,40% reduction in the calcium peak to

the second stimulation, respectively (Fig. 4; B, C and F). However,

Ca2+ response to C3a in GRK5 and GRK6 KD cells was very

similar to that seen in shRNA control cells (Fig. 4; A, D, E and F).

These data demonstrate that while GRK2 and GRK3 participate

in C3aR desensitization in HMC-1 cells, GRK5 and GRK6 do

not.

Agonist-induced C3aR internalization does not require
GRK2, GRK3, GRK5 or GRK6

Receptor internalization is an important mechanism that

regulates GPCR signaling. In transfected RBL-2H3 cells, ,70%

of the cell surface receptors undergo internalization following 1

min stimulation with C3a [17]. Furthermore, C3a-induced

internalization is blocked by ,50% in cells expressing a complete

phosphorylation-deficient C3aR mutant [17]. This suggests that

phosphorylation of C3aR, at least in part, contributes to receptor

internalization. Before conducting studies on the role of GRKs on

C3aR internalization we performed flow cytometry analysis to

determine the impact of GRK knockdown on the cell surface

C3aR expression. As shown in Fig. 5A, there was no difference on

cell surface expression of C3aR in GRK2, GRK3, GRK5 or

GRK6 KD cells when compared to shRNA control cells. To

determine the role of GRKs on agonist-induced C3aR internal-

ization, we exposed shRNA control or GRK KD cells with C3a

(100 nM) for 1 min and 5 min and determined the extent of cell

surface C3aR expression by flow cytometry. Although C3a caused

a substantial loss of cell surface receptors in shRNA control cells

(,70%), there was no significant difference in the extent of

receptor internalization in GRK2, GRK3, GRK5 or GRK6 KD

HMC-1 cells (Fig. 5; B–G). These findings suggest that either

GRKs are not involved in agonist-induced C3aR internalization

or that multiple GRKs contribute to receptor internalization and

loss of one is compensated for by the presence of others.

C3a-induced ERK1/2 phosphorylation is modulated by
GRK2, GRK3, GRK5 and GRK6

C3a causes transient ERK1/2 phosphorylation in HMC-1 cells

[18]. We therefore sought to determine the effects of silencing the

expression of GRKs on ERK1/2 phosphorylation in HMC-1 cells.

Consistent with our previous studies, we found that C3a causes a

transient ERK1/2 phosphorylation that peaked at 1 min and

Figure 2. Effects of GRK2/3 and GRK5/GRK6 knockdown on C3a-induced Ca2+ mobilization in human mast cells. GRK knockdown (KD) and
shRNA control HMC-1 cells were loaded with Indo-1 (1 mM) and Ca2+ mobilization in response to C3a (100 nM) was performed as described in the
materials and methods. (A) and (B) show Ca2+ responses in GRK2 and GRK3 KD cells. (C) shows peak Ca 2+ mobilization at 150–200 sec after
stimulation. (D) and (E) show Ca 2+ responses in GRK5 and GRK6 KD cells. (F) shows peak Ca2+ mobilization between 150 and 200 sec after
stimulation. For experiments in (A), (B), (D) and (E), representative traces from three independent experiments are shown. For (C) and (F) data
represent the mean 6 SEM from three independent experiments. Statistical significance was determined by unpaired two-tailed t test. *, p,0.05.
doi:10.1371/journal.pone.0022559.g002
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returned to basal levels by 5–10 min. As shown in Fig 6; A and B,

silencing GRK2 and GRK3 expression enhanced C3a-induced

ERK1/2 phosphorylation at 1, 5 and 10 min. By contrast, GRK5

or GRK6 knockdown had no effect on ERK1/2 phosphorylation

at 1 min but rendered the cells responsive to C3a for enhanced

ERK1/2 phosphorylation at later time points (5–10 min) (Fig. 6;

C and D). To determine the specificity of GRKs for ERK1/2

phosphorylation, we tested the effect of PMA, which bypasses

C3aR and activates protein kinase C directly. We found that

although PMA (10 nM, at 5 min and 10 min) caused robust

ERK1/2 phosphorylation, this response was not significantly

altered in GRK5 and GRK6 KD cells (Fig. 7; A and B).

Distinct roles of GRK2/3 and GRK5/6 on C3a-induced
mast cell degranulation

Our previous studies in transfected RBL-2H3 cells indicated

that GRK2 mediates desensitization of C3aR and inhibits C3a-

induced mast cell degranulation [7]. Using shRNA-mediated

knockdown of GRKs, we sought to determine the roles of

individual GRKs on C3a-induced mast cell degranulation.

Because HMC-1 is an immature mast cell line that does not

degranulate, we utilized LAD2 mast cells, which endogenously

expresses C3aR and responds to C3a for robust degranulation [6].

As GRK2 and GRK3 are involved in C3aR desensitization in

HMC-1 cells (Fig. 2 and Fig. 4), we initially focused our studies on

these GRKs. We found that although GRK2 mRNA could be

reduced by ,80% (Fig 8A), GRK3 knockdown was less efficient

(,65%) in LAD2 cells (Fig. 8B). Silencing GRK2 or GRK3

resulted in significant enhancement of C3a-induced mast cell

degranulation (Fig. 8; C and D). Compound 48/80 induces

degranulation in human mast cells via the activation GPCRs,

MrgX1 and MrgX2 [19,20]. To determine the specificity of

GRK2 for the regulation of C3a-induced response, we tested the

ability of different concentrations of compound 48/80 to induce

degranulation in shRNA control and GRK2 KD cells. As shown

in Fig. 8E, silencing of GRK2 had no effect on compound 48/80-

induced degranulation.

Because GRK5 or GRK6 KD had no effect on C3aR

desensitization in HMC-1 cells (Fig. 2, 3, 4), we expected that

reduced expression of these GRKs will have little or no impact on

C3a-induced mast cell degranulation. To test this possibility, we

knocked down the expression of GRK5 and GRK6 in LAD2 mast

cells. As for HMC-1 cells (Fig. 1), lentiviral shRNA was efficient in

reducing mRNA for these GRKs by $75% (Fig. 9; A and B).

Unexpectedly, absence of these GRKs caused substantial inhibi-

tion of C3a-induced mast cell degranulation (Fig. 9; C and D). To

Figure 3. Silencing the expression of GRK5 or GRK6 does not modulate Ca2+ mobilization to low concentrations of C3a. (A) shRNA control,
(B) GRK5 KD and (C) GRK6 KD HMC-1 cells were loaded with Indo-1 (1 mM), sequentially exposed to C3a 0.01 nM and 0.1 nM C3a and intracellular Ca2+

mobilization was determined. Traces for three representative experiments are shown. For (D), peak Ca2+ response to C3a in shRNA control, GRK5 and
GRK6 KD cells are shown. Data are the mean 6 SEM from three independent experiments.
doi:10.1371/journal.pone.0022559.g003

C3a Receptor Regulation by GRKs in Human Mast Cell

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22559



determine the specificity of GRK5 for C3a-induced degranulation,

we tested the effect of cortistatin (CST), which activates mast cells

via MrgX2 [20,21]. As for C3a, GRK5 KD significantly reduced

CST-induced mast cell degranulation (Fig. 9E).

Discussion

GRKs are well known for their roles in GPCR desensitization

and internalization [8,9]. They also promote G protein-indepen-

dent b-arrestin-mediated downstream signaling pathways for

ERK1/2 phosphorylation [10,11,14]. Most previous studies on

GPCR regulation by GRKs have been performed with siRNA-

mediated GRK knockdown in HEK293 cells [10,11,14]. While

tremendous efforts have been devoted towards understanding the

mechanisms involved in the regulation of high affinity IgE receptor

(FceRI) almost nothing is known regarding the regulation of

GPCR signaling in mast cells. For the present study, we utilized

lentivirus shRNA to stably knockdown the expression of GRK2,

GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and

LAD2 that endogenously express C3aR. Using this approach, we

have shown that GRK2 and GRK3 cause C3aR desensitization

but not receptor internalization. Furthermore, we provide the first

demonstration that while GRK5 and GRK6 do not cause C3aR

desensitization, they promote C3a-induced mast cell degranula-

tion but inhibit C3a-induced ERK1/2 phosphorylation.

All known GRKs (60–80 kDa) possess a similar structural

organization consisting of an amino terminal domain (185 amino

acids), a catalytic domain (270 amino acids) and a carboxyl

terminal domain (105 to 230 amino acids). There are, however,

important differences in the mechanism via which GRK2/GRK3

and GRK5/GRK6 are localized to the proximity of the receptor

to induce receptor phosphorylation [8,22]. GRK2 and GRK3 are

found primarily in the cytoplasm and undergo translocation to the

plasma membrane upon G protein activation via their interaction

with Gbc subunit and membrane phospholipids. By contrast,

GRK5 and GRK6 do not associate with Gbc but interact with

phospholipids or require lipid modification for their association

with receptors. We have previously shown that C3a caused

enhanced degranulation in RBL-2H3 cells expressing a phosphor-

ylation-deficient C3aR when compared to wild type-C3aR [7].

We also showed that overexpression of GRK2 enhances C3aR

phosphorylation to attenuate C3a-induced degranulation [7].

These findings indicated that agonist-induced C3aR phosphory-

lation by GRK2 promotes C3aR desensitization.

In the present study, we demonstrated that GRK2, GRK3,

GRK5 and GRK6 are expressed in two human mast cell lines,

HMC-1 and LAD2. Using shRNA-mediated knockdown of

GRKs, we confirmed our previous finding regarding the role of

GRK2 on agonist-induced C3aR desensitization in mast cells. In

addition, we made the novel observation that GRK3 participates

in C3aR desensitization in human mast cells. Thus, silencing the

expression of GRK2 or GRK3 resulted in more sustained Ca2+

mobilization, greater degranulation and enhanced ERK1/2

Figure 4. Silencing GRK2 and GRK3 attenuate C3aR desensitization but GRK5 and GRK6 do not. (A) shRNA control, (B) GRK2, (C) GRK3,
(D) GRK5 and (E) GRK6 KD cells were loaded with Indo-1 (1 mM), stimulated with C3a (100 nM) for 5 min and intracellular Ca2+ mobilization was
determined (black solid lines). The cells were washed three times with ice-cold buffer, resuspended in warm buffer and exposed to a second
stimulation of C3a (100 nM) and intracellular Ca2+ mobilization was again determined (red broken lines). (F) Desensitization was expressed as the
percentage decrease in Ca2+ response following second stimulation relative to the initial response. Data represent the mean 6 SEM from three
independent experiments. Statistical significance was determined by unpaired two-tailed t test. **, p,0.01 and ***, p,0.001.
doi:10.1371/journal.pone.0022559.g004
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phosphorylation when compared to shRNA control cells. The

carboxyl terminal tail of C3aR possesses nine potential phosphor-

ylation sites and both GRK2 and GRK3 promote agonist-induced

C3aR phosphorylation [7,15]. These findings suggest that in

agonist-stimulated mast cells GRK2 and GRK3 may phosphor-

ylate C3aR at the same or distinct sites to promote receptor

desensitization.

Previous studies showed that GRK5 and GRK6 promote

agonist-induced C3aR phosphorylation in transfected COS cells

[15] but the consequence of this phosphorylation remained

unknown. An interesting and novel finding of the present study

was that silencing GRK5/GRK6 had no effect on the Ca2+

response but caused substantial inhibition of C3a-induced mast

cell degranulation. This suggests that GRK5 and GRK6 provide

stimulatory signals for mast cell degranulation. It is noteworthy

that GRK5 phosphorylates b-arrestin-1 [23]. Furthermore, we

have recently shown that b-arrestin-1 is required for C3a-induced

mast cell degranulation [24]. Previous studies demonstrated that

b-arrestin forms a complex with Ral-GDP dissociation stimulator

(Ral-GDS) in the cytoplasm of human neutrophils and that

activation of fMLP receptor results in the translocation of this

complex to the plasma membrane, resulting in the activation of

Ral [25]. Phospholipase D (PLD) is an important enzyme that

promotes mast cell degranulation [26,27,28,29]. Furthermore, the

activity of PLD is regulated by Ral [30,31]. We have shown that

cortistatin, which activates mast cells via MrgX2, also requires the

presence of GRK5 for mast cell degranulation. These findings

raise the interesting possibility that in response to GPCR

activation, GRK5/GRK6-mediated phosphorylation of b-ar-

restin-1 recruits Ral-GDS-b-arrestin-1 complex to the plasma

membrane, resulting in Ral/PLD activation to promote mast cell

degranulation. Whether this or other GRK5/GRK6-mediated

signaling pathway promotes mast cell degranulation remains to be

determined.

It is generally accepted that GRK5 and GRK6 promote

GPCR-mediated mitogen-activated protein kinase signaling path-

Figure 5. Effects of GRK2/3 and GRK5/6 knockdown on cell surface C3aR expression and agonist-induced receptor internalization.
(A) Control shRNA, GRK2, GRK3, GRK5, and GRK6 KD cells were incubated with a mouse anti-C3aR antibody or an isotype control antibody followed
by PE-labeled donkey anti-mouse IgG antibody and analyzed by flow cytometry. Cell surface C3aR in each GRK KD cells is shown as a percent of
receptor expression in shRNA control cells. (B) shRNA control and cells with knockdown of each GRKs were exposed to buffer or C3a for 1 min or
5 min and cell surface C3aR expression was determined by flow cytometry. Internalization is expressed as percent loss in receptor expression
following exposure to C3a. Data represent the mean 6 SEM from three independent experiments. (C–G) Representative histogram plots from an
internalization experiment following 5 min exposure to buffer (blue line) or C3a (red line) in shRNA control or GRK KD cells are shown.
doi:10.1371/journal.pone.0022559.g005
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ways. Thus, siRNA-mediated knockdown of these GRKs inhibit

agonist-induced ERK1/2 phosphorylation [10,11]. A surprising

observation of the present study was that silencing the expression

of either GRK5 or GRK6 resulted in enhanced ERK1/2

phosphorylation in response to C3a. The possibility that this

enhanced response reflects attenuated C3aR desensitization is

unlikely because reduced expression of these GRKs had no effect

on C3aR desensitization or internalization. These findings suggest

that GRK2/GRK3 and GRK5/GRK6 inhibit C3a-induced

ERK1/2 phosphorylation via distinct pathways; one involving

receptor desensitization and the other independent of receptor

desensitization.

The mechanism by which GRK5/GRK6 inhibit C3a-induced

ERK1/2 phosphorylation is not known. Similar to our finding,

Barthet et al., [23] recently showed that GRK5 inhibits 5-HT4

receptor-mediated ERK1/2 phosphorylation. They also demon-

strated that GRK5, but not GRK2, phosphorylates b-arrestin-1 (at

Ser412) and that this phosphorylation is required for the inhibition

of ERK1/2 activity. We have recently shown that silencing the

expression of b-arrestin-1 enhances C3a-induced ERK1/2

phosphorylation via a receptor desensitization-independent path-

way [24]. This raises the interesting possibility that, as for 5-HT4

receptor, agonist-induced C3aR phosphorylation by GRK5/6

recruits b-arrestin-1 to inhibit C3a-induced ERK1/2 phosphor-

ylation. Tipping et al., [32] recently showed that the single b-

arrestin present in Drosophila, Kurtz (Krz) directly binds to and

sequesters an inactive form of ERK, thus preventing its activation

by the upstream kinase, MEK. It is therefore possible that C3a

induces b-arrestin-1 phosphorylation via GRK5/GRK6 to

promote a complex formation between ERK and b-arrestin-1,

leading to the inhibition of ERK1/2 activity. Thus, silencing the

expression of GRK5/GRK6 or b-arrestin-1 removes this

inhibitory constraint to enhance ERK1/2 phosphorylation.

Whether this or other mechanisms participate in the regulation

of ERK1/2 activity by GRK5/GRK6 in C3a-activated mast cells

remains to be determined.

In summary, the present study demonstrates that GRK2 and

GRK3 participate in C3aR desensitization in human mast cells. It

also provides the novel finding that GRK5 and GRK6 promote

C3a-induced mast cell degranulation but inhibit ERK1/2

phosphorylation via mechanisms that are independent of receptor

desensitization.

Materials and Methods

Materials
Mission shRNA bacterial glycerol stocks for GRK subtypes

were purchased from Sigma Life Sciences (St. Louis, MO). Indo-1

AM was from Molecular Probes (Eugene, OR). All tissue culture

reagents were purchased from Invitrogen (Gaithersburg, MD).

Anti-GRK 2/3 and anti-GRK5/6 was obtained from Millipore

(Billerica, MA). Anti-human C3aR was obtained from Santa Cruz

Biotechnology (Santa Cruz, CA). Phycoerythrin (PE)-labeled

donkey anti-mouse IgG was purchased from eBioscience (San

Diego, CA). All recombinant human cytokines were purchased

from Peprotech (Rocky Hill, NJ). Rabbit anti-ERK1/2 and anti-

Figure 6. Silencing the expression of GRK2/3 and GRK5/6 enhance C3a-induced ERK1/2 phosphorylation. shRNA control, GRK2, GRK3,
GRK5, or GRK6 KD HMC-1 cells were washed with serum-free medium and exposed to C3a (100 nM) for 1, 5 and 10 min. Cell lysates were separated
on SDS-PAGE and blots were probed with anti-phospho-ERK1/2 antibody. The blots were then stripped and reprobed with anti-ERK1/2 antibody
followed by anti-rabbit IgG-HRP. Immunoreactive band were visualized by SuperSignal West Femto maximum sensitivity substrate. (A, C)
Representative immunoblots from three similar experiments are shown. (B, D) ERK1/2 phosphorylation was quantified from 3 experiments using
Image J software. Data represent the mean 6 SEM from three independent experiments. Statistical significance was determined by unpaired two-
tailed t test. *, p,0.05; **, p,0.01 and ***, p,0.001.
doi:10.1371/journal.pone.0022559.g006
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phospho-ERK1/2 antibodies were purchased from Cell Signaling

(Beverly, MA). LightCycler FastStart RNA Master SYBR Green I

was obtained from Roche (Indianapolis, IN). SuperSignalH West

Femto Maximum Sensitivity Substrate and HRP-labeled goat

anti-rabbit IgG were from Thermo Scientific (Rockford, IL).

Purified C3a and Phorbol-12 myristate 13-acetate (PMA) were

obtained from Advanced Research Technologies (San Diego, CA)

and Calbiochem, (Germany), respectively.

Mast cell culture
HMC-1 cells were cultured in Iscove’s modified Dulbecoo’s

medium (IMDM) supplemented with 10% FCS, glutamine

(2 mM), penicillin (100 IU/mL) and streptomycin (100 mg/mL)

[33]. LAD2 cells were maintained in complete StemPro-34

medium supplemented with 100 ng/mL rhSCF [34].

Lentivirus and stable transduction of shRNAs in mast cells
Lentivirus generation was performed according to the manu-

facture’s manual (Sigma). Cell transduction was conducted by

mixing 1.5 ml of virus with 3.5 ml of HMC-1 or LAD2 cell

(56106 cells). Eight hours after transduction, the medium was

changed and cells were replenished with fresh medium. After a

recovery period of 24 h, puromycin (2 mg/ml) was added to select

cells with stable virus integration into the genome. Cells were

analyzed for GRK knockdown after one week of antibiotic

selection.

Real-Time PCR
Total RNA was extracted from 16106 of cells using TRIZOL,

treated with DNase I and purified with RNeasy mini Kit according

to the manufacture’s instruction. Real time PCR was performed

with LightCycler FastStart RNA Master SYBR Green I (Roche

Applied Science) on a Roche LightCycler2.0 instrument. The

primers used for real time PCR were: hGAPDH Forward, 59-

GAGTCCACTGGCGTCTTCA-39 and hGAPDH Reverse, 59-

GGGGTGCTAAGCAGTTGGT -39 were used for GAPDH.

hGRK2 Forward, 59-ACT TCAGCGTGCATCGCAT-39 and

hGRK2 Reverse, 59- GCTTTTTGTCCAGGCACTTCAT-39

were used for GRK2. hGRK3 Forward, 59-AGCTGTACCT-

CAGGTGAAGTT-39 and hGRK3 Reverse, 59-AGCTTGCTTT-

GAGAAAGGATGT-39 were used for GRK3. hGRK5 Forward,

59-GACCACACAGACGACGACTTC-39 and hGRK5 Reverse,

59-CGTTCAGCTCCTTAAAGCATTC-39 were used for GRK5.

hGRK6 Forward, 59-TAGCGAACACGGTGCTACTC-39 and

hGRK6 Reverse, 59-GCTGATGTGAGGGAACTGGA-39 were

used for GRK6. The amplification conditions were as follows;,

Reverse transcription at 55uC for 10 min. Denaturation at 95uC for

30 s, 40 cycles at 95uC for 10 s, 66uC (69uC for GRK6) for 10 s,

and 72uC for 20 s. Melting curve: conditions were; 95uC, 65uC for

15 s, and 95uC (slope 0.1uC/s). Analysis was performed according

to DDCt (delta delta Ct) method. Results are expressed as a ratio of

GRK to GAPDH.

C3a Receptor desensitization assay
Receptor desensitization assay based on Ca2+ mobilization was

determined as described previously [35]. Briefly, HMC-1 cells

(16106) were washed twice with HEPES buffer (119 mM NaCl,

5 mM KCl, 25 mM HEPES, 5.6 mM Glucose, 0.4 mM MgCl2,

1 mM CaCl2) containing 1 mg/ml BSA and incubated with 1 mM

of Indo-1 for 30 min in dark. Cells were then washed and

resuspended in 1.5 ml of the same buffer. The cells were

stimulated with 100 nM C3a for 5 min and mobilization of

intracellular Ca2+ was monitored with a Hitachi F-2500

fluorospectrophotometer. For desensitization assays, cells were

removed from the cuvette, washed three times in cold buffer,

resuspended in warm buffer and Ca2+ mobilization to a

subsequent exposure of C3a (100 nM) was determined. Desensi-

tization was expressed as percentage decrease in calcium response

following second stimulation relative to the first one.

Receptor internalization assay based on flow cytometry
Cells were washed and resuspended in fresh medium at a

concentration of 0.5 6106/ml and stimulated with C3a (100 nM)

for 1 min or 5 min at 37uC. Cells were washed twice and

resuspended in 48 ml of ice-cold FACS buffer (PBS containing 2%

FBS). C3aR antibody (2 mL) or Isotype control was added and the

cells were incubated on ice for 1 h. After washing twice with cold

FACS buffer, cells were resuspended in 48.5 ml of ice-cold FACS

buffer. PE-labeled donkey anti-mouse antibody (1.5 mL) was

added and the cells were incubated on ice for 1 h. Cells were

washed twice and fixed in 300 ml of 2% formaldehyde solution.

The samples were acquired and analyzed using FACS Calibur

flow cytometer (BD Biosciences).

ERK1/2 Phosphorylation
shRNA control and GRK knockdown HMC-1 cells were

washed twice and resuspended in serum-free IMDM at a

concentration of 16106/ml. Cells were stimulated with C3a

(100 nM) or PMA (10 nM) for different time points. Three-fold

volume of ice-cold PBS containing 1 mM sodium orthovanadate

Figure 7. GRKs do not modulate PMA-induced ERK1/2 phos-
phorylation. shRNA control, GRK5, or GRK6 KD HMC-1 cells were
washed with serum-free medium and exposed to phorol-myristate
acetate (PMA, 10 nM) for 0, 5 and 10 min. Cell lysates were separated
on SDS-PAGE and blots were probed with anti-phospho-ERK1/2
antibody. The blots were then stripped and reprobed with anti-ERK1/
2 antibody followed by anti-rabbit IgG-HRP. Immunoreactive band were
visualized by SuperSignal West Femto maximum sensitivity substrate.
(A) Representative immunoblots from three similar experiments are
shown. (B) ERK1/2 phosphorylation from three experiments was
quantified using Image J software.
doi:10.1371/journal.pone.0022559.g007
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Figure 8. Silencing GRK2 and GRK3 expression enhances C3a-induced mast cell degranulation. LAD2 cells were stably transduced with
control shRNA or shRNA lentivirus targeted against GRK2 or GRK3. (A, B) Quantitative PCR was performed to assess the GRK2 and GRK3 knockdown
and results are expressed as a ratio of GRK2 or GRK3 to GAPDH mRNA levels. (C, D) Cells were stimulated with different concentrations of C3a (0.1, 1,
10, and 100 nM) and percent degranulation (b-hexosaminidase release) was determined. (E): Control and GRK2 KD cells were exposed to different
concentrations of compound 48/80 and percent degranulation was determined. C3a (1 nM) was used as control. Data represent the mean 6 SEM
from three independent experiments. Statistical significance was determined by unpaired two-tailed t test. *, p,0.05; **, p,0.01; and ***, p,0.001.
doi:10.1371/journal.pone.0022559.g008
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Figure 9. Silencing GRK5 and GRK6 expression inhibits C3a-induced mast cell degranulation. LAD2 cells were stably transduced with
control shRNA or shRNA lentivirus targeted against GRK5 or GRK6. (A, B) Quantitative PCR was performed to assess the GRK5 and GRK6 knockdown
and results are expressed as a ratio of GRK5 or GRK6 to GAPDH mRNA levels. (C, D) Cells were stimulated with different concentrations of C3a (0.1, 1,
10, and 100 nM) and percent degranulation (b-hexosaminidase release) was determined. (E): shRNA control or GRK5 KD cells were exposed to
cortistatin (CST; 1 nM and 10 nM) and percent degranulation was determined. Data represent the mean 6 SEM from three independent experiments.
Statistical significance was determined by unpaired two-tailed t test. *, p,0.05; **, p,0.01; and ***, p,0.001.
doi:10.1371/journal.pone.0022559.g009
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was added to stop the reaction. Total cell lysates were prepared in

RIPA buffer (150 mM NaCl, 1.0% NP-40, 0.5% Sodium-

deoxycholate, 0.10% SDS, 50 mM Tris (pH 8.0), 5 mM EDTA,

10 mM NaF, 10 mM Na-pyrophosphate and protease inhibitor

cocktail) and subsequently analyzed by Western blot using rabbit

polyclonal antibodies for phospho-p44/42 MAPK (pERK1/2)

and p44/42 MAPK (ERK1/2).

Degranulation Assay
LAD2 cells (1.06104) were seeded into 96-well plates in a total

volume of 50 ml of HEPES buffer containing 1 mg/ml BSA and

exposed to different concentrations of C3a (0.1, 1, 10 and

100 nM). For total b-hexosaminidase release, control cells were

lysed in 50 ml of 0.1% Triton X-100. Aliquots (20 ml) of

supernatants or cell lysates were incubated with 20 ml of 1 mM

p-nitrophenyl-N-acetyl-b-D-glucosamine for 1.5 h at 37uC. The

reaction was stopped by adding 250 ml of a 0.1 M Na2CO3/0.1 M

NaHCO3 buffer and absorbance was measured at 405 nm [35].

Data analysis
The results are expressed as mean 6 S.E.M for the values

obtained from multiple experiments. Statistical significance was

determined by unpaired two-tailed t test. *, p,0.05; **, p,0.01;

***, p,0.001.

Acknowledgments

We are grateful to Dr. Joseph Butterfield (Mayo Clinic, Rochester, MN) for

supplying us with HMC-1 cells. We also thank Drs. Arnold Kirshenbaum

and Dean Metcalfe (NIAID/NIH) for providing LAD2 mast cells, and the

FACS core facilities of the School of Dental Medicine at the University of

Pennsylvania.

Author Contributions

Conceived and designed the experiments: HA. Performed the experiments:

QG HS KG. Analyzed the data: QG HS KG. Contributed reagents/

materials/analysis tools: QG HS KG. Wrote the paper: HA.

References

1. Bautsch W, Hoymann HG, Zhang Q, Meier-Wiedenbach I, Raschke U, et al.
(2000) Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit

decreased bronchoconstriction in allergic airway disease: evidence for an
involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol

165: 5401–5405.

2. Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA (2002) Absence of
the complement anaphylatoxin C3a receptor suppresses Th2 effector functions

in a murine model of pulmonary allergy. J Immunol 169: 5926–5933.
3. McNeil HP, Adachi R, Stevens RL (2007) Mast Cell-restricted Tryptases:

Structure and Function in Inflammation and Pathogen Defense. J Biol Chem

282: 20785–20789.
4. Ahamed J, Venkatesha RT, Thangam EB, Ali H (2004) C3a enhances nerve

growth factor-induced NFAT activation and chemokine production in a human
mast cell line, HMC-1. J Immunol 172: 6961–6968.

5. Fukuoka Y, Xia HZ, Sanchez-Munoz LB, Dellinger AL, Escribano L, et al.
(2008) Generation of anaphylatoxins by human beta-tryptase from C3, C4, and

C5. J Immunol 180: 6307–6316.

6. Venkatesha RT, Berla Thangam E, Zaidi AK, Ali H (2005) Distinct regulation
of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human

mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol
42: 581–587.

7. Ahamed J, Haribabu B, Ali H (2001) Cutting edge: Differential regulation of

chemoattractant receptor-induced degranulation and chemokine production by
receptor phosphorylation. J Immunol 167: 3559–3563.

8. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor
kinases. Annu Rev Biochem 67: 653–692.

9. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G
protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38: 289–319.

10. Ren XR, Reiter E, Ahn S, Kim J, Chen W, et al. (2005) Different G protein-

coupled receptor kinases govern G protein and b-arrestin-mediated signaling of
V2 vasopressin receptor. Proc Natl Acad Sci U S A 102: 1448–1453.

11. Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, et al. (2005) Functional
antagonism of different G protein-coupled receptor kinases for b-arrestin-

mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:

1442–1447.
12. DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, et al. (2000) The

proliferative and antiapoptotic effects of substance P are facilitated by formation
of a b-arrestin-dependent scaffolding complex. Proc Natl Acad Sci U S A 97:

11086–11091.
13. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al. (1999) b-

arrestin-dependent formation of b2 adrenergic receptor-Src protein kinase

complexes. Science 283: 655–661.
14. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, et al. (2010) Site-

specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases
and results in differential modulation of CXCR4 signaling. J Biol Chem 285:

7805–7817.

15. Langkabel P, Zwirner J, Oppermann M (1999) Ligand-induced phosphorylation
of anaphylatoxin receptors C3aR and C5aR is mediated by "G protein-coupled

receptor kinases. Eur J Immunol 29: 3035–3046.
16. Tomhave ED, Richardson RM, Didsbury JR, Menard L, Snyderman R, et al.

(1994) Cross-desensitization of receptors for peptide chemoattractants. Charac-
terization of a new form of leukocyte regulation. J Immunol 153: 3267–3275.

17. Settmacher B, Rheinheimer C, Hamacher H, Ames RS, Wise A, et al. (2003)

Structure-function studies of the C3a-receptor: C-terminal serine and threonine
residues which influence receptor internalization and signaling. Eur J Immunol

33: 920–927.

18. Ali H, Ahamed J, Hernandez-Munain C, Baron JL, Krangel MS, et al. (2000)
Chemokine production by G protein-coupled receptor activation in a human

mast cell line: roles of extracellular signal-regulated kinase and NFAT.
J Immunol 165: 7215–7223.

19. Kashem SW, Subramanian H, Collington S, Magotti P, Lambris J, et al. (2011)

G Protein coupled Receptor Specificity for C3a and Compound 48/80-induced
degranulation in human mast cells: Roles of Mas-related genes MrgX1 and

MrgX2. Eur J Pharm;doi:10.1016/j.ejphar.2011.06.027.
20. Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, et al. (2006)

Immunoglobulin E-independent activation of mast cell is mediated by Mrg

receptors. Biochem Biophys Res Commun 349: 1322–1328.
21. Subramanian H, Kashem SW, Collington SJ, Qu H, Lambris JD, et al. (2011)

PMX-53 as a dual CD88 antagonist and an agonist for Mas-related gene 2
(MrgX2) in Human mast cells. Mol Pharmacol 79: 1005–1013.

22. Penn RB, Pronin AN, Benovic JL (2000) Regulation of G protein-coupled
receptor kinases. Trends Cardiovasc Med 10: 81–89.

23. Barthet G, Carrat G, Cassier E, Barker B, Gaven F, et al. (2009) b-arrestin1

phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor
signalling. EMBO J 28: 2706–2718.

24. Vibhuti A, Gupta K, Subramanian H, Guo Q, Ali H (2011) Distinct and shared
roles of b-arrestin-1 and b-arrestin-2 on the regulation of C3a receptor signaling

in human mast cells. PLoS ONE 6: e19585.

25. Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, et al.
(2002) b-arrestins regulate a Ral-GDS Ral effector pathway that mediates

cytoskeletal reorganization. Nat Cell Biol 4: 547–555.
26. Brown FD, Thompson N, Saqib KM, Clark JM, Powner D, et al. (1998)

Phospholipase D1 localises to secretory granules and lysosomes and is plasma-
membrane translocated on cellular stimulation. Curr Biol 8: 835–838.

27. Choi WS, Kim YM, Combs C, Frohman MA, Beaven MA (2002)

Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells.
J Immunol 168: 5682–5689.

28. Hitomi T, Zhang J, Nicoletti LM, Grodzki AC, Jamur MC, et al. (2004)
Phospholipase D1 regulates high-affinity IgE receptor-induced mast cell

degranulation. Blood 104: 4122–4128.

29. Peng Z, Beaven MA (2005) An essential role for phospholipase D in the
activation of protein kinase C and degranulation in mast cells. J Immunol 174:

5201–5208.
30. Corrotte M, Nyguyen AP, Harlay ML, Vitale N, Bader MF, et al. (2010) Ral

isoforms are implicated in Fc gamma R-mediated phagocytosis: activation of
phospholipase D by RalA. J Immunol 185: 2942–2950.

31. Kim JH, Lee SD, Han JM, Lee TG, Kim Y, et al. (1998) Activation of

phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and
RalA. FEBS Lett 430: 231–235.

32. Tipping M, Kim Y, Kyriakakis P, Tong M, Shvartsman SY, et al. (2010) b-
arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development.

EMBO J.29: 3222–3235.

33. Butterfield JH, Weiler DA (1989) In vitro sensitivity of immature human mast
cells to chemotherapeutic agents. Int Arch Allergy Appl Immunol 89: 297–300.

34. Kirshenbaum AS, Akin C, Wu Y, Rottem M, Goff JP, et al. (2003)
Characterization of novel stem cell factor responsive human mast cell lines

LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia;
activation following aggregation of FceRI or FccRI. Leuk Res 27: 677–682.

35. Ali H, Richardson RM, Tomhave ED, DuBose RA, Haribabu B, et al. (1994)

Regulation of stably transfected platelet activating factor receptor in RBL-2H3
cells. Role of multiple G proteins and receptor phosphorylation. J Biol Chem

269: 24557–24563.

C3a Receptor Regulation by GRKs in Human Mast Cell

PLoS ONE | www.plosone.org 11 July 2011 | Volume 6 | Issue 7 | e22559


