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1. Introduction

With the development of information technology, such as e-democracy and peer to peer working, a large number of deci-
sion makers (experts) are involved in decision making problems. This has led to the large-scale group decision making
(LSGDM) to become a hotspot [40,24,25]. Generally, LSGDM is a special type of decision making in which no fewer than
20 experts collaboratively choose the best alternative [9]. A number of practical applications [8], such as porous media
[41] and petroleum engineering [27], involve LSGDM. In actual LSGDM, the experts may not be independent individuals, they
may have specific relationships or be stakeholders. Consequently, their relationships may accelerate the exchange of internal
information, thereby affecting the final decision results.

LSGDM in social network has received increasing attention recently [30,23]. As a new type of decision case, LSGDM in
social network refers to the process in which experts rely on social relations and opinion support from close friends to make
decisions. In this decision process, the trust relationship between experts can potentially affect the process of clustering, con-
sensus and opinion gathering. Several studies have demonstrated that social network has a positive impact on missing value
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estimation [30] and achieving LSGDM [26]. For example, based on trust relationships among experts, Tian et al. [30] con-
structed a multi-objective programming model to estimate incomplete interval type-2 fuzzy information. Considering social
trust behavior, Wu et al. [38] proposed a two-stage trust network partition algorithm to reduce the complexity of the LSGDM
problem. In addition, many studies have developed various methods based on trust relations in LSGDM, such as trust-based
consensus [19], trust-based conflict detection and elimination [23] and non-cooperative behavior management based on
trust relations [42].

To eliminate conflicts between experts, a consensus reaching process (CRP) is often used, which aims to achieve a collec-
tive solution as close to a unanimous agreement as possible [19,30,23]. To date, several types of CRPs in group decision mak-
ing (GDM) have been developed from the following five aspects: (1) CRPs with preferred representative structure
[16,11,43,18], investigating various CRPs based on preference order, utility function and preference relations, (2) individual
consistency in the consensus problem [39,44,21], exploring how to guarantee individual consistency in the CRPs, (3)
dynamic consensus realization process [1,7,20], seeking solutions for cases where the decision elements are dynamically
changed, (4) CRPs in social network [32,36,35,48], considering the social relationship between experts in CRPs, and (5) min-
imum cost consensus models [4,12,17]. It can be observed that all the five aspects have the same goal: to eliminate conflicts
among experts and to improve the quality of decision result.

In LSGDM, however, experts come from different fields and represent different interests. This causes the LSGDM consen-
sus to take longer and be costlier than GDM. Therefore, LSGDM consensus requires a capable moderator to devote time and
resources to convincing experts to change their opinions into an acceptable level. To model this kind of consensus, the min-
imum cost consensus model is selected from the five models introduced. The minimum cost consensus model was first con-
structed by Ben-Arieh and Easton [4] using a distance measured method. On the basis of Ben-Arieh and Easton’s work, Gong
et al. [11] further developed the minimum cost consensus model with interval preference opinions. Recently, Labella et al.
[17] developed an objective metric based on a comprehensive minimum cost model to evaluate the performance of CRPs.

In the above minimum cost consensus models, the unit adjustment cost of experts is usually considered to be fixed. In
practice, however, it is always uncertain and reflected by interval values [20], a distribution uncertainty set [13] and a
box set [14]. Robust optimization is a new method of investigating the uncertain optimization problem [31,10,28]. It orig-
inates in robust control theory and is a supplement to stochastic optimization. Different from stochastic optimization, robust
optimization does not assume the distribution of uncertain parameters. The purpose of robust optimization is to obtain a
solution that satisfies all constraints and optimizes the value of the objective function in the worst case. Many theories
and methods have been developed based on robust optimization. For example, Bandi and Bertsimas [2] suggested that
the option pricing problem was a robust optimization problem, and reduced the worst-case replication error to a minimum.
Jietal. [15] proposed a fuzzy robust weighted method for a bilevel game model. Yanikoglu et al. [45] introduced adjustable
robust optimization. A guide on how to apply an adjustable robust optimization method is given in the work of Yanikoglu
et al. [45].

The CRP in social network and the consensus models mentioned above are very insightful, but they still need to be
improved to address the actual CRP problem: (1) The traditional consensus in social network only considers the trust and
distrustful relationship between experts. Such a relationship is regarded as the input information in a CRP, without consid-
ering the internal diversity of social relationships. For LSGDM problems, if experts develop closer relationships, they are
more likely to form similar opinions regarding an alternative. In contrast, if their relationships are weak, their opinions
may display obvious differences. Therefore, when considering the relationship information among experts, how can an
LSGDM consensus be achieved? (2) The existing minimum cost models mostly assume that the unit adjustment cost given
by the moderator is definite and known beforehand. This certain value is used directly in the feedback process without con-
sidering the uncertain situation. However, it is hardly a guarantee that the unit adjustment cost is certain and known in the
actual LSGDM problem. The reason for this is that because the number of experts that take part in the LSGDM is more than or
equal to 20 [9], it is difficult for the moderator to master the compensation information of each expert. Once an uncertain si-
tuation is encountered, the feasibility and validity of the consensus process will be largely hampered for LSGDM problems.
(3) To achieve consensus, the previous minimum cost models only focus on minimizing the total compensation cost pro-
vided by the moderator. However, when the unit adjustment cost is uncertain, each expert usually expects the unit adjust-
ment cost paid them to be maximized. Thus, this case will lead the total compensation cost paid by the moderator to reach a
maximum, which is the worst-case consensus problem. Therefore, facing this case, we should consider how to minimize the
total compensation cost in the worst-case consensus problem.

Motivated by the limitations summarized above, we solve the LSGDM consensus in social network using the minimum
cost model based on robust optimization. In the proposed LSGDM consensus, considering the relationship information
among experts, a novel expert clustering is given to improve the efficiency of the LSGDM consensus. Considering the rela-
tionship strength between experts, a new consensus measure method to manage opinion difference between experts is pro-
posed. According to the harmony degree between experts, a consensus index (CI) is developed to measure the consensus
level of LSGDM in social network. To address the uncertain situation of the unit adjustment cost, an ellipsoidal set restricting
the unit adjustment cost is proposed. Then, in the feedback adjustment process, a consensus model based on robust opti-
mization is constructed to optimize the total compensation cost in the worst case. To the best of our knowledge, this is
the first consensus of LSGDM in social network based on robust optimization.

The remainder of this paper is organized as follows. Section 2 reviews some preliminaries on the minimum cost consen-
sus model, social network analysis and trust propagation in social network. In Section 3, the CRP of LSGDM in social network
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based on robust optimization is shown. In Section 4, a case study is discussed, which illustrates the application of the pro-
posed consensus model in LSGDM in social network. Following this, a comparative analysis and discussion are presented in
Section 5. Finally, conclusions are provided in Section 6.

2. Preliminaries

In this section, we first introduce the LSGDM problem. Then, the minimum cost consensus model is presented. Finally, the
social network analysis is briefly described, along with some related definitions.

2.1. The LSGDM problem

LetE = {e1,...,6;,...,en} be the set of m experts, and O = {04, ...,0;,...,0n,} be the opinion set provided by experts. Usu-
ally, the group is referred to as a large-scale group when m > 20.

To understand LSGDM better, we describe the difference between GDM and LSGDM based on three points: the charac-
teristics of experts, the clustering process and the consensus measure.

(1) The characteristics of experts

In GDM, only a few experts are usually considered. However, in LSGDM, the number of group members is greater than or
equal to 20. In addition, experts in GDM are generally described as independent individuals, neglecting the objective trust
relationships between them. However, because LSGDM involves so many experts, this premise rarely holds. Therefore, social
relationships can be widely observed among experts in LSGDM.

(2) The clustering process

Because LSGDM is the more complicate process, it is difficult to solve LSGDM with traditional GDM methods. Therefore,
expert clustering is often used to classify experts with similar opinions into one subgroup. This process can effectively reduce
the necessary number of experts in LSGDM and improve the efficiency of consensus.

(3) The consensus measure

In GDM, the consensus measure is conducted orderly on the expert and group level. However, in order to accelerate the
speed of the consensus measure, the consensus measure is usually implemented at the subgroup level in LSGDM. This step
avoids massive calculations on the large-scale expert level, which further improves the efficiency of consensus in LSGDM.

2.2. The basic model

Based on CRP and by considering the aggregation process of expert opinions, Zhang et al. [46] constructed the minimum
cost consensus model by employing an aggregation operator:

m
Min cilo — oj| 1)
i=1

st.joj—oL<ei=12,...,m
o, =) Lo

where E = {eq,...e;,...,en} is a set of experts. ¢; is the unit adjustment cost of expert e; and o; is the initial opinion of expert
e;. Here, o; is a real number, which belongs to [0,1]. 0} signifies the consensus opinion after the initial opinion o; is adjusted.
cilo} — o] represents the consumption cost function generated by changing opinion from o; to o}. o is the adjusted collective
opinion through the aggregation of the consensus opinions {0,...0},...0/,}. It can be obtained through aggregation opera-
tors, such as the ordered weighted average (OWA) operator or weighted average (WA) operator. In the aggregation process,

I=(h,b,..., lm)T denotes the weight vector associated with the WA operator. It satisfies >°" ;i =1 and [; > 0.

Remark 1. In model (1), it is assumed that the unit adjustment cost c; is certain and known in advance by the moderator.
The consensus opinion o} is the only independent variable in the nonlinear optimization model (1). In order to solve o}, a
transformation process occurs in [46], which ensures that the solution process is more operational.

Theorem 1. [46] By setting x; = 0; — 0} and t; = |x;|, model (1) can be transformed into the following linear programming
model
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Theorem 1 indicates that the optimal consensus opinion o} can be derived by solving the linear programming model (2).

Remark 2. In minimum cost consensus models (1) and (2), the unit adjustment cost c¢; is deemed to be certain and already
known. However, due to the diversity of experts and the complexity of LSGDM, the unit adjustment cost c; is difficult to
derive, and it is usually uncertain. Therefore, in this paper, we consider the value of c; to be unknown.

2.3. Social network analysis

Social network analysis investigates the relationships between social members, such as group members, enterprises or
countries [26,8,29]. It can establish the relationship model between members in a group. As a useful method, social network
analysis has been widely used in resource optimization and CRPs. For example, Wu et al. [37] developed a social network
GDM approach to implementing water-energy-food nexus evaluation. Tian et al. [30] utilized a social network analysis based
on consensus-supporting framework to determine the logistics of a park construction in Xinjiang. Moreover, Chu et al. [6]
used a social network community analysis to select a suitable manufacturing system to reduce manufacturing costs.

Social network analysis consists of three elements: the set of experts, the relationship between them, and the sociometric
data. Detailed information is depicted in Table 1.

(1) Sociometric data: The relationship data between experts is presented in a matrix, called the sociometric matrix. In the
sociometric matrix, t; = 1 denotes that expert e; has a direct trust relationship with e;. Otherwise, the value of t; is
equal to 0 if expert e; does not have a direct trust relationship with e;.

(2) Graph: A social network is represented by a graph in which points are connected by straight lines. In the graph, e; — ¢;
signifies a direct trust relationship between e; and e;.

(3) Algebraic representation: This representation distinguishes between several different relationships and represents a
combination of relationships.

However, the above sociometric only describes the relationship between experts, it does not accurately quantify the eval-
uation opinion and relationship strength between experts. Therefore, we adopt trust information with relationship strength
to express the relationship information between experts in social network.

Liu et al. [23] introduced the basic concept of relationship strength between experts, which is provided in Definition 1.

Table 1
Different elements of social network analysis.
Sociometric Graph theory Algebraic

0O 1 0 0o 1 1 o o e1Rea, e1 Res, e1 Reg
0O 0 1 0 1 0 ,R\ ,R\ ez Res, e2Res
1 0 0 1 0 1 . / \ ezRe1,e3Req, e3Reg
0000 1 1 b ! e4Res, esReg
001 0 0 1 \ / e5Res, esReg
1 1 0 0 0 O ,R\ ’R esRe1,esRea

e
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Definition 1. [23] Trust information with relationship strength is defined in the form of a 2-tuple, and it is expressed as
tsij = (tif’sij) (3)
where the first component t; denotes the trust degree from experts e; to e;, satisfying the condition 0 < t; < 1.1f t; is equal to
0, it implies that expert e; fully distrusts e;. In contrast, expert e; will absolutely trust e; if the value of t; is 1. The second
component s; is the relationship strength between experts e; and e;. Relationship strength represents the contact frequency

between experts. If the value of s;; is high, the relationship between experts e; and e; is closer. For convenience, TS = (ts)
is referred to as a trust matrix with relationship strength.

mxm

2.4. Trust propagation in social network

In social network, information is transitive. Thus, trust can be spread by one or more mediators. Trust information may be
distorted when information is propagated through multiple mediators. So, in this paper, we only consider the case in which
trust is transmitted by one mediator. Taking Fig. 1 as an example, there is no direct relationship between e; and e;, but trust
propagation can be achieved through mediator e;. For example, through a trust propagation path e; — e; — e;, the trust eval-
uation from e; to e; can be reached.

To achieve trust propagation in social network, we first present the concept of uninorms. Then the uninorm propagation
operator and other definitions are explained.

Definition 2. [34] A uninorm U is a mapping U: [0,1]*> — [0, 1], that is defined as

0 *x,¥) €{(0,1),(1,0)}
U(x,y)z{ Gl Otherwise “

Definition 3. [36] Assume that U is a uninorm trust propagation operator defined as a mapping. Corresponding two 2-tuples
(ti,sir) and (tg,sp), we have

0 (ty, t5) € {(0,0)}
Ultptg) =7 =9 wy otherwise (3)
f,,[’ﬁ-%—(]—fif)(]—[ﬁ)

In the process of trust propagation, an expert is more likely to share information with an expert with whom he shares a close
relationship. In other words, the relationship strength s; as a key factor affects the trust propagation efficiency. According to
Liu et al. [23], trust propagation efficiency can be deemed a function of relationship strength.

Definition 4. [23] Assume that the relationship information of expert e; toward expert e; is ts; = (t;,s;), then the
propagation efficiency from e; to e; is
p(sy) = 1 - cos =" (6)

where p(s;) belongs to the interval [0, 1]. The greater the value of s;;, the greater the value of p(s;). When the contact fre-
quency between e; and ¢; is 0, there is no trust propagation between them. However, trust propagation efficiency between
experts e; and e; will be greatest if their relationship strength is 1.

Based on trust propagation and propagation efficiency, according to [23], the trust value of experts e; to e; in Fig. 1 is cal-
culated as

—poptV— (1- cosF) (1 - cos ™ tirty
tij = pyPyti = (1 cos 5 ><1 cos 5 )tiftjj+ -ty = 1)

ef

U (tis, t)
6[ '__—______—______‘_> e/

Fig. 1. Trust propagation with one mediator.
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Fig. 2. Single path trust propagation.

Definition 5. [23] When there are multiple trust propagation paths, the trust propagation value from e; to e; is defined as

s
path,,  path
ty = Zpij ptij ’ (7)
p=1
where p;'.”th" is the overall propagation efficiency for path p, and t,.pjath" represents the fully propagated trust value of e; to e;.

Example 1. In Fig. 3, two paths e; — e; — e3 and e; — es — e3 can simultaneously propagate trust information from e; to es.
In this situation, the trust value from e; to es is as follows:

t13 = P1oPastls + P1sPsstis

=(1= T12)(1 — T3y bipfyy
= (1 -cos 2 )(1 — cos 2 )f12f23+(1*t12)(1*f23)
_ T$15 _ TSs3) _ tistss

+(l €05 )(1 €0s= )f15f53+(1*f15)(1*f53)
= 0.056

3. Consensus of LSGDM in social network with robust optimization

In this section, we present the proposed consensus problem with a strength relationship and uncertain unit adjustment
cost. In Section 3.1, a detailed framework regarding the CRP of LSGDM with an uncertain cost is proposed. In Section 3.2, a
new K-means algorithm is presented to classify experts into different subgroups. A consensus measure considering the har-
mony degree is given in Section 3.3. Finally, a minimum cost consensus model based on robust optimization is provided in
Section 3.4.

3.1. Framework of the LSGDM consensus with an uncertain unit adjustment cost

To discuss the consensus decision problem of LSGDM in the social network environment, this paper uses the trust eval-
uation value and relationship strength to represent an expert’s evaluation of other experts. Subsequently, a minimum cost
model based on robust optimization is proposed to deal with the uncertain unit adjustment cost. The framework of the
LSGDM consensus with an uncertain unit adjustment cost is shown in Fig. 4, and the detailed procedures are as follows:
(1) Expert clustering: Implement Algorithm1 to classify the experts into several subgroups based on the comprehensive
evaluation among them. (2) Consensus measure: Use Eqs. (14) and (15) to calculate the consensus index of the subgroup
(CIC) and the CI of the collective, respectively. (3) Feedback adjustment process: Use the minimum cost model based on
robust optimization to achieve LSGDM consensus in social network.

For simplicity, the notation for this paper is as follows:

E={eq,...,e;...,en}: The set of experts.

7: The number of subgroups.

cly: The center of subgroup k,1 <k < 7.

wy: The weight of subgroup cly.

ng: The number of experts in subgroup cl.

df: The distance difference between expert e; and subgroup center cly.

DC = (d!),,,: The distance difference matrix.
t2 by
el e €3
\ p]z p23
s Isy
¢s
P15 p53

Fig. 3. Multiple paths trust propagation.
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Expert clustering

K-means cluster

| |
: Somal&gg?/tork of Individual Comprehensive algorithm :
| ) —» trustdegree and |  evaluation ¥ Result of |
| i relationship strength of expert expert clustering |
! , J
I I Feedback adjustment process |
I Obtain the weight I s Estimate the unit | |
| of expert | Adjust individual .
opinion <+— adjustment cost of | |
: I P expert |
| WA Consensus : I
|\ Operator measure | :
A,
| |
Harmony degree - |
I matrix of the I The tota! The optimal |
| collective | compensation consensus |
| | cost opinion |
I | I
: | i '
| N I Minimum cost model Consensus |
| Clzo 0 | > based robust reaching |
I | optimization |
| Yes . f |
L

Fig. 4. The framework of consensus for LSGDM.

3.2. Expert clustering

Considering the sociality of experts, expert clustering is to classify experts with similar opinions into one subgroup, which
can improve the efficiency of consensus in LSGDM when the unit adjustment of an expert is unknown. There are many dif-
ferent clustering methods, including fuzzy clustering methods [3]| and the K-means algorithm [40]. In traditional clustering
methods, such as fuzzy clustering methods [3], each expert may be assigned to many subgroups simultaneously. This does
not effectively provide a convincing clustering result for LSGDM, which leaves the clustering process meaningless. However,
the K-means algorithm can overcome the defect of some fuzzy clustering methods, which makes the clustering more rea-
sonable as every expert is assigned to one and only one subgroup. Moreover, the K-means clustering method has enough
robustness to determine a clustering result [40]. It has also demonstrated high efficiency in dealing with LSGDM. Motivated
by these advantages, the K-means algorithm is used to implement expert clustering in this paper.

The K-means algorithm is based on the distance difference between expert and subgroup center to conduct clustering:
the smaller the opinion distance between expert and subgroup center, the greater their similarity, and the more likely
the expert belongs to the subgroup. Here are the basic principles of the K-means algorithm: (1) The subgroup center cl; is

initialized, then the distance value df calculated. (2) The distance between each e; and each cly is compared in turn, and

the e; is assigned to the subgroup for which df-‘ has the minimum value.

Relationship strength, which indicates the intimacy or contact frequency between experts in social network, is one of the
most important factors affecting human relationships. If the relationship between e; and e; is strong, e; will have a greater
comprehensive evaluation toward e;. However, if the relationship between them is weak, e; may have a lower comprehensive
evaluation of e;. Thus, relationship strength can reflect the intimacy between experts and can impact the final comprehensive
evaluation among experts. Therefore, in order to consider relationship strength in the clustering process effectively, we pro-
pose an expert clustering method that combines trust degree and relationship strength.

Definition 6. Let ts; = (t;;, ;) be the relationship information given by e; to e;, then the comprehensive evaluation from e;
toward e; is defined as:

Ce,j = fij X Sij (8)

Assume a given expert set E = {eq,...,e;,...,en}, every expert e; has his comprehensive personal evaluation of other experts.
Thus, the set CE; = (ce;, cep, . . . Ceyn) Tepresents e;’s comprehensive evaluation of other experts in his social network. The
matrix CE = (cey),,.,, denotes the comprehensive evaluation of all experts in the social network. When the K-means algo-
rithm is used, initial subgroup centers are randomly generated from the matrix CE. Generally, we select one of the CE; as
the subgroup center. The similarity degree between e; and subgroup center cl, is expressed by Euclidean distance. It is shown
as Definition 7.
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Definition 7. The Euclidean distance between expert e; and subgroup center cl; on trust degree and relationship strength is
defined as

m

di= | Y (cej — cey)’ 9)

Jj=1j#i

where ce; denotes expert e;'s comprehensive evaluation of expert e;,1 <j < m,j# i, and cey;; denotes the comprehensive
evaluation of expert e; by subgroup center cly.

Remark 3. For Definition 7, the smaller the value df, the larger the similarity degree between expert e; and subgroup cly.
When the similarity degree is larger, expert e; is more likely to be classified into subgroup cl;.

Example 2. For TS = (tj, Sij),,.4, it is shown as follows. We suppose the number of 7 is equal to 2.

(1,0)  (0.6,0.7) (0.4,0.9) (0.6,0.8)
(0.8,05) (1,0) (0.4,0.7) (0.5,0.6)
(0.7,04) (0.3,08) (1,0) (0.6,0.4)
(0.9,0.8) (0.4,05) (0.9,0.7) (1,0)

(1) According to Definition 6, the comprehensive evaluation matrix is calculated as:

0 042 036 048

CE — 04 0 028 03
028 024 0 024

072 02 063 O

(2) Then, the initial subgroup center CE; = cl; = (0,0.42,0.36,0.48) and CE4 = cly = (0.72,0.2,0.63,0) are selected ran-
domly.
(3) Finally, for expert e,, the Euclidean distances of d; and dg are calculated, respectively, giving us

TS =

dy = \/(o —0.4)* + (0.42 — 0)* + (0.36 — 0.28)> + (0.48 — 0.3)> = 0.613

di = \/ (0.72 - 0.4)* + (0.2 — 0)* + (0.63 — 0.28)* + (0 — 0.3)* = 0.596

Because d) > d,, expert e, is classified into subgroup 4.
For expert es, similarly, the Euclidean distances of dj and dj are also calculated, from which we obtain dj = 0.546 and
di = 0.806. Thus expert e; is classified into subgroup 1 because the value dj is lower than dj.

(4) Finally, we obtain the clustering result. The first subgroup is {e;, es} and the second is {ey,e4}
The detailed expert clustering process for LSGDM in social network is expressed in Algorithm1.

Algorithm1 The expert clustering process for LSGDM in social network.

There are m experts involved in the LSGDM problem. Each expert has certain social relationship with other experts, and
he gives relationship information about the other experts ts; = (tj, Sjj).

Input: The relationship information matrix TS = (ts) and the number of subgroup 7.

Step 1. Apply Eq. (8) to calculate the value of ce;.

Step 2. Initial subgroup center cly is selected from comprehensive evaluation matrix CE;.

Step 3. Utilize Eq. (9) to compute the Euclidean distance between expert e; and subgroup center cli, and compare the
value of d:-‘ and dj'»‘. If df»‘ < dj’»‘, then expert e; is classified into subgroup cly.

Step 4. The sample mean of each subgroup is used as the new subgroup centering.

Step 5. Repeat Step 2 and Step 3 until the subgroup center no longer changes.

Output: The final clustering result.

mxm’

Remark 4. Subgroup parameter 7 can be set by leaders and experts based on the actual consensus decision.
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3.3. Consensus measure

Using Algorithm 1, large-scale experts in social network can be classified into T subgroups. To facilitate the subsequent
consensus process, we assume that the subgroup with a large number of experts should be assigned large weight. The weight
of subgroup k can be calculated as follows:

T
Wy = nk/znk (10)
k=1

Then, taking relationship strength into account, a consensus measure is designed to calculate the consensus degree among
experts.

Let o{.‘,oj’.‘ be the opinion of expert e; and expert e; in subgroup k, respectively. o and oj’.‘ are real numbers. Let
SM* = (sm{;)mxm be the similarity matrix of subgroup k, where sm{; represents the similarity degree between experts e;
and e; in subgroup k, and smg is defined as

smf =1 — |of — o] (11)

In addition, in social network, the relationship between experts may increase or decrease the harmony degree between
them. In other words, when expert e; has a strong relationship with expert g;, there is a higher harmony degree between
them. However, if expert e; has a weak relationship with expert e;, the harmony degree between them will be very low, even
though there is a high similarity degree. Thus, the harmony degree between experts e; and e; in subgroup k is defined as

Definition 8. Let H* = (hﬁj)mxm be the harmony degree matrix of subgroup k. The harmony degree between experts e; and e;
in subgroup k is defined as:

h;-:st; x sk (12)

Remark 5. The larger the value of hfj the higher the harmony degree between e; and e; in subgroup k. Obviously, His a

symmetric matrix where the elements on the main diagonal are 0.

Definition 9. Let HC = (hcy)
tor, it can be computed as

be the harmony degree matrix of the collective. Using the weighted averaging(WA) opera-

mxm

T
HC = (hCj) i = 1 X (“E)mxm (13)
k=1

When the number of experts in subgroup k is m — n, but the number of experts in another subgroup is n (e.g., m — n < n), the
two harmony degree matrices may have different dimensions. This situation could result in the weighted process in Defini-
tion 9 not being implemented. Therefore, for the sake of calculation, we extend the dimension of the matrix
(m—n) x (m—n) to n x n. The added virtual number is equal to 0.

2

Example 3. The three harmony degree matrices, (h,-lj)3x3, (hi)sa

and (h?j) are as follows:

5x5’
[0 01 03
(hj), ,= |01 0 08
03 08 ©

ro 02 06 04
"), = 02 0 08 03

Uraxa 06 08 0 05
104 03 05 O

0 04 07 05 08
04 0 02 05 04
— |07 02 0 06 04
05 02 06 0 03
08 04 04 03 0

U)SXS
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In the aggregation process, we suppose that w; = 0.3,w, = 0.4 and w; = 0.3. Because the three matrices have different
dimensions, the dimensions of the matrix (h;), , and (hj

i)a..4 ar€ extended to 5 x 5. Therefore, the harmony degree matrix
of the collective can be calculated as

HC = (hcy)s,s = 0.3(hy), . +0.4(hp), . +0.3(hy),
0 01 03 00 0 02 06 04 0
01 0 08 00 02 0 08 03 0
=03|/03 08 0 0 0|+04/06 08 0 05 0
0 0 0 00O 04 03 05 0 O
0 0 0 00O 0 0 0 0 O
0 04 07 05 08 0 023 046 039 024
04 0 02 05 04 023 0 062 027 0.12
+03[07 02 0 06 04|=|054 062 0 038 0.12
05 02 06 0 03 031 0.18 038 0 0.9
08 04 04 03 0 024 0.12 0.12 009 0

Definition 10. The CIC of subgroup k is defined as:

c 1 m m
ac ZWZZ\hS*hCU\ (14)

i=1 j>i

Similarly, the CI of the collective can be calculated as:

T
a=> cIck (15)

k=1

It is obvious that CI € [0, 1]. Particularly, because CI = 1, the large-scale experts in the social network have achieved the full
consensus. A higher CI value indicates a higher consensus among experts. In this consensus process, a consensus threshold
o €[0,1] is predefined to measure whether or not consensus is achieved among experts in social network. Generally, if
CI > 0, an acceptable consensus is achieved among large-scale experts in social network. Otherwise, a feedback adjustment
process is conducted until the CI is acceptable.

3.4. The minimum cost model based on robust optimization

In this section, we propose a feedback adjustment process that consists of three important stages: (1) construction of a
model of robust optimization consensus, (2) determination of the robust counterpart of the robust optimization consensus,
and (3) estimation of the unit adjustment cost of each expert.

3.4.1. The robust optimization consensus problem

When the CI among experts is unacceptable, the opinion of each expert needs to be further adjusted according to the min-
imum cost model. In the exiting minimum cost consensus models, it is assumed that the precise unit adjustment cost is
known. In reality, however, the unit adjustment cost is normally difficult to obtain and is uncertain. When the unit adjust-
ment cost is uncertain, experts always want to get the highest unit adjustment cost from the moderator. So, the total com-
pensation cost paid by the moderator may be very high, which is the worst-case consensus problem. In order to deal with
this problem, we propose to minimize the total compensation cost in the worst case, which is the consensus problem based
on robust optimization.

In the robust optimization consensus problem, a method of dealing with this uncertain cost is proposed. Assuming that
we know the nominal value of an uncertain unit cost, it is denoted as c;. Rather than assuming that ¢; is in an interval [20],
we suppose that c; belongs to an ellipsoidal set. Every point of the ellipsoid is a possible value of unit cost c;. The ellipsoidal
set is shown as:

I'={cllci—ci| <o, i=1,2,...,m}

where J; is a parameter that represents the deviation between the uncertain unit adjustment cost and the nominal value.

In the minimum cost model (2), the unit adjustment cost ¢; is certain. We mainly focus on minimizing the total compen-
sation cost. However, in the robust optimization consensus problem, we minimize the total compensation cost based on
robust optimization. Hence, the model of the robust optimization consensus problem is defined as
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m
Minmachi x t; (16)
i=1
st.oj—o0.<é¢
o.—0;<¢€ -
m
o, =Y Lo (16-3)
i=1
0; — 0} = X (16-4)
X <t (16-5)
—X < t (16-6)
o —¢i] <& (16-7)
(16-8)

where the objective function represents the minimization of the total compensation cost of the robust optimization consen-
sus. Constraints (16-1) and (16-2) that restrict the deviation between consensus opinion o} and adjusted collective opinion
o. are not larger than the predetermined parameter ¢. Constraint (16-3) denotes that the collective opinions of experts are
aggregated using the WA operator.

Compared with the minimum cost model (2), model (16) is a robust optimization model. The Minmax means that the total
compensation cost is minimized in the worst case. However, in model (2), the Min only intends to minimize the total com-
pensation cost of the moderator, without optimizing the cost in the worst case. In addition, t; is the only uncertain parameter
in the linear model (2). In model (16), both ¢; and t; are uncertain. Therefore, model (16) is a robust optimization model that
focuses on minimizing the total compensation cost in the worst case when the unit adjustment cost ¢; is uncertain.

It can be observed that the proposed model is more complex than the minimum cost consensus models (2). Firstly, we
consider the uncertainty of the unit adjustment cost in the proposed model. The unit adjustment cost is assumed in an ellip-
soidal set. Moreover, our model is based on robust optimization where, rather than optimizing the minimum total cost, one
optimizes the worst-case total cost with respect to an ellipsoidal set. Finally, unlike the linear model (2), the robust optimiza-
tion model (16) is a difficult problem to solve.

3.4.2. The robust counterpart of the robust optimization consensus problem

After building the model of the robust optimization consensus problem, we next discuss how to solve this model when
both unit adjustment cost and consensus opinion are unknown. To deal with this problem, a robust counterpart is proposed
to determine the total compensation cost and the optimal consensus opinion of every expert.

Theorem 2. The robust counterpart of the robust optimization consensus model (16) can be written as

m m
Minmax "c; x ti+ | Y 2t (17)
i=1 i=1
st.oj—o0.<¢
0. —0;<¢€ -
m
o, =Y Lo (17-3)
i=1
0; — 0] = X; (17-4)
X <t (17-5)
—X; < tz (]7_6)
lci — ¢;] < & (17-7)
ti>0,i=1,2,....m (17-8)

Proof. Due to the unit adjustment cost, ¢; belongs to ellipsoidal set T, that is ¢; = ¢} + ;. The objective function of the robust
optimization consensus model consists of two parts: a certain part and an uncertain part. Thus, the corresponding objective
function Minmax3_[";¢; x t; can be expressed as

m m
Minmax “¢; x ti + &, &= tilci - ¢;| (18)
i=1

i=1
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where the variance of random part ¢ is

m m
Var(g) = (67 (ci — ¢;)* < Var(t) = > ()%} (19)

i=1 i=1
Consequently, the robust optimization value of Minmax3"[" ¢;t; will differ from the “nominal” value Min3"[" c;t;. The idea of
dealing with uncertainty is as follows. In Eq. (18), the greater the variance, the larger the deviation degree between the uncer-
tain unit cost and the nominal value. It is the worst-case uncertainty. Hence, we take the worst situation where the value of ¢ is

equal to Var'/?(t) in Eq. (18). With this approach, the objective function of the robust optimization consensus problem is
S citi + 4/ S0, 0762, Therefore, the robust counterpart of the robust optimization consensus is shown as model (17).

i=1%i

The robust counterpart of the robust optimization consensus can then be solved using MATLAB. Solving model (17), the
optimal consensus opinion o} and total compensation B can be obtained. The moderator provides the cost B; to expert e; in the
hope that the expert will change his opinion from o; to o;. When expert e; offers his new opinion, the adjustment suggestion
belongs to the following set:

O; = {Oj —t;,0i + ti}

In the following, we discuss how to estimate the unit adjustment cost of expert e;.

3.4.3. Estimation of the unit adjustment cost of an expert

Let B, be the compensation cost provided by the moderator at iteration y (1 < y < ), and let ¢;, be the unit adjustment
cost of expert e; at iteration y. Let o; , be the opinion of expert e; at iteration y, and let o}, be the consensus opinion of expert
e; at iteration y. Clearly, 0; ;.1 = 0},. In the first iteration(y = 1), we have three principles for estimating the unit adjustment
cost of the expert: (1) The uncertain unit adjustment cost of experts belongs to an ellipsoidal set, it is constrained by
I' = {ci|lci — c;| < 6;, i=1,2,...,m}. (2) An expert who changes his opinion a lot should be given a higher unit adjustment
cost. (3) The sum of the unit adjustment cost at iteration y should not exceed the total compensation cost paid by the mod-
erator, that is ) B, < B.

Based on the three principles, the unit adjustment cost of expert e; at iteration ¥ is

|07, — 0iyl
m
Z'Ol{\x = iyl
i=1

Considering the first principle, the unit adjustment cost is limited to an ellipsoidal set, it has been bound. Therefore, we have
the following result

Ciy =B, x (20)

lof., 01| lof,, 01| .
BZ X — BX m — < Ci,;( + 51’.9(
Gy = Dol e, (21)
- i=1 i=1
iy * diy otherwise

In addition, the detailed CRP of LSGDM in social network is shown in Algorithm2.

Algorithm 2 Detailed CRP of LSGDM in social network.

Input: The individual trust information ts = (t;,s;), the opinion o; of expert e;, and the parameters 7, &, d;, @;, ¢;.

Output: The iteration number y, consensus index of subgroup CIC¥, consensus index (I, total compensation cost By,
and consensus opinion oj.

Step 1. Using Eq. (7) to calculate the missing value of TS matrix, then we obtain the complete TS matrix.

Step 2. Using Algorithm1 to classify experts who have similar comprehensive evaluation into one subgroup. Then,
large-scale experts can be classified into t subgroups.

Step 3. Set y = 0, utilizing Eq. (14) to calculate the consensus index of subgroup CIC’;.

Step 4. Utilize Eq. (15) to compute the consensus index CI,. If CI, > o, go to step 6. Otherwise, go to the next step.

Step 5. Select the subgroup with lowest CIC’; to adjust. Using model (17) to determine the optimal consensus opinion
0;, and total compensation cost By, then estimate the unit adjustment cost ¢;,. In the next iteration, let
Ojyi1 = Oi',zv 2% =x+1and B =B, + By, then return to Step 2.

Step 6. When the acceptable consensus index is reached, output the consensus index of subgroup CIC¥, consensus index
CI,, optimal consensus opinion o;, and total compensation cost By. V
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4. Case study

In January 2020, COVID-19 broke out in Wuhan, China. The virus is highly infectious, and the number of infected people in
China is soaring. According to data from dxy.cn (https://ncov.dxy.cn), in China, there were 74,281 infected people as of
February 19, 2020, and 2,009 deaths. In Hubei province, the number of infections reached 61,682. The bar chart of the
infected in China apart from Hubei province is depicted in Fig. 5.

The Chinese Center for Disease Control and Prevention confirmed that the Huanan seafood market was one of the impor-
tant transmission sources. To shut off the source of infection, the Huanan seafood market was advised to close. The closing
strategy plays an important role in decreasing the number of infected people. This type of strategy mainly involves compen-
sation negotiations between the market manager and tenants. Generally, the market manager would take effective measures
to encourage and persuade tenants to close. If the compensation obtained by tenants meets their expectations, and the
expenses paid by market manager in keeping with their expectations.

In a compensation negotiation, the market manager is the moderator while tenants play the role of DMs. Naturally, the
market manager needs to negotiate with the tenants about the compensation price. In the negotiation process, the market
manager pays a unit negotiation cost to the tenants so as to change their initial compensation prices. However, due to the
COVID-19 outbreak, the market manager lacks experience in determining the unit negotiation cost. The unit negotiation cost
is difficult to obtain and is unknown. In this situation, each tenant seeks to receive the highest unit negotiation cost from the
market manager. So, the total negotiation cost paid the market manager may be very high, which is the worst-case consensus
problem. Therefore, we intend to minimize the total negotiation cost in the worst case, which is the consensus problem
based on robust optimization.

As Liu et al. [22] mentioned, the number of experts in the LSGDM problem is generally considered to be greater than or
equal to 20. Therefore, 20 tenants with social relationships were selected as experts. The 20 tenants’ initial compensation
prices are: {01,07,03...,019,020} = {0.4,0.4,0.9,...,0.8,0.5} (Unit: thousand RMB). The social information of the 20 tenants
is depicted in Table 2. Then, some relevant parameters and assumptions are set as follows Table 3. (1) It is assumed that the
propagation path greater than or equal to two mediators is invalid. This is because the relationship strength value ranges
from O to 1. The more mediators involved, the lower the propagation efficiency. Therefore, in this case, there should be only
one mediator involved in trust propagation. (2) The acceptable consensus threshold ¢ is 0.88, and the maximum iteration
number y* is set to 7.

In the robust optimization consensus problem, 20 tenants in social network are classified into four subgroups. The
detailed expert clustering result is shown in Table 4. From Table 4, we can see that tenant e; is classified into a separate
group. He does not have any neighbors who share similar opinions with him. Hence, we consider tenant e;; to be a non-
cooperative expert. He was not invited to participate in this compensation negotiation.

By aggregating the harmony degree of cl, cl; and cly, we can get the harmony degree of the collective HCy. It is
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Fig. 5. The number of infections apart from Hubei province.
Table 2
The initial assessment information of social network about 20 experts.
Experts e e, es . eis . (21 e
el (1,0) (-,0) (0.6,0.5) (0.4,0.6) . (0.7,0.7) (0.4,0.6)
e (0.5,0.6) (1,0) (0.3,0.5) (-,0) . (0.6,0.4) (0.8,0.7)
es3 (0.8,0.7) (0.6,0.7) (1,0) S (0.7,0.4) . (0.4,0.8) (0.5,0.8)
(A (0.4,0.6) (0.5,0.6) (0.7,0.6) .. (0.5,0.6) . (-,0) (0.7,0.6)
es (0.5,0.5) (0.3,0.5) (03,05 (0.3,0.5) . (0.7,0.6) (-,0)
e (0.2,0.6) (-,0) (0.6,0.7) (-,0) . (0.2,0.5) (0.4,04)
e19 (0.5,0.6) (0.7,0.8) (0.8,0.7) (0.5,0.7) . (1,0) (0.6,0.7)

e (0.8,0.9) (-,0) (0.6,0.8) . (0.4,0.6) . (-0) (1,0)




Y. Lu et al./Information Sciences 547 (2021) 910-930 923

Table 3

The complete assessment information of social network about 20 experts.
Experts e e e3 ... eqs . eg €
e (1,0) (0.15,0) (0.6,0.5) (0.4,0.6) . (0.7,0.7) (0.4,0.6)
e (0.5,0.6) (1,0) (0.3,0.5) (0.12,0) . (0.6,0.4) (0.8,0.7)
[ (0.8,0.7) (0.6,0.7) (1,0) (0.7,0.4) . (0.4,0.8) (0.5,0.8)
[ (0.4,0.6) (0.5,0.6) (0.7,0.6) (0.5,0.6) . (0.10,0) (0.7,0.6)
es (0.5,0.5) (0.3,0.5) (0.3,0.5) (0.3,0.5) . (0.7,0.6) (0.13,0)
[ (0.2,0.6) (0.14,0) (0.6,0.7) (0.12,0) . (0.2,0.5) (0.4,0.4)
20 (0.5,0.6) (0.7,0.8) (0.8,0.7) .. (0.5,0.7) . (1,0) (0.6,0.7)
e (0.8,0.9) (0.16,0) (0.6,0.8) ... (0.4,0.6) . (0.15,0) (1,0)

Table 4

The experts clustering result in social network.

cly e y h:}
chy {e1,e3,€13,€14,€18,€20} 0.32 [0 025 063 042 0.63 0.54
0.25 0 0.14 045 064 048

063 0.14 0 0.24 032 0

042 045 024 0 0.81 0.56

0.63 064 032 0.81 0 0.48
10.54 0.48 0 0.56 048 0 |

ch {en} -

cl3 {€3,€e4,€9,€16,€17,€19} 0.32 [ 0 042 072 035 0.6 0.24]
048 0 042 06 042 O

072 042 0 042 063 03

035 06 042 0 028 036
0.6 042 063 028 O 0.3

1024 0 06 036 03 0 |
cly {es,es,e7,e5,€10,€12,€15} 0.36 [ 0O 015 036 054 0.12 048 038
015 0 035 028 045 04 0
036 035 0 035 03 048 048
054 028 035 0 0.18 054 045
0.12 045 03 018 O 0.2 0.08
048 04 048 054 02 0 056
| 0.8 0 048 045 008 056 0

0 0.268 0.562 0.441 0.437 0422 0.288]]
0.268 0 0.305 0.437 0.501 0.298 0
0.562 0.305 0 0.337 0412 0.269 0.173
HCy, = |0.441 0437 0.337 0 0414 0489 0.162
0.437 0.501 0412 0414 0 0.322 0.029
0.422 0.298 0.269 0.489 0.322 0 0.202
10.288 0 0.173 0.162 0.029 0.202 0

The consensus index of subgroup CIC’S can then be calculated using Eq. (14). The values are CIC; = 0.867, CIC3 = 0.865 and
CIC} = 0.838.

Utilizing Eq. (15), we get Cl, = 0.856. Due to Clp < o = 0.88 and y # x*, the feedback process is activated. That is, the opin-
ions of tenants are adjusted by using the minimum cost model based on robust optimization until the robust optimization
consensus is reached.

Since CIC} = min{CICk|k = 1,3,4} = 0.838, the consensus index of subgroup cl, is the lowest among them. Thus, the first
consensus iteration should be conducted on subgroup cly.

In the first consensus iteration, the unit negotiation cost of each tenant is unknown, and it is deemed to be in an ellip-
soidal set. In the robust counterpart model (17), the nominal values c} of seven tenants in subgroup 4 are assumed to be

{cai. a1, €37, Ca1.Cloq, €151, €151 } = {65,50,70,80,60,50,50}. In addition, the ellipsoidal parameters in subgroup 4 are
{031,081,071,081,0%01,0151,015.1}={6.8,7,5,4,6,6}. Using {&d et &3, ek, ed01. 6%, 6%5,} ={0.1,0.2,0.4,0.1,0.1,0.2,0.2}
as the input of model (17), both the opinion deviation t{, and total negotiation cost B; can be obtained. They are
{6t 5.t 1, tho 1. th1tis 11 ={0.2,0.3,0.1,0.1,0.4,0,0.2} and B; = 79.05. After adjustment, the opinions of the tenants
are {o?,,0¢,,0%,,08,,0%,0%,1,0%5,} ={0.7,0.5,0.4,0.9,0.5,0.7,0.7}. By using the method proposed in Eq. (20), the unit
negotiation costs of the tenants are {ci,,cd,, c4,,ci,; cfy;,ch .15, ={12.16,18.24,6.08,6.08,24.32,0,12.16}.
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Table 5

The detailed iteration process.
1 <, of, a min{CIC'}
0 0.856 CICy = 0.838
1 {12.16,18.24,6.08,6.08,24.32,0,12.16} {0.7,0.5,0.4,0.9,0.5,0.7,0.7} 0.863 CIc3 — 0.853
2 {0,5.60,5.60,5.60,11.20,11.20} {0.4,0.6,0.2,0.8,0.6,1} 0.877 CICs = 0.850
3 {0,0,6.31,12.63,6.31,0,12.63} {0.7,0.5,0.3,1,0.6,0.7,0.9} 0.880

Afterwards, we integrate the new compensation prices of subgroup 4 into the collective harmony degree. Then the
CIC} = 0.877,CIC3 = 0.853,CIC! = 0.860 can be calculated using Eq. (14). Using Eq. (15), we get CI = 0.863 < ¢ = 0.88.
Hence, the next consensus feedback process continues.

Finally, consensus process is terminated after three iterations. The detailed iteration process is described in Table 5.

5. Comparative analysis and discussion

In this section, some comparisons with existing methods are provided to examine the superiority of the proposed
method. A discussion of the comparison results is given. Finally, cost comparisons of three cases are analyzed to investigate
the advantages of the robust optimization method.

5.1. Some comparisons with existing methods

In this subsection, to demonstrate the effectiveness of the proposed robust consensus problem, we compare the result
with existing methods and algorithms. The comparative analysis is conducted in the context of the same case study. The
opinions on alternatives and the relationship information are expressed by o; and (¢, s), respectively. Because the other infor-
mation type is used in the following methods, we make small changes to each method to fit the case. The performances of six
methods are compared. M1, M2, M3, M4, M5 and M6 are used to denote the six methods.

(1) M1: this method is proposed by Wu and Chiclana [32]. When a consensus is achieved in social network, the trust
information between experts is considered. A trust consensus is proposed by Wu and Chiclana [32] in which a consensus
is reached in an incomplete social network. However, this only considers the trust degree in social network; relationship
strength is not taken into account. In the proposed robust consensus model based on trust propagation, the initial incom-
plete trust network can be extended to a complete trust network. Nevertheless, in the method proposed by Wu and Chiclana
[32], both trust propagation and relationship strength are ignored. By applying this method to the case, a detailed consensus
iteration result can be obtained (see Table 6).

(2) M2: this model, proposed by Wu et al. [33], explores social network GDM with trust propagation. It builds trust rela-
tionships between experts and assumes that trust can be propagated. However, it does not consider relationship strength in
trust propagation and consensus processes. By applying Wu et al.’s [33] method to the case, we can derive a detailed con-
sensus iteration result (see Table 7).

Table 6
The detailed iteration process of Wu and Chiclana [32] (M1).
Cﬁz cly, B,
0 0.822
1 {8.91,8.91,20.06,4.46,2.23,17.83,15.60} 0.833 78.00
2 {0,10.06,0,20.12,0,0,10.06} 0.849 40.23
3 {0,4.82,4.82,4.82,4.82,0,0} 0.863 19.28
4 {22.19,0,14.79,7.40,7.40,14.79} 0.874 66.56
5 {0,11.58,11.58,0,5.79,5.79,11.58} 0.880 46.31
Table 7
The detailed iteration process of Wu et al. [33] (M2).
z <k, cr, B,
0 0.855
1 {13.66,20.49,0,6.83,0,6.82} 0.862 47.80
2 {13.86,9.24,0,0,9.24,4.62} 0.867 36.96
3 {10.32,15.48,0,0,10.32,5.16} 0.871 41.28
4 {5.25,15.75,0,0,10.50,10.50} 0.877 42.00
5 {12.30,6.15,0,0,6.15,12.31} 0.885 36.91
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Table 8
The detailed iteration process of Liu et al. [24] (M3).
7 o, a, B,
0 0.863
1 {11.55,11.55,11.55,5.77} 0.867 40.41
2 {0,6.27,25.07,0,12.54,18.80} 0.870 62.68
3 {4.27,0,8.54,8.54,4.27} 0.879 25.63
4 {11.80,0,17.80,11.87,5.93} 0.885 47.46
Table 9
The detailed iteration process of Liu et al. [25] (M4).
x e, Cly By
0 0.859
1 {6.04,0,12.07,18.11} 0.869 36.22
2 {14.08,0,14.08,0,7.05} 0.871 35.21
3 {21.72,0,7.24,0,21.72} 0.874 50.68
4 {13.63,0,13.63,0,13.64} 0.880 40.90

(3) M3: this grey clustering algorithm method developed by Liu et al. [24] classifies experts with similar similarity
degrees into a subgroup. In this algorithm, similarity degree is based only on fuzzy preference values and self-confidence
levels; it does not consider the harmony degree between experts. We can take the harmony degree into account in the grey
clustering algorithm [24] and implement it in the case. The expert clustering result is: cl; = {e;,e14,€1s,€20},
cly = {e,,e4,€5,€11,€13},cls = {€6,€7,€10,€15,€19}, Cls = {€3,€38,€9,€12,€16,€17}. The detailed consensus iteration result are
shown in Table 8.

(4) M4: this alternative ranking-based clustering (ARC) method proposed by Liu et al. [25], involves conducting expert
clustering based on the alternative ranking of hesitant fuzzy preference relation. The similarity degree of experts can be cal-
culated using the alternative position order. It ignores the relationship strength among experts. By incorporating relationship
strength into the ARC method, we can implement it in the case. We obtain the expert clustering result:
cly = {e1,e2,e3,€4,€9,€17}, Cly = {€11,€14,€15,€20},Cls = {5, €5,€7, €15, €19}, Cls = {es, €10, €12, €13,€16}. The detailed consensus
iteration result are exhibited in Table 9.

(5) M5: this method, a product line design proposed by Bertsimas and Misi¢ [5], uses the nominal model and robust
model to discuss the expected revenue. The worst-case revenue also is explored in this method. When the worst case occurs,
the robust optimization method is used to minimize the total negotiation cost. The main difference between our method and
M5 is the utilization of the worst case in the goal function. In this paper, we adjust the opinions of experts based on robust
optimization without implementing a worst-case method into the process.

To carry out the worst-case method proposed by Bertsimas and Misi¢ [5] in this case, the goal function in model (16) is
changed to

Minmax (¢} + 6;)|0; — o4

where ¢; is the nominal value of an uncertain unit cost, d; is the ellipsoidal parameter. Using the worst-case method to adjust
the opinions of tenants, the detailed consensus iteration result are depicted in Table 10.

(6) M6: based on the minimum cost consensus model, Han et al. [13] proposed a new minimum cost consensus model
with distributionally robust chance constraints. It is assumed that the unit adjustment cost is in a distribution uncertainty
set. The main difference between our model and M6 is the use of distributionally robust chance-constrained optimization to
deal with the minimum cost model.

By utilizing the distributionally robust chance-constrained optimization in the case, model (16) can be replaced by

Table 10

The detailed iteration process of Bertsimas and Misi¢ [5] (M5).
x Cf,y a, B,
0 0.856
1 {12.78,19.17,6.39,6.39,25.56,0,12.78} 0.869 83.06
2 {19.03,0,6.34,6.34,12.68,12.68} 0.876 57.08
3 {0,20.49,13.66,6.83,0,0} 0.881 40.98
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m
Minmax  E[Y ci x t] (22)

i=1

m
s.t. min P{Zc,» xti<B}>1-u
i=1

i=

loj —o¢| <&
m

0, =) Lo
i=1

0; — 0f = X;

x| < ti

where E is the expectation and « represents the probability. B is the fixed budget limitation predefined by the moderator. By
solving model (22) to adjust the opinions of the tenants, the detailed consensus iteration result are shown in Table 11.

5.2. Discussion

To verify the effectiveness and necessity of the proposed method further, we obtained the consensus iteration and cost
comparison for different methods. Based on the detailed results shown in Tables 6-8, comparison results are shown in
Figs. 6-7.

In Fig. 6, it is clear that the consensus-reaching speed for the proposed method is dramatically faster than methods (1)-
(6). Moreover, the proposed method needs only three iterations to achieve consensus, while the number of iterations for
methods (1)-(4) are always greater than three. This indicates that in real LSGDM, considering trust propagation and relation-
ship information is more favorable for achieving consensus. That is to say, using the social network of experts to reach con-
sensus is suitable for real LSGDM cases.

In addition, Fig. 6 also reflects how, compared with the grey clustering algorithm [24] and ARC method [25], the new K-
means clustering algorithm is more efficient at classifying experts and improves the consensus negotiation process. Regard-
ing methods (5) and (6), although the number of iterations is the same as in the proposed method, the moderator will pay

Table 11
The detailed iteration process of Han et al. [13] (M6).
z <, Cly By
0 0.856
1 {12.82,12.82,12.82,6.44,12.82,12.82,12.82} 0.864 83.36
2 {6.14,6.14,6.14,6.14,6.14,6.15,6.15} 0.874 43.00
3 {11.25,11.25,11.25,11.25,11.25,11.25} 0.884 67.50
0.89 1
0.884 0.881

0.88

0.87
% —e—Proposed
2 method
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=
g 0.863 —5—M3
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Fig. 6. The consensus iteration using different methods.
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Fig. 7. The cost comparison using different methods.

more total negotiation costs to the experts. This means that, when facing the same consensus task, the proposed method can
greatly decrease the cost expenditure for moderator.

As can be seen in Fig.7, the total negotiation cost of the proposed method is lower than in methods (1)-(6). To achieve
consensus using methods (1)-(6), the resource will occur huge consumption. This signifies that considering the social infor-
mation of experts can motivate their positivity in consensus and reduce the consensus cost. Moreover, reasonable utilization
of relationship strength can effectively reduce the total negotiation costs of the moderator. Selecting the appropriate clus-
tering algorithm can also reduce the consensus cost. Compared with the worst-case consensus that requires the maximum
unit adjustment cost, the robust optimization method saves more costs in the real consensus of LSGDM in social network. In
the case of method (6), although it overcomes the conservatism of robust optimization [13], the moderator will pay more in
total negotiation costs than he would with robust optimization if it is used to deal with LSGDM consensus in social network.

Therefore, these advantages can mainly be contributed to the unique characteristics of the proposed method.

(1) In the expert clustering process, we propose a definition for comprehensive evaluation to express opinion information
and a Euclidean distance to measure the similarity degree between experts. The new K-means clustering algorithm is con-
ducted based on the social relationships of experts. It can be used to classify large-scale experts with society. In comparison,
traditional expert clustering methods [24,47] based on the opinion similarity between experts are more restrictive. They do
not motivate the social relationship of experts in the CRP. Although Dong et al.’s [8] method analyzes the relationship
between experts through a network partition algorithm, it has the following drawbacks: (1) this algorithm does not consider
that relationship strength among experts may affect the clustering process, and (2) the clustering result obtained through
this algorithm has an intersection between two different subgroups and is not suitable for our consensus model.

(2) When measuring the consensus degree of a collective, our method not only takes into account the opinion differences
among experts but also incorporates relationship strength information. Most traditional consensus measurement methods
[30,25,26] only emphasize managing opinion differences among experts; they are not suitable for solving the consensus
problem among large-scale experts with social relationships. As demonstrated by comparison, effectively utilizing the rela-
tionship between experts can motivate CRP among large-scale experts.

(3) Facing the uncertain unit adjustment cost in LSGDM, we deem it in an ellipsoidal set and propose a minimum cost
model based on robust optimization to solve it. If the worst-case consensus occurs, the robust optimization method can
be used to decrease the loss of the moderator. However, Li et al.’s [20] method considers the uncertain cost in an interval
and utilizes a nonlinear optimization model to solve the opinions. Although their method can obtain the unit adjustment
cost and opinions, the worst case is not considered in the consensus, and there is no rule about how to optimize the total
negotiation cost in the worst case. The uncertain cost method is not suitable for LSGDM. In summary, the proposed model
presents a reasonable opinion modification method, which minimizes the total cost compensation when the unit adjustment
cost is uncertain. The superiority of the proposed method in realizing LSGDM consensus in social network has been demon-
strated and validated.

From Fig. 6, we can see that the CI of the proposed method will continually increase if the next iteration is conducted. In
comparison, the proposed method requires fewer iterations than method (3) to achieve consensus. However, method (3) can
reach a higher CI than the proposed method. Although the proposed method has a faster consensus speed, it is not reason-
able for decisions that only require a higher consensus threshold. For example, in large-group emergency decision making,
an optimal decision usually require a relatively high consensus threshold [42]. Thus, how to use the proposed method to
achieve consensus in large-group emergency decision making is a problem worth discussing further.

5.3. The cost comparison in three cases

In this paper, to realize LSGDM consensus in social network, we describe three consensus cases. The first is the nominal
case. It is assumed that the unit adjustment cost is the nominal value c;. The second is the worst case, which deems that
when the unit adjustment cost is uncertain, and each expert intends to get the maximal unit adjustment cost, the total com-
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pensation cost paid by the moderator will reach the maximum. The third is the robust optimization case. Its goal is to min-
imize the total compensation cost in the worst case. Thus, the total compensation costs of the three cases are calculated as

B" =c;|o} — oj nominal case
B" = (c; + d;)|0, — 0] worst case (23)
B" = ci|o} — oj| robust optimization case

In order to discuss the advantage of robust optimization in dealing with uncertain cost, we propose two indexes to quan-
tify the benefit of robustness. The first is the worst-case consensus loss (WCCL). The WCCL is defined by the nominal case and
the worst case as

BW _ Bn
WCCL = 100% x —zr— (24)
where B" is the total compensation cost in the nominal case. Additionally, B” denotes the total compensation cost paid by the
moderator when the worst-case consensus happens. The WCCL measures how the moderator’s total compensation cost
changes when the consensus transfers from the nominal case to the worst case.
The second index we discuss is the relative improvement (RI). The Rl is defined by the worst case and the robust optimiza-
tion case as

BY - B

RI = 100% x =

(25)

where B is the total compensation cost in the robust optimization case. Compared with the WCCL, RI measures the cost
improvement of the robust optimization case.

When the ellipsoidal parameter ¢ is set as different values, we compute the cost of each iteration under three cases. In
addition, for each 6, we compute the WCCL of the nominal case and the RI of the robust optimization case. The results
are presented in Fig. 8 and Table 12.

As can be seen in Fig. 8, when the consensus cases are fixed in the same iteration, the consensus cost increases as the
value of the ellipsoidal parameter ¢ increases. This finding implies that resource compensation will increase if the uncertain
cost is in a bigger ellipsoidal set. Moreover, in each iteration, the nominal case has the lowest compensation cost. When the
ellipsoidal parameter ¢ is the same, the total compensation cost in the worst case is higher than the robust optimization case.
This shows that the robust optimization method can effectively reduce the loss of total compensation cost when the unit
adjustment cost is uncertain.

Table 12 shows how WCCL and RI vary with the value of §. We can see from the table that for the small uncertainty
(6 < 10), the loss generated in the worst case is relatively lower (e.g., for 6 = 7, the WCCL is 11.67%.), and the robust opti-
mization method provides a slight advantage in reaching the consensus process. However, for the larger value of the ellip-
soidal parameter 6 (6 > 15), the WCCL increases distinctly, and the robust optimization method has huge a advantage in
reducing the total compensation cost. Therefore, when the unit adjustment cost is uncertain, the robust optimization
method can minimize the total compensation cost of the worst case.

—¥— nominal model
—+— §=15,robust optimize | |
—A— §5=15,worst case

—+— §=20,robust optimize
—4A— §5=20,worst case

Cost of every iteration

30 , . .
Consensus iterations

Fig. 8. The cost of each iteration under three cases.
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Table 12

The WCCL of nominal case and the RI of robust case for different .
Uncertain parameter & B" B’ BY WCCL(%) RI(%)
=0 149.30 149.30 149.30 0.00 0.00
§=6 149.30 163.21 164.24 10.01 0.63
=17 149.30 164.36 166.73 11.67 1.42
§=10 149.30 167.94 174.20 16.68 3.59
§=11 149.30 169.14 176.69 18.35 4.27
§=15 149.30 173.86 186.75 25.08 6.90
§=20 149.30 179.73 199.20 33.42 9.77

6. Conclusions

In this paper, we researched LSGDM in social network and proposed a novel consensus model based on robust optimiza-
tion to deal with the uncertain unit adjustment cost. The main innovations and contributions of this paper are summarized
as follows:

(1) We focus on LSGDM, considering the relationship information between experts, which can allow experts to express
both trust value and relationship strength. A new expert clustering method is proposed to reduce the complexity of LSGDM.
In this method, we classify experts with similar comprehensive evaluation into a subgroup by combining trust degree and
relationship strength. This guarantees that all the social information of experts can be incorporated, which ensures that the
clustering result is effective and reasonable. The proposed expert clustering approach can improve the efficiency of the CRP
in social network.

(2) Considering the relationship strength between experts, a harmony degree measure method considering both opinion
value and relationship strength is presented. A CI reflecting the harmony degree between experts is devised to measure the
collective consensus level of LSGDM in social network. This ensures that LSGDM can better reflect the actual social network
decision-making situation.

(3) To deal with the uncertainty of the unit adjustment cost, an ellipsoidal set in the feedback is proposed. To minimize
the total compensation cost in the worst case, a consensus model based on robust optimization is constructed. A robust
counterpart to solving the optimal consensus opinion is transformed. To estimate the unit adjustment cost, the rules are pro-
posed to give suggestions to the moderator. The minimum cost model based on robust optimization makes the CRP more
economical in the worst case for the LSGDM problem.

In this paper, the CRP of offline LSGDM is researched. However, in online LSGDM, the efficiency of the proposed method is
impacted by the different decision-making scenarios. This paper does not consider the consensus of LSGDM in the online
interaction situation. Thus, in an online situation, how a high level of LSGDM consensus may be obtained is still a topic worth
discussing further.

In addition, in some real LSGDM problems, experts may exhibit the game behavior for pursuing their personal interest.
This paper only discusses the influence of social relationship on the CRP of LSGDM; however, the game behavior of experts is
ignored in the CRP. Therefore, in future work, another interesting issue to discuss would be the game behavior of experts and
how that influences CRPs.
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