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Cancer development is a multistep process in which cells must overcome a

series of obstacles before they can become fully developed tumors. First,

cells must develop the ability to proliferate unchecked. Once this is accom-

plished, they must be able to invade the neighboring tissue, as well as pro-

vide themselves with oxygen and nutrients. Finally, they must acquire the

ability to detach from the newly formed mass in order to spread to other

tissues, all the while evading an immune system that is primed for their

destruction. Furthermore, increased levels of inflammation have been

shown to be linked to the development of cancer, with sites of chronic

inflammation being a common component of tumorigenic microenviron-

ments. In this Review, we give an overview of the impact of sphingolipid

metabolism in cancers, from initiation to metastatic dissemination, as well

as discussing immune responses and resistance to treatments. We explore

how sphingolipids can either help or hinder the progression of cells from a

healthy phenotype to a cancerous one.

1. Introduction

Discovered in the 1870s and named for their unique and

enigmatic structure, sphingolipids [1] consist of a fatty

acid residue bound to a sphingosine backbone, thus

forming ceramide (Fig. 1), their membrane anchor that

can show diverse characteristics [2]. The hydroxyl group

of carbon atom 1 can be further modified by the addi-

tion of either a phosphate group, forming ceramide-1-

phosphate (C1P), a phosphocholine group, yielding sph-

ingomyelin, or a series of sugar residues, generating quite

diverse glycosphingolipids (GSLs) (Fig. 1).

Ceramides are synthesized in the endoplasmic reticu-

lum (ER) and can then be transported via the Golgi

apparatus to the cell membrane as structural compo-

nents of the lipid bilayer, to the nucleus, or to the

mitochondria, where they function primarily as signal-

ing molecules [3]. Apart from being sphingolipids in

their own right, ceramides are also metabolic interme-

diates for other members of the sphingolipid family.

They can be transported to the Golgi, where the addi-

tion of a phosphocholine group to their C1-hydroxyl

group yields sphingomyelins, which represent the

majority of sphingolipids in the human body largely
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due to their structural role in cell membranes, particu-

larly in the myelin sheath surrounding axons [4]. As

illustrated in Fig. 2, glycosphingolipids (GSLs) are

synthesized when ceramide is transported via vesicular

membrane flow from the ER to its site of glucosyla-

tion in the Golgi compartment, while galactosylation

of ceramide occurs in the ER. Further sugar residues

are attached stepwise in the Golgi and in the trans-

Golgi network (TGN). GSLs can be further subdi-

vided into either cerebrosides or gangliosides. Cerebro-

sides, including GlcCer and GalCer, have only one

sugar residue on the C1-hydroxyl group of ceramide

and, as their name suggests, are largely found in the

brain. Gangliosides are GSLs with one or more sialic

acid residues in their sugar chain and are also abun-

dant in the brain, forming characteristic patterns in

neuronal membranes [4]. The complexity of ganglio-

sides depends on the number of sugars and the num-

ber of sialic acids bound to a defined galactose residue

of the sugar chain on the C1-hydroxyl group of their

ceramide membrane anchor (Fig. 1). Thus, we can fur-

ther differentiate gangliosides with one (GM;

monosialo-), two (GD; disialo-), three (GT; trisialo-),

or up to five (GP; pentasialo-) sialic acid residues

linked either to the inner or to the outer galactose of

the sugar chain or to one of these already attached sia-

lic acid residues. Gangliosides are generated by step-

wise glycosylation of ceramide in different Golgi

stacks and this process is intimately coupled with the

exocytotic vesicular membrane flow [5]. GM3 and

GD3, which are the precursors of a- and b-series gan-

gliosides, respectively (Fig. 1), are formed in the proxi-

mal Golgi compartment, whereas more complex

gangliosides are generated more distally in the TGN

(Fig. 2).

Gangliosides are often found to be concentrated in

lipid rafts in the cellular plasma membrane, where they

play an important role in cell adhesion and signal

Fig. 1. Schematic of ceramide metabolism including the biosynthesis of major mammalian gangliosides. All glycosylation steps except the

initial glucosylation of ceramide are mapped to the luminal face of Golgi/TGN membranes. GM3 and GD3 are formed by the action of

specific sialyltransferases (SAT I and II), whereas rather unspecific glycosyltransferases catalyze the stepwise addition of a definite sugar as

indicated. Inserts: Structures of ceramide, sphingosine, sphingosine-1-phosphate, and GalNAc-DSLc4 (N-acetylgalactosaminyl-disialyl

lactotetraosyl), a hybrid structure between the ganglio- and the lacto-series. Abbreviations used are (a) for lipids: DHCer, dihydroceramide;

Gal, D-galactose; GalNAc, N-Acetyl-D-galactosamine; Glc, D-glucose; the terminology used for gangliosides is that of Svennerholm [210]; (b)

for enzymes: CDase, ceramidase (5 human isoforms, acid, neutral, alkaline 1,2,3); CERK, ceramide kinase; CerS, ceramide synthases (6

isoenzymes); DES, dihydroceramide desaturase; GlcT, ceramide glucosyltransferase; GalT I, galactosyltransferase I (lactosyl synthase); GalT

II, galactosyltransferase II (GM1a/GD1b synthase); GalNAcT, N-Acetyl-D-galactosaminyltransferase (GM2/GD2 synthase); SAT I,

sialyltransferase I (GM3 synthase); SAT II, sialyltransferase II (GD3 synthase); SAT IV, sialyltransferase IV (GD1a/GT1b synthase); SK,

sphingosine kinases (two isoforms SK1 and SK2); SMS, sphingomyelin synthase; SMase, sphingomyelinases (two main isoforms, acid

aSMase and neutral nSMase); SPL, sphingosine-1-phosphate lyase; SPP, S1P phosphatases (two known isoforms SPP1 and SPP2). Note

that all biosynthetic steps (black arrows) are reversible.
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transduction [6]. Exogenously applied gangliosides are

rapidly incorporated into the plasma membrane and

play key roles in cell–cell interaction, differentiation,

and oncogenesis [7,8]. Constitutive degradation of sph-

ingolipids down to sphingosine occurs in the endoso-

mal/lysosomal compartment [9]. Breakdown of

sphingosine follows after its phosphorylation to

sphingosine-1-phosphate (S1P) and cleavage into phos-

phoethanolamine and hexadecenal in the ER (Fig. 2).

Alternatively, S1P can be recycled after dephosphory-

lation to sphingosine followed by N-acylation to cera-

mide and generation of all other more complex

sphingolipids by the salvage pathway (Fig. 2).

While they were initially thought to be little more

than lipids integral to the structure and maintenance

of the plasma membrane, it was later discovered that

sphingolipids are also bioactive molecules, with an

active role in cell signaling and the regulation of a

multitude of different processes [10]. It should come as

no surprise, therefore, that sphingolipids have also

been implicated in cancer, the development of which

involves a number of different cellular processes. In

order for a healthy cell to become a malignant tumor,

it must overcome a number of obstacles set in place by

the organism to protect against such diseases. First,

the cell must acquire the ability to proliferate, both by

Fig. 2. Schematic of prevalent locations and metabolic pathways of cellular sphingolipids. Ceramide is biosynthesized de novo in the

endoplasmic reticulum (ER, purple, blue arrows). It is then translocated via the ceramide transport protein (CERT, black dotted arrows) to

the site of sphingomyelin and ceramide-1-phosphate (C1P) formation in the trans-Golgi network (TGN, purple) or via vesicular exocytotic

membrane flow (black dashed arrows) to the site of glycosylation to glucosylceramide (GlcCer) in the Golgi compartment (blue) and more

complex glycosphingolipids (GSL), including gangliosides (black dashed arrows). Note that only GM3 and GD3, the precursors of a- and b-

series of gangliosides, are generated in the Golgi, whereas all the following glycosylation steps are located to the TGN (lilac). Degradation of

sphingolipids down to sphingosine occurs mainly in the lysosomal compartment (red arrows). Further metabolization of sphingosine is

located to the ER, where it is first phosphorylated to sphingosine-1-phosphate (S1P) and then cleaved into ethanolamine phosphate and

hexadecenal. Alternatively, S1P can be dephosphorylated back to sphingosine and further recycled to ceramide and all other sphingolipids

via the salvage pathway (green dashed arrows). S1P generated in the plasma membrane by SK1 can be transported into the extracellular

milieu via ATP-binding cassette transporters (ABCt) or spinster homolog 2 (SPNS2) where it acts as a ligand of five G-protein coupled

receptors (S1PR1-5). Transport of (glyco)sphingolipids occurs via vesicles (dashed black arrows) or transport proteins (dotted arrows). Note

that sphingolipids are metabolized also in the plasma membrane, mitochondria, and nuclei. Abbreviations used are CPTP, C1P transport

protein; GlcCerase, glucocerebrosidase; GLTP, glycolipid transport protein; and LPP, lipid phosphate phosphatase. All other abbreviations as

in legend to Fig. 1.
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changing its metabolism to facilitate cell division and

by bypassing the usual blockades that exist to prevent

unchecked growth []. Second, it must be able to invade

the neighboring tissue, changing its morphology and

migratory capabilities by co-opting signaling programs

usually restricted to embryonic development and

immune cell trafficking [12]. Once the mass of prolifer-

ating cells reaches a certain size, it must then be able

to form additional blood vessels so as to bring oxygen

and nutrients to its center, lest it starve from the inside

out [13]. Finally, in order to become metastatic, the

cells must survive the usually lethal process of detach-

ing from the extracellular matrix so as to spread

throughout the body, all the while evading an immune

system on patrol for transformed cells.

We have chosen to represent the progression of can-

cer as a linear, stepwise process for the purpose of

clarity. It is, however, important to note that this is a

simplification of the biological reality. Tumor angio-

genesis, for example, does not only occur in order to

supply oxygen and nutrients to the growing mass, but

it is also known to enable tumor invasion itself [14],

while its suppression can halt invasion without sup-

pressing proliferation [15]. Also, the immune system is

able to target cancerous cells before they detach and

circulate in the organism, and thus, both immune cell

evasion and the response to inflammation are pro-

cesses that occur throughout the life cycle of the

tumorigenic cell [16,17]. The fact that there are almost

no simple, linear relationships of cause and effect in

biology represents one of the greatest challenges in the

field. In this Review, we attempt to elucidate how

bioactive sphingolipids can fit into this complex web.

We will discuss the steps that a healthy cell undertakes

to become cancerous and how sphingolipids can either

help it along its journey or block its path.

2. Step 1: Proliferation

In order for a cell to become cancerous, it must first

overcome the systems set in place to prevent it from

overproliferating, such as cell cycle arrest and apopto-

sis [18]. As a regulator of apoptosis, ceramide is one of

those molecules that cancerous cells need to circum-

vent in order to achieve the necessary proliferation,

which is probably why many cancerous cell lines have

been found to undertake its metabolic transformation/

degradation [19]. For these reasons, restoring ceramide

levels in cancerous cells has been a focus of study for

decades.

Direct treatment with either sphingosine, ceramide,

or ceramide analogs was found to inhibit cell prolifera-

tion and induce apoptosis in in vitro models of colon

cancer [20–22], breast cancer [23], nasopharyngeal car-

cinoma [24], and pancreatic cancer, especially when

used in conjunction with chemotherapeutic drugs

[25,26] (Table 1). Furthermore, multiple studies have

found that some chemotherapeutic agents themselves

can block cell proliferation and induce apoptosis by

increasing ceramide production in many different cel-

lular models of cancer, including breast [27–30] and

prostate [31–33] cancer, as well as in HeLa and human

kidney carcinoma cells [34] (Table 1).

Although these studies may seem promising, it is

important to not lose sight of the fact that ceramides

are actually a family of bioactive lipids, with different

chain lengths and different roles in signaling and thus

also different effects on the proliferative properties of

cancer cells (Table 1). For example, in human head

and neck squamous cell carcinoma (HNSCC) tumor

tissue, only C18-ceramide was found to be downregu-

lated when compared to neighboring, healthy tissue

[35]. In a follow-up study on an in vitro model of

HNSCC, C18-ceramide was found to induce cell death,

whereas C16-ceramide actually protected the cells from

apoptosis and enhanced tumor development [36]. In

human breast cancer and colon cancer cell lines, on

the other hand, increasing the levels of C16-, C18-, and

C20-ceramides via genetic manipulation all led to an

inhibition of cell proliferation, whereas increasing the

amount of C24-ceramide actually enhanced prolifera-

tion [37], indicating that the effects of different cera-

mides can also be cancer cell line-specific (Table 1).

Further complicating matters is the fact that cera-

mides are metabolic intermediates for other bioactive

sphingolipids, which can then in turn influence the

ability of the cell to proliferate unchecked. The lysis of

ceramide by ceramidases and their subsequent phos-

phorylation by sphingosine kinases (SKs) leads to the

production of S1P, which has its own active role in cell

signaling. In a breast cancer cell line, the production

of S1P via the overexpression of SK1 led to the over-

expression of cyclin D1, thereby shortening the cell

cycle and increasing cell proliferation [38]. It has also

been shown that, in breast cancer cells, SK1 is acti-

vated by estrogen (E2), serving as a mediator of down-

stream signaling cascades such as calcium mobilization

and ERK1/2 activation [39]. Moreover, release of S1P

as a result of SK1 stimulation by E2 activates S1P

receptor 3 (S1PR3) and transactivates epidermal

growth factor receptor (EGFR) [40]. These two studies

reveal the essential role of SK1/S1P as mediators of

the growth-promoting effect of estrogen in human

breast cancer cells (Table 1). In a mouse model of

colitis-associated cancer (CAC), genetic inhibition of

S1P degradation led to enhanced tumor formation
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Table 1. Representative studies on the dual role of sphingolipids in cancer. ApcMin, mouse model for intestinal tumorigenesis; Bcl-2, B-cell

lymphoma 2; Bcl-xL, B-cell lymphoma-extra-large; Brms1, gene encoding breast carcinoma metastasis suppressor 1; CD44, cluster

determinant 44; Cer, ceramide; CerS, ceramide synthase; CSCs, cancer stem cells; EGFR, epidermal growth factor receptor; ER,

endoplasmic reticulum; ERK1/2, extracellular signal-regulated kinases 1/2; FAK, focal adhesion kinase; HNSCCs, human head and neck

squamous cell carcinomas; HOS, human osteosarcoma; HOSE, human ovarian surface epithelial; HUVECs, human umbilical cord vein

endothelial cells; ICAM-1, intercellular adhesion molecule 1; IFN-c, interferon-gamma; IL, interleukin; NFjB, nuclear factor kappa-light-chain-

enhancer of activated B cells; PI3K, phosphoinositide 3-kinase; PKCf, protein kinase C zeta; PLCb1, phospholipase C beta 1; Rac1, ras-

related C3 botulinum toxin substrate 1; Rb, retinoblastoma protein; SCLCs, small-cell lung cancers; SNAI2, Snail family transcriptional

repressor 2; Spns2, S1P transporter spinster homologue 2; TGF-b1, transforming growth factor-beta1; TRAX, translin-associated factor X;

UM-SCC-22A cells, squamous cell carcinoma of hypopharynx; mUOG1/mLAG1, mammalian upstream regulator of growth and differentiation

factor 1/mouse homologue of longevity assurance gene 1; VEGF, vascular endothelial growth factor.

Cancer

progression Sphingolipid

Molecular mechanism

involved

Sphingolipid

manipulation strategy

Effect on

cancer Biological material Reference

Cellular

overproliferation

C2-Cer/

sphingoid

bases

Cell cycle arrest in G2 or

G1 phase; Upregulation

of p27

Exogenously applied Inhibition Human colon cancer

cell lines; HNSCC cells

[20,21,24]

C2- C6- C18-Cer Release of cytochrome

c/caspase activation

Exogenously applied;

Ceramidase inhibition

Inhibition SW403 colon cancer

cell line

[22]

C18-Cer Mitochondrial death

pathway, inhibition of

telomerase activity

Overexpression of

mLAG1/mUOG1

Inhibition UM-SCC22A cells [35]

C16-Cer Prevents ER-stress-

mediated apoptosis

Induced CerS6

expression

Promotion Diverse HNSCC cell

lines

[36]

C24-Cer Not aim of this study Overexpression of

CerS2

Promotion Human breast and

colon cancer cell lines

[37]

Sphingosine Cell cycle arrest at G1/S

by reduced expression

of CDK4 and diminished

Rb phosphorylation

Exogenously applied

in vitro; SK1

deficiency in vivo

Inhibition Rat intestinal epithelial

cells; SK1-deficient

ApcMin mice

[58]

Increased expression of

cell cycle inhibitors

p53-dependent

downregulation of

SK1

Inhibition Several cancer cell

lines; p53-deficient

MEFs

[54]

S1P Mobilization of calcium,

ERK1/2 activation

Estrogen-induced

stimulation of SK1;

Overexpression of

SK1

Promotion Diverse human breast

cancer cell lines

[39]

S1P3-dependent

transactivation of EGFR

[40]

Activation of NFjB-p65

and increased cyclin D1

expression

Promotion Human breast epithelial

cells

38

S1P/S1PR3-mediated

Notch activation

Exogenously applied

CSCs; nude mice [43]

Upregulation of anti-

apoptotic proteins Bcl-2

and Bcl-xL

SPL deficiency Promotion Sgpl1(�/�) MEFs; nude

mice

[60]

GM3 Decreased

phosphorylation of EGFR

and reduced cell

adhesion

Exogenously applied

in vitro and in vivo

Inhibition Human bladder cancer

cell lines/mouse model

[89]

GD3/GD2 Stimulates activation of

mitogen-activated

protein kinases

Overexpression of

GD3 synthase

Promotion SCLC cell lines; SCLCs [151]

Cell migration/

invasion

C1P Gi protein coupled

receptor-mediated

activation of ERK1/2,

PI3K/AKT signaling;

Activation of RhoA/

ROCK1

Exogenously applied Promotion
RAW264.7macrophages [81]

Human pancreatic

cancer cell lines

[83]
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Table 1. (Continued).

Cancer

progression Sphingolipid

Molecular mechanism

involved

Sphingolipid

manipulation strategy

Effect on

cancer Biological material Reference

S1P S1P/S1PR1-mediated

activation of Rac1/ PI3K

signaling

Exogenously applied

Promotion

Wilms tumor [65]

S1P/S1PR2,3-mediated

increase of SNAI2

expression

Breast cancer cell lines [73]

S1P/S1PR3-mediated

activation of AKT

signaling

Nasopharyngeal

carcinoma cell lines

[75]

S1P/S1PR2-dependent

enhancement of stress

fibers

Inhibition HOSE cell line [78]

GD3/GD2 Increased phosphorylation

of p130Cas, paxillin and

FAK

Induction of GD3

synthase

Promotion Several HOS cell lines [95]

GM2 Activation of TGF-b1

signaling

Modulation of

glycolipid synthesis

Promotion Pancreatic ductal

adenocarcinoma cell

lines

[93]

GD3/GD2 Downregulation of ICAM-

1 expression, inhibition

of AKT signaling

Overexpression of

GD3 synthase

Inhibition Breast cancer cell line [98]

GM3 Mediates formation of

complex between CD9

and integrin receptors

Enhanced GM3

synthesis

Inhibition C3H fibroblast 10T1/2

cells transformed with

v-Jun

[87]

Angiogenesis Sphingomyelin-

derived Cer

Regulates exosomal

angiogenic miRNA

secretion (miR-210)

Modulation of

nSMase2

Promotion Different breast cancer

cell lines; HUVECs;

Normal mammary

epithelial cells

[117]

S1P S1P/S1PR1/3 -mediated

secretion of angiogenic

factors (VEGF, IL-8, IL-6)

Exogenously applied;

Modulation of

SK1and of S1PR1/3

Promotion Ovarian cancer cells,

tissue, mouse model

[106]

S1P/S1PR2/G(12/13)/Rho-

dependent suppression

of Rac1/AKT signaling

Modulation of S1PR2 Inhibition Tumor isograft models,

S1PR2-deficient mice

[112]

Globo-H Cer Ca2+ mobilization by

binding TRAX and thus

releasing and activating

PLCb1

Exogenously applied

as microvesicles

shed from breast

cancer cells;

subcutaneous

injection

Promotion HUVECs; Diverse

breast cancer cell

lines; Balb/C mice

[118]

Metastasis C6-Cer Induction of anoikis by

activation of caspase 3/7

and inhibition of CD44;

Exogenously applied

as nanoliposomes

Inhibition Human breast and

pancreatic cancer and

melanoma cells

[142]

Activation of PI3K and

PKCf and hence

reduction of integrin

affinity

[143]

S1P Upregulation of the

metastasis-promoting

gene FSCN1 expression

via activation of NFjB

Modulation of SK1 Promotion Human and mouse

cancer cells; Nude

mice injected with

human cancer cells

[136]

Prevents activation of

Brms1 via modulation of

S1PR2

Modulation of SK1

and of S1PR2; Tail

Promotion Multiple cancer cells;

WT and SK1�/� mice

[137]
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[41]. Conversely, enhanced S1P degradation impeded

cell proliferation and tumorigenesis in both mice with

CAC [41] and human osteosarcoma cell lines [42].

Enhanced S1P production has also been found to

enhance and expand the proliferative potential of can-

cer stem cell populations [43], including breast cancer

[44], and esophageal adenocarcinoma stem cells [45],

demonstrating the strong proproliferating properties of

S1P. In this context, we also recommend an excellent

recent review by Ng et al. [46].

Together, these results, as well as the involvement of

SK1 in oncogenic H-Ras-mediated transformation

[47], clearly document the tumorigenic properties of

SK1. We want to emphasize that, although SK1 is not

a traditional oncogene [48], its activity defines the

amount of either the growth-stimulating S1P or the

pro-apoptotic sphingosine and ceramide [49]. Indeed,

SK1 is highly upregulated in many cancers, including

breast cancer, colon cancer, head and neck cancer, and

glioblastoma [50–53]. It is therefore not surprising that

numerous studies were undertaken to uncover the fac-

tors that regulate the expression and activity of SK1.

One of the negative regulators of SK1 turned out to

be the tumor-suppression protein p53 [54], which is

involved in more than 50% of all human tumors [55–
57]. Downregulation or depletion of SK1 is often asso-

ciated with an increase of its substrate, sphingosine,

which was shown to inhibit cell proliferation by affect-

ing cell cycle progression [58]. This finding suggests

that SK1 activity, which defines cellular amounts of

S1P and sphingosine, influences tumorigenesis in gen-

eral and intestinal cancer in particular (Table 1). We

therefore recommend an excellent review about the

complex system of transcription factors, cytokines, and

micro-RNAs involved in the modulation of SK1

expression [59].

Apart from SK1, there is also S1P-lyase (SPL), the

enzyme that irreversibly cleaves S1P, which can affect

cell proliferation. SPL deficiency was shown to

increase cell proliferation, anchorage-independent cell

growth, and tumor formation in nude mice [60]. These

effects were explained by an upregulation of Bcl-2 pro-

teins in cells lacking SPL. Moreover, disruption of

SPL in mouse embryonic fibroblasts (MEFs) conferred

resistance to chemotherapeutic drugs [60] (Table 1). In

addition, SPL deficiency considerably affected sphin-

golipid metabolism in MEFs. Thus, the formation of

metabolic precursors such as ceramide, GlcCer, and

Table 1. (Continued).

Cancer

progression Sphingolipid

Molecular mechanism

involved

Sphingolipid

manipulation strategy

Effect on

cancer Biological material Reference

vein injection of

murine cancer cells

GM2 Not aim of these studies Modulation of GM2

expression using

humanized anti-GM2

antibodies

Promotion GM2-expressing SCLC

multiple organ

metastasis model

[129]

GD2 Modulation of GD2

expression using a

GD2 monoclonal

antibody

Murine lymphoma EL4

cells injected into

syngeneic C57BL/6

mice

[128]

Immune

response

S1P Lymphopenia and a

higher percentage of

effector T and natural

killer cells in the lung

and the liver

Depletion of Spns2 Inhibition Several mouse models

and cancer cell lines

[164]

a-GalCer Activation of natural killer

T cells and increase of

IL-12 p40 and IFN-c

inducible protein 10 in

serum

Intravenous injection

of dendritic cells

loaded with a-GalCer

Inhibition Patients with advanced

cancer

[156]

Gangliosides Sialic acid-dependent

inhibition of mitogen-

and antigen-induced

lymphocyte activation

Modulation of sialic

acid in human

leukemia

gangliosides

Promotion Human leukemia cells [146]
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GM3 was substantially elevated at the expense of more

complex gangliosides, levels of which in turn dropped

significantly [61]. The fact that the increased amounts

of complex sphingolipid precursors are generated in the

ER (ceramide) and in the Golgi apparatus (sphin-

gomyelin, GlcCer, GM3), whereas the reduced amounts

of complex GSL are made in the TGN (GM2, GM1,

GD1a), points to a potential transport deficit in these

cells. Together, these results illustrate the complexity

and often the duality of the relationship between sphin-

golipid metabolism and cancer development. Thus, the

addition of a sugar group to the C1-hydroxyl group of

ceramide by glucosylceramide synthase (ceramide glu-

cosyltransferase; GlcT) can add another final layer of

complication to cancer cell signaling. The production of

GlcCer (i.e., a subset of cerebrosides) can not only con-

fer resistance to chemotherapeutic drugs [62], but it can

also protect cells against the pro-apoptotic effects of

ceramide itself [63]. Taken together, these studies show

that, when trying to affect cancer cell growth, it is not

enough to attempt to manipulate the levels of any one

single sphingolipid. Rather, it is a metabolic balance of

different sphingolipids, which can either work together

or against each other to determine whether cancerous

cells will proliferate or die.

3. Step 2: Invasion

Once cells begin to proliferate, they then need to gain

the ability to invade neighboring tissue in order for the

mass to grow. This involves a number of structural

and physiological changes that confer the abilities of

migration and remodeling that are usually restricted to

either embryonic development or immune cell traffick-

ing [12]. Given that S1P is integrally involved in many

aspects of both embryogenesis and immune cell migra-

tion, it is no surprise that cancer cells have been found

to co-opt this molecule for the purposes of gaining the

ability of invasion.

Since the 1990s, S1P has been known to be a central

mediator of cell migration via intercellular cell signal-

ing [64]. In the immune system, S1P is synthesized and

exported to the extracellular matrix, where it binds

S1P receptors (Fig. 2) and triggers the signaling cas-

cades necessary for the appropriate physiological

changes to occur for immune cell migration [64].

Numerous different types of cancer have been found

to take advantage of this intercellular communication

via S1P in order to acquire the migratory capabilities

necessary for invasion, including Wilms renal tumors

[65], human glioblastoma cells [66], prostate cancer

[67,68], hepatocellular carcinoma [69], thyroid cancer

[70], breast cancer [71–73], pediatric alveolar

rhabdomyosarcoma [74], nasopharyngeal carcinoma

[75], and ovarian cancer [76,77]. While this may seem

like a virtually universal role for S1P in promoting cell

migration by intercellular communication, some stud-

ies have actually suggested that this, too, could be a

cell type-specific effect. One study found that, although

S1P promoted the invasion of epithelial ovarian cancer

cells, it actually inhibited the cell migration of immor-

talized human ovarian epithelial cells [78] (Table 1). In

an organotypic model of prostate cancer, S1P supple-

mentation restored acinar structures and blocked the

invasiveness of these 3D organotypic cultures [79].

Interestingly, both of these studies involved the

cotreatment of S1P with lysophosphatidic acid (LPA),

a serum phospholipid which is also associated with the

promotion of cell migration and tumor invasion [80].

Taken together, these two studies seem to suggest that

the presence of two bioactive lipids, which individually

promote cell migration and invasion, can actually

have the opposite effect when present in the extracel-

lular milieu at the same time. It is studies like these

that further elucidate why it is so important to never

lose sight of the larger biological context before draw-

ing conclusions on the signaling capabilities of any

one molecule.

Similarly, C1P, generated from ceramide by cera-

mide kinases (Fig. 2), represents another bioactive sph-

ingolipid with its own role in stimulating cell

migration, particularly in macrophages [81]. Given this

ability, C1P often acts either alone or in concert with

S1P to stimulate cancer cell invasion, such as in pan-

creatic cancer cells [82,83] and vascular endothelial

cells [84].

The ability of the cell to migrate and invade neigh-

boring tissue is necessarily accompanied by changes in

the shape of the cell. As structural components of the

cell membrane, therefore, it stands to reason that gan-

gliosides also have their role to play in the invasive

potential of cancerous cells, which is why aberrant gly-

cosylation of GSLs has long been known to define

tumor malignancy [7]. Furthermore, the chemical com-

position of different gangliosides gives them diverse

structural properties, which is why their relative abun-

dance in the cell membrane can have different effects

on the ability of cancerous cells to invade neighboring

tissue.

Intriguingly, variations in the expression of a certain

ganglioside as well as modifications of its sialic acid

residues can induce either procancerous or anticancer-

ous effects. Thus, overexpression of GM3 was shown

to reduce invasiveness and hence malignancy of mur-

ine bladder tumor cells [85], whereas silencing of GM3

synthase suppressed migration and invasion of murine

3263Molecular Oncology 15 (2021) 3256–3279 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A. Piazzesi et al. Sphingolipid metabolism and cancer



breast cancer cells by a mechanism involving inhibition

of the phosphoinositide 3-kinase/Akt pathway [86]. In

viral oncogene Jun-transformed cells, however, re-

expression of GM3 correlated with a reduced invasive

ability [87] (Table 1). Actually, an enhanced synthesis

of GM3 allowed for the reversion of the Jun-induced

oncogenic phenotype [87]. Likewise, exogenously

applied GM3 not only inhibited proliferation and

invasiveness of glioma cells but also significantly pro-

longed survival of rats with meningeal gliomatosis [88].

A comparable therapeutic effect of ganglioside GM3

was also obtained in bladder cancer cells and in a

mouse model of orthotopic bladder cancer [89]. These

results indicate that GM3 not only blocks cell invasion

but also affects cell–cell adhesion and induces apopto-

sis. On the other hand, de-N-acetyl GM3, a GM3

derivative lacking the acetyl group of sialic acid, was

found to be highly expressed in human melanoma cells

and critical for their invasive potential [90]. Together,

these studies clearly reflect the contrasting effects of

ganglioside GM3 on the invasive potential of different

cancer cells. Interestingly, data regarding the effect of

GM2, a direct descendant of GM3 (Fig. 1), on tumor

invasiveness and malignancy are quite consistent. It

has been long known that GM2, which is rather

weakly expressed in normal tissue, is highly abundant

in several human malignant tumors, including melano-

mas, gliomas, and neuroblastomas [91]. Recent studies

confirm that GM2 induces invasiveness in irradiation-

tolerant human lung adenocarcinoma cells [92] and

promotes invasion and hence malignancy of human

pancreatic ductal adenocarcinoma cells [93]. In con-

trast to ganglioside GM2, its direct descendent GM1

was shown to exert anticancerous effects. Thus, reduc-

tion of GM1 expression increased proliferation and

invasion of lung cancer cells, making them highly

metastatic [94]. Since these gangliosides are metaboli-

cally closely linked, one possible explanation for these

conflicting findings is that the manipulation of one

ganglioside can also cause changes in the relative

abundance of its close relatives. How manipulating

GM3, for example, can in turn affect the abundance

of GM2 and GM1 in different cell types could provide

valuable insight into the true function of these sphin-

golipids in cancer progression.

A similarly dualistic role can also be observed

with disialo-gangliosides (GDs). Thus, GD2/GD3-

positive human osteosarcoma cell lines are far more

invasive than their GD2/GD3-negative counterparts

[95], and GD3 was also found to be required for the

invasion of malignant melanomas [96]. Consistently,

inhibition of GD3 and GD2 synthesis strongly inhib-

ited the invasiveness of human lung cancer cell lines

[97]. On the other hand, overexpression of GD3 syn-

thase (sialyltransferase II; SATII; Fig. 1), thereby

increasing the concentration of GD3 in the plasma

membrane, strongly inhibited the invasiveness of a

human breast cancer cell line [98] (Table 1). Also,

the expression of the more complex ganglioside

GD1a was directly correlated with the invasiveness

of cancer cells: The higher its expression, the lower

the metastatic potential [99]. Consistently, treatment

of a highly metastatic osteosarcoma cell line with

GD1a severely impeded its migration capabilities

[100]. One possible explanation for these seemingly

conflicting roles of gangliosides in cancer cell inva-

sion is that they do not exist in a vacuum, but rather

their effects on cell shape and motility are dependent

on the other lipids that are present in the cell mem-

brane. For example, one study found that remodel-

ing of lipid rafts in a melanoma cell line by

increasing GD1b, GT1b, and GM1a while reducing

GM2, GM3, GD2, and GD3 significantly suppressed

cell growth and invasion [101]. Another study sug-

gested that exogenously supplied as well as cell sur-

face gangliosides prevent glioma cell invasion based

on their adhesion-promoting action to basement

membrane components [102].

Together, these studies show the complexity of the

effects of gangliosides on the invasive potential of

transformed cells. They indicate, moreover, that the

plasma membrane has to contain the right balance of

lipids and receptors in order for the appropriate

changes in cell shape to occur for tissue invasion.

4. Step 3: Angiogenesis

Once the cancerous mass reaches a certain size, the

cells need to find a way to supply themselves with oxy-

gen and nutrients in order to survive. To do this, can-

cer cells take advantage of processes usually reserved

for development, growth, and wound healing, by form-

ing new blood vessels that can bring the resources they

need toward the center of the newly formed mass [13].

As an intercellular signaling molecule with a role in

embryogenesis, S1P is also involved in the formation

of new blood vessels during embryonic development

[103], and cancerous cells can also appropriate this

function to their own ends. S1P has been found to be

a key modulator of angiogenesis in mouse models of

breast cancer [104] and in human diffuse large B-cell

lymphoma [105], ovarian cancer [106], liver cancer

[107], and glioblastoma [108]. Furthermore, treatment

of a mouse model of melanoma with the immunomod-

ulator FTY720 inhibited tumor growth and angiogene-

sis by internalizing S1P receptor 1 (S1P1) and
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desensitizing it to S1P [109]. In a human in vitro model

of liver cancer, the downregulation of SK1 by miR-

506 inhibited S1P production and thus tumor angio-

genesis [110]. Consistently, miR-506 was also found to

inhibit angiogenesis in human gastric cancer, though

whether this was due to S1P inhibition was not

explored [111].

As an intercellular signaling molecule, S1P is

dependent on certain receptors on the cell membrane

in order to trigger the appropriate signaling cascades

and initiate processes such as invasion or angiogene-

sis. Without those receptors, S1P will not be able to

complete its task as an intercellular messenger. Inter-

estingly, some studies suggest that different S1P

receptors can trigger opposing processes when in the

presence of S1P, indicating that the abundance of

specific receptors on the cell membrane is just as

important as the presence of the extracellular mes-

senger itself. For example, while most of the afore-

mentioned studies focused on the signaling of S1P

via the receptor S1PR1, a study in mice found that

the receptor S1PR2 actually triggers a potent anti-

angiogenic response [112] (Table 1). Consistently,

blocking S1PR2 with the antagonist JTE-013

enhanced cell migration and angiogenesis of mouse

vascular endothelial cells [113]. However, in a study

on human neuroblastoma, JTE-013-mediated inhibi-

tion of S1PR2 actually blocked angiogenesis and

tumor growth [114]. These studies highlight how

extracellular messengers and receptors interact and

elicit responses based on numerous, interplaying fac-

tors. Also, on top of that, certain gangliosides, such

as GD3 or GM2, were reported to promote tumor-

associated angiogenesis [115].

Tumor cells communicate and coordinate with one

another not only with the use of intercellular messen-

gers such as S1P, but also via the secretion of exo-

somes into the extracellular milieu. The secretory

machinery required for the packaging of these exo-

somes is dependent on the generation of ceramide in

the plasma membrane by neutral sphingomyelinase 2

(nSMase2; Fig. 2) [116], and, in a mouse breast cancer

cell line, the ceramide-dependent production of exo-

somes was required for tumor angiogenesis [117]. Fur-

thermore, a study in breast cancer cells indicated that

these exosomes also contain Globo-H ceramide, which,

when incorporated into neighboring cells, greatly aug-

mented tumor angiogenesis [118] (Table 1). Of interest,

the tumor-associated antigen Globo-H hexasaccharide

linked to ceramide [Fuca(1-2)Galb(1-3)GalNAcb(1-3)
Gala(1-4)Galb(1-4)Glc-b-ceramide] is the result of

aberrant glycosylation, a characteristic event observed

during carcinogenesis.

5. Step 4: Metastasis

If a tumor wishes to spread throughout the organism,

it must first gain the ability to metastasize. This pro-

cess cannot be completed without the acquisition of

two new abilities: First, the cancerous cells must be

able to survive the detachment from the extracellular

matrix. Second, they must be able to attach themselves

to another tissue, where they can begin anew the pro-

cesses of proliferation, invasion, and angiogenesis

[119].

Solid cancers shed circulating tumor cells (CTCs) in

the form of single or clustered cells, and the latter dis-

play an amazing ability to initiate metastasis [120].

The biological mechanism underlying the shedding of

CTC clusters from a primary tumor is largely

unknown. In a very recent study, the authors convinc-

ingly demonstrated that the majority of CTC clusters

are undergoing hypoxia, whereas single CTCs are lar-

gely normoxic. Thus, inhibition of tumor vasculariza-

tion and hence intratumor hypoxia leads to the

shrinkage of the primary tumor but simultaneously to

the formation of clustered CTCs with high metastatic

ability, whereas a pro-angiogenic therapy favors the

tumor growth but suppresses metastatic potential

through prevention of CTC cluster generation [120].

As with tumor invasion, metastasis also requires the

cell to undergo structural as well as signaling changes.

As important components of the plasma membrane,

gangliosides strongly regulate cell adhesion/motility

and thus initiate tumor metastasis [115]. Hence, speci-

fic gangliosides are associated with certain kinds of

cancer and have therefore been proposed as potential

biomarkers. In a study of breast cancer patients, GM3

was found to be an excellent diagnostic marker for the

luminal B breast cancer subtype [121], whereas GM2

has been proposed as a potential biomarker for

cholangiocarcinoma [122]. In children with neuroblas-

toma, GD2 shed from tumors into the circulation was

found to be a highly significant predictor of high-risk

tumors [123], while the ganglioside profile of patient-

derived melanoma cells was predictive of aggressive-

ness [124] and survival [125].

Although biomarker studies are by definition correl-

ative, there have also been studies implicating ganglio-

sides as having a causative role in tumor metastasis.

GalNAc-DSLc4, a ganglioside with a hybrid structure

between the ganglio- and the lacto-series (Fig. 1,

insert) isolated from a renal carcinoma cell line [126],

was found to recruit integrin b1 to lipid rafts, where

they cooperate to adhere to metastatic sites, potentially

also implicating GalNAc-DSLc4 in the promotion of

distant metastasis [127]. In a murine lymphoma model,
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treatment with a monoclonal antibody against GD2

was sufficient to suppress tumor micrometastasis [128],

while anti-GM2 antibodies inhibited multiple organ

metastasis of small-cell lung cancer [129] (Table 1). A

more recent study showed that diverse gangliosides dif-

ferentially regulate cytoskeleton and signaling mole-

cules and hence have distinct functions in tumor

progression [130]. They compared the malignancy of

the melanoma-associated gangliosides GD3 and GD2

[131,132] with that of other gangliosides, including

GM3, GM2, and GM1. Only GD3 and GD2 stimu-

lated AKT phosphorylation and hence cell growth.

Also, both GD3 and GD2 colocalized at the leading

edges of cells with F-actin. However, their effect on

invasive potential differed significantly. GD3+ cells

showed increased migration and invasion, whereas

GD2+ showed substantially increased adhesion and

spreading [130]. Consistently, the tyrosine phosphory-

lation level of p130CAS, a component of the integrin

machinery involved in cell motility [133], as well as of

focal adhesion kinase and of paxillin, was augmented

in GD3+ cells [96,134] but not in GD2+ cells [130]. In

a human malignant melanoma cell line, the colocaliza-

tion of GD3 with integrin b1 in lipid rafts on the

plasma membrane was implicated in increased

integrin-mediated adhesion and signaling often indica-

tive for malignant transformation [135]. Apparently,

GD3 is persistently expressed during tumor develop-

ment, expansion, and invasion into surrounding tis-

sues, leading to metastasis, whereas GD2 is mainly

expressed at the later stage, conferring solid adhesion

and fixation at the metastasized sites [130]. Taken

together, these studies suggest that gangliosides are

not only correlatively associated with multiple types of

cancer, but that they also have an active role to play

in the metastatic potential of tumorigenic cells.

As there is some overlap in the signaling cascades

involved in tumor invasion and metastasis, it is unsur-

prising that S1P has also been implicated in the latter.

As already mentioned above, SK1, catalyzing the sec-

ond step in the production of S1P from ceramide, was

found to be overexpressed in patient-derived breast

cancer cells. In experiments in nude mice, Sphk1

expression was found to be a key regulator in either

promoting or inhibiting spontaneous metastasis to the

lungs by controlling the expression of the metastasis-

promoting gene fascin actin-bundling protein 1

(FSCN1) [136]. Consistently, a study of prostate and

bladder cancer cells found that systemic S1P regulated

metastasis to the lungs, and genetic loss of Sphk1 sup-

pressed this phenotype by activating the metastasis

suppressor gene Brms1 [137]. Thus, SK1 upregulation

is often associated with poor prognosis and increased

cancer metastasis [136,138–140].
Anoikis is a cell death program usually activated

when cells detach from the extracellular matrix. In

order for tumorigenic cells to metastasize, they must

be able to shut down this program in order to survive

this detachment and travel through the organism to

sites at which they can form new colonies. While cera-

mides have been the focus of many cancer studies due

to their professed pro-apoptotic function, there is some

evidence that they can also promote anoikis. Cera-

mides have been shown to be powerful activators of

death-associated protein kinase (DAPK), a strong

tumor suppressor and inducer of anoikis [141]. Treat-

ment of both pancreatic and breast cancer cell lines

with nanoliposomes containing C6-ceramide resulted in

metastasis suppression by inducing anoikis [142].

Another study in melanoma and breast cancer cells

treated with C6-ceramide nanoliposomes also found a

suppression of metastasis, though whether anoikis was

involved was not investigated [143] (Table 1).

Despite evidence that ceramides are suppressors of

metastasis, other studies have found elevated ceramide

levels in cancer patients. C16- and C24-ceramides were

found to be elevated in both human head and neck

squamous cell carcinoma [144] and breast tumor biop-

sies when compared to benign controls, and C16-

ceramide was even associated with metastasis [145].

While these studies remain correlative, it is worth ask-

ing why a supposedly pro-apoptotic family of bioactive

lipids should also be biomarkers for metastatic carci-

noma. Further studies in this field that dissect the dis-

tinct roles of different ceramides in cancer will

certainly help shed light on this dilemma.

6. Step 5: Immune response

Even if a tumorigenic cell succeeds in suppressing

anoikis so that it can travel to another site, it can still

encounter immune cells that are programmed to iden-

tify and destroy transformed cells. In order to success-

fully complete metastasis, therefore, cancer cells must

evade these immune cells on patrol.

As mentioned above, tumor-derived gangliosides are

often useful oncogenic biomarkers. However, studies

from the 1980s showed that gangliosides are also

potent inhibitors of the cellular immune response

[146,147]. Based on these findings, it was hypothesized

that tumor-derived gangliosides are able to abrogate

the host antitumor immune response, thus promoting

tumorigenicity. Indeed, a few years later a correlation

between ganglioside shedding and tumorigenicity was
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established [148]. Moreover, in patients with neurob-

lastoma, the shedding of high GD2 levels at diagnosis

could be correlated with accelerated tumor progression

[149] and has also been well documented in small-cell

lung cancers, melanoma, and osteosarcomas [150–152].
It is therefore not surprising that GD2-specific mono-

clonal antibodies were extensively tested in clinical tri-

als [153] and are used as lead compounds for

continuous improvement [152,154].

While clinical studies tackle the question as to

whether or not gangliosides can have a causative as

well as a correlative role in tumor progression, other

studies have demonstrated that some cerebrosides can

affect the immune response to cancer. Natural killer T

(NKT) cells are a subpopulation of lymphocytes whose

job is to seek and destroy transformed cells, such as

metastasizing tumors. Studies have shown that, when

presented with the cerebroside a-galactosylceramide

(a-GalCer), in vivo populations of NKT cells rapidly

expand. This expansion leads to a powerful suppres-

sion of metastasis in mice and was sufficient to com-

pletely abolish the spread of B16 melanoma cells to

the liver [155]. A similar study found that injection of

dendritic cells loaded with a-GalCer also led to a rapid

NKT cell expansion in humans [156] (Table 1). Given

that this treatment was found to be well tolerated even

in very sick patients [157], clinical trials are still ongo-

ing to determine its efficacy in treating non-small-cell

lung cancer [158]. These studies elucidate an interesting

role for a-GalCer in the immune response to meta-

static cells.

As indicated in ‘Step 2: Invasion’, S1P signaling via

its receptors has long been known to perform a critical

role in immune cell motility and differentiation

[64,159]. It is therefore not surprising that a growing

body of evidence indicates that modulation of S1P and

its receptors regulates the efficacy of the immune sys-

tem in its targeting of tumorigenic cells. Thus, both

S1P concentration and S1PR1 expression are essential

for the egress of lymphocytes and na€ıve human T cells

from the thymus and lymph nodes to peripheral tissues

[160–162]. Exit of lymphocytes from lymph nodes also

is controlled by S1P released into the lymph by lym-

phatic endothelial cells [163]. Although deletion of sys-

temic SK1/S1P was reported to suppress lung

metastasis [137], the role of the immune system in this

process was answered only years later by a genome-

wide in vivo screen that identified S1P transporter spin-

ster homolog 2 (Spns2) as the missing link between

immune response and lung colonization by cancer cells

[164]. Global or lymphatic endothelial-specific deletion

of Spns2 resulted in lymphopenia and provoked a

much higher percentage of effector T cells and NKT

cells, which in turn led to a more effective targeting of

tumorigenic cells and a suppression of metastasis [164].

In bladder cancer, on the other hand, the increased

expression of S1PR1 in cancer cells was found to be

positively correlated with the number of tumor-

infiltrated regulatory T cells (Tregs), whose role is to

suppress the antitumor immune response, and hence

predicted a poor prognosis for the patients [165]. Thus,

the question arises: which factors define the role of

S1P as friend or foe of the immune response to can-

cer? Given that S1P has an important role to play in

healthy immune cell trafficking, it is likely that the role

of S1P in immune detection or evasion is highly depen-

dent on the microenvironment and biological context;

thus, any conclusions as to its role in cancer progres-

sion should take this into consideration. The presence

or even proportion of different receptors found on the

cell membranes, the composition of cellular popula-

tions in any given microenvironment, the other bioac-

tive molecules present in the extracellular milieu, or

the way that cancerous cells have reprogrammed either

their secretion of S1P or their response to S1P binding,

all could influence the interplay between the immune

system and the tumorigenic cell population.

7. Sphingolipids, inflammation, and
cancer

When the immune system mounts an attack, it elicits

what is referred to as an inflammatory response. In

the context of cancer, increased levels of inflammation

are often linked to the development and progression of

malignant tumors [166], with sites of chronic inflam-

mation being a common component of tumorigenic

microenvironments [167]. Hence, tumor cells use

inflammatory markers, including cytokines and selec-

tins, to support them in the processes of invasion,

migration, and metastasis perceived in cancer develop-

ment [166]. Different factors can lead to or exacerbate

chronic inflammation, with one group of molecules

involved being bioactive sphingolipids. Particularly,

ceramide, S1P, and C1P have been widely implicated

in immune-dependent and vascular-related chronic

inflammatory diseases due to their involvement in the

regulation of cell migration, differentiation, prolifera-

tion, apoptosis, and the stress response [168–170]. For
example, the metabolism of dietary and membrane

sphingolipids in the intestine generates ceramide, S1P,

and C1P (Fig. 1), which in turn affect growth, differ-

entiation, and apoptosis of immunocompetent cells in

the gastrointestinal tract and have been associated with

the development of inflammatory bowel disease (IBD)

and also of colon cancer [171].
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The relationship between sphingolipids, inflamma-

tion, and cancer is, however, rather complex. Although

ceramide generally acts as a powerful tumor suppres-

sor [19], it was also reported to activate transcription

factor NFjB, a key pro-inflammatory and anti-

apoptotic molecule [172]. Similarly, C1P was initially

described as pro-inflammatory based on its ability to

stimulate the release of arachidonic acid and the subse-

quent production of pro-inflammatory eicosanoids in

lung carcinoma cells [173]. A more recent study, how-

ever, describes C1P as a potent inhibitor of both acute

and chronic airway inflammation [174]. In the same

year, another study found that the systemic deletion of

acid sphingomyelinase and hence a decrease of cera-

mide are correlated with a decreased metastatic dis-

semination of tumor cells in the lung [175]. The fact

that C1P is generated at the expense of ceramide and

was shown to inhibit the activity and expression of

NFjB and of pro-inflammatory cytokines including

TNFa, IL-1b, IL-6, and macrophage inflammatory

protein-2 (MIP-2) in murine lungs and human airway

epithelial cells and neutrophils [174] argues for its pro-

tective role in pulmonary tumor dissemination [169].

On the other hand, C1P, known to promote macro-

phage migration, has been shown to also trigger

migration and thus invasiveness of tumor cells [81,83]

(Table 1).

Although the role of S1P in inflammation is rather

controversial, and subject of constant debate [169], its

role in inflammation-associated cancer development

appears to be relatively clear. An explanation might be

the fact that, in addition to its pro-inflammatory

effect, S1P signaling promotes neovascularization and

proliferation while inhibiting apoptosis [176–178].
Thus, S1P/S1PR1 signaling was shown to be closely

linked to a persistent activation of STAT3 in cancer

cells [179]. STAT3 is a transcription factor for the

S1pr1 gene, and enhanced S1pr1 expression activates

STAT3 via upregulation of JAK2 tyrosine kinase

activity and also upregulates Il6 gene expression [179].

As aberrant IL-6–JAK–STAT3 signaling is an impor-

tant mechanism for cancer initiation, development,

and progression [180], S1P/S1PR1 signaling accelerates

tumor growth and metastasis via an IL-6/JAK2-

mediated persistent activation of STAT3 [179]. This

example documents the close and reciprocal depen-

dence of S1P metabolism, inflammatory processes, and

malignant tumor progression. Consistently, in colon

cancer, which is often preceded by chronic inflamma-

tion, S1P concentration has been shown to be

increased due to downregulated SPL [181] and overex-

pressed SK1 [47]. This once more indicates a link

between carcinogenesis and the disturbed S1P

metabolism, particularly with high concentrations of

S1P. Indeed, accumulation of S1P caused by SPL defi-

ciency was shown to promote cell transformation

through pathways involving STAT3, JAK, and S1PR1

[41].

A careful look at the target molecules induced by

ceramide, C1P, and S1P in inflammation and cancer

(see also Table 1) reveals that they are rather related,

if not the very same: for example, NFjB, TNFa, and
IL-6. Considering the closely interconnected metabo-

lism of ceramide, C1P, and S1P, the question of

whether the effects reported were always correctly

assigned or whether, for example, the pro-

inflammatory activities of ceramide were in fact medi-

ated by C1P or S1P and vice versa is justified (Fig. 1).

Moreover, sphingolipids are linked via other mole-

cules, such as ethanolamine phosphate, choline, serine,

and fatty acids, to other lipid classes, such as eicosa-

noids and phospholipids, which play their own role in

inflammation and cancer. Constructive debates and

future studies will contribute to a better understanding

of the biochemical interconversions between bioactive

lipids and their role in inflammation-associated cancer

development.

8. Resistance to treatments

While many different chemotherapeutic compounds

have been discovered over the years, the ability of

tumorigenic cells to acquire a resistance to these treat-

ments remains one of the most troubling clinical prob-

lems to overcome. In this regard, many studies have

not only focused on the targeting of sphingolipids as a

possible therapeutic strategy, but also as a means to

resensitizing tumorigenic cells to already established

chemotherapeutic drugs.

As mentioned in ‘Step 1: Proliferation’, the pro-

apoptotic properties of ceramide have made it a focus

of cancer treatment, whether by direct supplementa-

tion [182] or because many chemotherapies have been

found to act via an increase in endogenous ceramide

levels [25,26]. Further studies have also implicated cer-

amide in chemoresistance. For example, one study

found that overexpression of acid sphingomyelinase,

resulting in the release of ceramide from sphin-

gomyelin (Figs 1 and 2), sensitized both human and

murine glioma cells to chemotherapy [183]. Another

study, in patients with stage IV breast cancer, found

that C16:0 ceramide was suppressed after chemother-

apy by stimulating ceramide glucosyltransferase (GlcT;

see also Figs 1 and 2). Restoring ceramide levels either

by inhibiting GlcT or by inhibiting C2-ceramide treat-

ment resensitized breast cancer cells to chemotherapy
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[28]. Furthermore, elevated SK1 protein levels (Figs 1

and 2) correlated with poor prognosis in patients with

breast cancer [139], and treatment with either an SK2

inhibitor [184] or a ceramide analog [185] restored

chemosensitivity to both chemo- and endocrine-

therapy-resistant breast cancer cells. Similarly, in drug-

sensitive myeloid leukemia cells, chemotherapy-

induced inhibition of SK1 activity coupled with cera-

mide generation, while, in chemoresistant myeloid

cells, SK1 activity persisted and no ceramide was gen-

erated upon drug treatment [186]. Accordingly,

chemosensitivity could be induced by treatment with

cell-permeable ceramide analogs, whereas enforced

SK1 expression and activity triggered chemoresistance

[186].

However, other studies have implicated ceramide as

a key modulator of the acquired resistance that some

cancer cells develop in response to chemotherapeutic

drugs. In other models of breast cancer, treatment

with doxorubicin can augment migration and invasion

[187]. Later, it was shown that doxorubicin increases

neutral sphingomyelinase 2 expression, which releases

ceramide at the plasma membrane (Fig. 2), driving

cancer cell migration and invasion [188]. These studies

stress the importance of which subcellular compart-

ment the ceramide is released from as being one of the

determining factors of the bioactive function that it

will carry out, as also outlined in the ‘many ceramides’

hypothesis [189].

When modulating the abundance of distinct sphin-

golipids by affecting their metabolism, it is always

important to remember that they are interconnected;

thus, affecting one enzyme will often influence the

abundance of more than one member of the sphin-

golipid family. For example, only two enzymatic steps

are needed to generate S1P from ceramide and

vice versa (Fig. 1). This further complicates our under-

standing of the effects of ceramide, as S1P has its own

role to play in chemoresistance. For example, studies

in lung cancer [190], ovarian cancer cell lines [191],

and neuroblastoma [192] demonstrate that the stimula-

tion of SK2 expression conferred chemoresistance via

S1P, whereas inhibiting either SK2 or S1P receptors

could abolish this effect. Mice deficient in S1PL, the

enzyme which irreversibly cleaves S1P, have also been

found to be resistant to chemotherapy-induced apop-

tosis [60]. However, S1PL deficiency has been shown

to have a very cell type-specific effect on the abun-

dance of different sphingolipids, which also implies

that its effect on a cellular response to chemotherapy

would likewise depend on the cell type in question.

For example, in neurons, S1PL deficiency results only

in accumulation of S1P and sphingosine, whereas, in

MEFs, it also leads to an accumulation of ceramide,

GlcCer, and ganglioside GM3 [61]. These studies fur-

ther underline the importance of proceeding with cau-

tion when attempting to modulate sphingolipids by

affecting their metabolic enzymes, as a disruption of

the balance between recycling and de novo synthesis

can have unforeseen consequences in different cellular

environments.

As mentioned previously, gangliosides found on the

plasma membrane have been implicated in oncogenic

signaling [193,194] and thus have been proposed to be

useful targets for cancer treatment [195]. While one

recent study suggests that targeting O-Acetyl-GD2, a

derivative of GD2 ganglioside in which the outer sialic

acid residue is modified by an O-acetyl ester, might be

helpful in treating chemoresistant glioma cells, particu-

larly if used in combination with other drugs [196],

most studies have focused on the modulation of GM3

metabolism as a means to address chemoresistant can-

cer cells.

The human plasma membrane-associated

ganglioside-specific sialidase 3 (neuraminidase 3;

NEU3) is crucial in the regulation of cell surface pro-

cesses and has been found to be upregulated in colon

[197], kidney [198], and ovarian [199] cancer cells. The

increased expression of NEU3 promoted cell motility

and suppressed apoptosis, thus augmenting tumor

malignancy. Glycolipid analysis revealed a decrease of

GM3, which was degraded by NEU3 to LacCer

(Fig. 1), but no changes in GD3 [197,198]. In renal

cancer cells, the decrease of GM3 was correlated with

the activation of the PI3K/Akt signaling cascade [198].

Conversely, in NEU3-silenced cells, drug resistance,

invasive potential, and adhesion were found to be

decreased, together with restored GM3 and increased

GD1a levels [200]. In prostate cancer, NEU3 has also

been found to be upregulated in androgen-

independent, hormone-therapy-resistant cancer cells

but not in androgen-sensitive cells [201]. However,

forced overexpression of NEU3 induced hormone

resistance in therapy-sensitive cells. Recently, bound

polyphenols from millet bran were shown to resensitize

chemoresistant human colorectal cancer cells to

chemotherapy by inhibiting NEU3, thus preventing

GM3 degradation and increasing its amount in the

plasma membrane [202].

Taken together, one might reach the conclusion

that decreasing GD2 and increasing GM3 (Fig. 1) in

the plasma membrane is a good strategy in the battle

against chemoresistance. However, other studies may

lead one to a different conclusion. For example,

GM3 is abundant in the plasma membrane of both

highly metastatic melanoma cells [203] and cisplatin-
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and doxorubicin-resistant lung cancer cells [204,205].

Modulation of GM3 amounts led to the conclusion

that this ganglioside directly conferred chemoresis-

tance to Lewis lung carcinoma cells [205]. Once again,

these studies together show that affecting the balance

of different sphingolipids is a better determinant of

how a cell population will behave than is the abun-

dance of any one member of the sphingolipid family.

While remaining technically challenging, a more com-

prehensive picture of relative sphingolipid abundance

is what is often needed to unravel and fully under-

stand the cell’s response to different chemotherapeutic

compounds. For example, what other sphingolipids

are affected upon downregulation of NEU3, not just

on the plasma membrane, but within the cell? Is it

possible that it is not only the chain length or

subcellular compartment of ceramide which determi-

nes its function, but also the relative abundance of

S1P? Further studies are needed to see whether this

is in fact what is behind these apparently conflict-

ing roles of certain sphingolipids in cancer treatment.

9. Conclusions and perspectives

In this Review, we highlight the dual role of sphin-

golipids in cancer and how different tumors can either

use sphingolipids to their advantage or find their pro-

gression blocked by their presence. While it is impossi-

ble for any one study to take every molecular event or

response into account, we wish to emphasize that the

greater biological context is key to not only under-

standing cancer progression, but also in predicting

how tumors or even patients might respond to treat-

ment with any one of these bioactive lipids. The inter-

play between different cellular populations, the

readiness with which these cells might metabolize or

transform one sphingolipid into another, the composi-

tion of lipid rafts and the presence of receptors in the

cell membrane, can all influence how cells will respond

to the presence of sphingolipids.

Dysregulation of sphingolipid metabolism has been

demonstrated in several cancers, representing an

important step in tumorigenesis from initiation and

progression to host immune response. In this context,

we strongly recommend an excellent review on the role

of sphingolipid metabolism in melanoma progression

and immune response [206]. Despite the multitude of

aspects reported in the present Review, which some-

times appear conflicting, we feel that there are congru-

ent key findings that warrant increased awareness,

particularly of the larger biological context in which

these bioactive sphingolipids find themselves.

The cell membrane and its components, including

gangliosides in particular, open the door for the devel-

opment of new therapeutic strategies against cancer

[193,207]. Thus, the high and stable presence of GD2

on cancer cells in neuroblastoma and limited expres-

sion on relevant normal tissues permits diagnosis and

detection of metastases, but also treatment monitoring

and, most importantly, targeting of the tumor itself.

Note that therapeutic targeting of ganglioside GD2 is

most advanced in neuroblastoma, the most common

extracranial tumor in childhood [154]. Moreover, gan-

gliosides GD1a and GM1a were proposed as potential

improvers of the chemopreventive and/or therapeutic

efficacy against human colon cancer [208]. But ganglio-

sides are more than membrane components that mod-

ulate signaling and skeleton proteins, as several of

their metabolic intermediates emerged as critical regu-

lators of cellular processes with direct relevance to can-

cer, including growth, differentiation, apoptosis, and

senescence [209]. It is therefore not surprising that dys-

regulation of their metabolism can affect the tumori-

genic potential of numerous cell types. As shown here,

targeting of enzymes, especially SK1, SPL, ceramide

kinases, and GlcCer-synthase, is a promising tool to

overcome cancer progression.

Much has been achieved over many decades of

research, but there is also a huge effort ahead of us.

Thus, several molecular mechanisms regarding the

mode of action specifically of S1P–S1PR signaling on

proliferation, neovascularization, and inflammation

have been uncovered, but there are still many open

questions regarding, for example, the contrasting

effects of ceramides of different chain length in diverse

cancers. Also, can the host response to the tumor be

improved by counteracting the generation and shed-

ding of certain gangliosides? It is possible that, given

these complex, context-dependent roles in cancer pro-

gression, future therapies will include a certain amount

of cellular characterization in order to ensure a suc-

cessful outcome. Future studies will find answers to

these and other questions regarding sphingolipid meta-

bolism and cancer. However, the targeting of sphin-

golipid metabolism remains a promising strategy to

overcome cancer.
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