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Automated liver tumor detection in abdominal ultrasonography 
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Background: Although diagnostic ultrasound can non-invasively capture the image of abdominal viscera, 
diagnosis of the continuous ultrasound liver images to detect a liver tumor effectively and to determine 
whether the detected is benign or malignant is nontrivial. In order to minimize the gaps in diagnostic 
accuracy depending on doctor’s proficiency, we built an automated system to support the ultrasonography of 
liver tumors by employing deep learning technologies. 
Methods: We constructed a neural network model for the automated detection of tumor tissues and blood 
vessels from the sequential liver ultrasound images. Faster region-based convolutional neural networks 
(Faster R-CNN) is employed as a base model for the object detection, which can output the detection results 
in 4 frames per second and enable the system to be particularly suitable for the real time ultrasonography. 
Moreover, we proposed a new neural network architecture feeding both the current and previous images into 
Faster R-CNN. For training the models, intraoperative ultrasound images obtained from one hepatocellular 
carcinoma (HCC) patient were used. The obtained image was a multifaceted observation of the liver and 
includes one HCC and some blood vessels. We labeled 91 images with the help of a liver specialist. We 
compared the tumor detection performance of the plain Faster R-CNN model with that of the proposed 
model.
Results: We find that both the models performed well in detecting HCC and blood vessels, after training 
with 400 epochs using Adam. However, the mean precision of our model reaches 0.549, which is 0.019 better 
than that of the plain Faster R-CNN, and the mean sensitivity of our model about HCC reaches 0.623±0.385 
for 30 scenes of sequential liver ultrasound images, which is also 0.146 better than that of the plain Faster 
R-CNN model.
Conclusions: The comparison between the proposed model and the plain Faster R-CNN model shows 
that we achieved better accuracy in tumor detection, in terms of the mean precision as well as the mean 
sensitivity, with the proposed model.
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Introduction

In an era where deep learning is widely applied to the image 
recognition (1-3), the technology has attracted attention in 
the medical field as well. The use of deep learning models 
for the automated diagnosis based on computed tomography 
(CT) (4-6) or magnetic resonance imaging (MRI) (7-9) 
images has been proposed in several literatures. On the other 
hands, there are some studies of the classification based on 
ultrasound images of thyroid nodules (10-12), breast cancer 
(13,14), and liver fibrosis (15). The reason why deep learning 
is difficult to apply to ultrasonography mainly lies in that 
the dynamic images obtained from ultrasonography are a 
series of cross-sectional objects, whereas most research on 
deep learning image recognition focused on images acquired 
optically outside an object. Dynamic cross-sectional images 
taken during ultrasonography differ very much depending 
on the angle and the position of ultrasound probe, a fact 
which requires improvements of the existing deep learning 
technology in order to extract features from images with 
diverse qualities and characteristics. In addition, unlike in a 
CT or MRI scan, position and angle of the ultrasound probe 
also strongly depend on the operation method of the doctor 
and the state of the patient. Therefore, more versatile training 
data and novel neural network architectures are needed for 
the application of deep learning in ultrasonography than in 
CT or MRI.

The current study concerns the automated diagnosis of 
a liver tumor based on ultrasonography. As hepatocellular 
carcinoma (HCC) is a major tumor of the liver with 
no early symptoms, a regular examination for HCC is 
recommended. Being a non-invasive and simple method, 
ultrasonography is a more popular examination for 
HCC as compared with CT or MRI. On the other hand, 
identifying HCC based on ultrasonography requires 
expertise and experience, and its accuracy also depends 
on the skill and experience of the doctor to a large extent. 
In other words, only with the treatment of a skilled and 
experienced doctor can the accuracy of diagnosis be ensured 
in the ultrasonography examination. The instability of 
ultrasonography takes root in the fact that a doctor needs 
to visualize internally the three-dimensional liver through 
the ultrasound monochrome images, which are dynamically 
changing cross-sectional images of the liver. Recognizing an 

object from its cross-sectional liver images means properly 
mapping those images into tumor tissues, blood vessels, and 
other areas of the liver with rich physiological knowledge. 

The aim of our study is to build a deep learning system 
that can detect the liver tumor from ultrasound images. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://hbsn.amegroups.
com/article/view/10.21037/hbsn-21-43/rc).

Methods

Section “A model of tumor detection based on two 
sequential images” briefly describes the tumor detection 
model. Faster R-CNN (16) and its three component 
layers are summarized in section “Basic object detection 
framework: Faster R-CNN”. The aggregation framework 
based on two sequential images is described in section 
“Aggregation framework based on two sequential frames”. 
The dataset for tumor detection was described in section 
“Dataset”. Training settings and the evaluation method 
are described in section “Training settings and evaluation 
method”.

A model of tumor detection based on two sequential images

Our purpose is to highlight the location of tumors and 
blood vessels with differently colored square frames on 
ultrasound video in real time. To achieve this aim, we 
created a model of tumor detection based on two sequential 
images. The base framework for our model is Faster 
R-CNN (16), a deep learning object detection model that 
can process 4 frames per second. Extra layers are added and 
information is fed into Faster R-CNN in order to catch 
three-dimensional features of objects from two sequential 
cross-section images. Figure 1 shows an overview of the 
framework. When recognizing a tumor from ultrasound 
video, essentially the doctor reconstructs the three-
dimensional structure of the tumor in his or her own mind 
from continuous changes in the video. Expecting that 
deep learning mimics the above recognition process, we 
constructed a model capturing sequential images and the 
change in the time direction. Given two sequential images, 
aggregation layers will extract the three-dimensional 
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Figure 1 Overview of a model of tumor detection based on two sequential images. FE, Feature Extractor; RPN, Region Proposal Network; 
CN, Classification Network.

features by combining features in the previous image, the 
current image, and the optical flow information which is the 
change in the time direction estimated from the previous 
and current images. The Region Proposal Network (RPN) 
and Classification Network (CN) are responsible for 
predicting the precise position as well as labeling objects 
based on the three-dimensional features obtained earlier. 

Basic object detection framework: Faster R-CNN

Faster R-CNN is a well-known method of object detection. 
Shown in Figure 2, it consists of three components: a 
Feature Extractor (FE), a RPN, and a CN. All the three 
component layers have a neural network from end to end, 
enabling faster processing of information. The role of each 
layer is described below.

FE
FE consists of a deeply connected convolutional neural 
network. Given an image input, FE outputs a map of 
feature vectors expressing objects in the image. The feature 
vector is represented by a multidimensional vector based on 
information near each pixel of the object. In order to extract 
the feature vectors, FE must be trained with a large number of 
images. As there are not enough ultrasound images to train FE 
in this study, the pretrained network “resnet50” (17) which was 
trained with the ImageNet classification dataset (18) is used as 

the initial setting. 

RPN and CN
RPN is a convolutional neural network which identifies 
regions containing the objects in the image from a feature 
vector map output from FE. On the other hand, CN is a 
fully connected neural network that predicts the label of 
an object as well as the precise area where objects may be 
found based on proposed regions and the feature vector 
map. Like FE, RPN and CN need to be trained with a large 
amount of data to perform their tasks, hence the pretrained 
networks are used as initial settings.

Aggregation framework based on two sequential frames

We added new layers to obtain three-dimensional features 
by synthesizing two-dimensional features extracted from 
the sequential ultrasound images. As shown in Figure 1, 
the aggregation framework consists of five parts: a previous 
FE, a current FE, an optical flow network, a summation 
layer, and an aggregation layer. The previous and current 
FEs use the same networks as the FE described above 
and extract features from the previous and current frame. 
The optical flow network is an end-to-end convolutional 
neural network that maps the two-dimensional movement 
vector for each pixel in the previous and current frame. 
The optical flow network has been proposed as FlowNet 
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in (19) and several improved models have been proposed 
(20,21). In this study, we used pretrained LiteFlowNet (22),  
which can quickly map movement vectors than other 

FlowNets. Figure 3 shows a sample of obtained optical 
flow map from the sequential ultrasound images. The 
map was generated as an optical movement vector of 
each pixel in the two-dimensional direction. The optical 
flow map in Figure 3 is an image in which the movement 
amount vector is converted into an RGB color model with 
the amount of change in the horizontal direction as red, 
the amount of change in the vertical direction as green, 
and blue as a fixed value of 111. The red and green code 
values indicate a positive direction if they are larger than 
111. It can be seen that the yellow blood vessels in the 
center of the optical flow map are moving in the lower 
right direction. The summation layer and aggregation 
layer are networks to synthesize the features map obtained 
from the aforementioned networks and to extract a three-
dimensional features map. Synthesis consists of two steps. 
First, the summation layer adds a movement vector map 
to the previous features map as different channels for each 
coordinate. Second, the aggregation layer uses a bottleneck 
structure (17,23) to combine the current features map 
and the previous features map. Through this processing, 
the summation layer outputs information in the previous 

Feature vector map
Proposed regions

CN

RPNFE

Input 
image

Detected 
objects

Figure 2 Overview of Faster R-CNN. FE, Feature Extractor; 
RPN, Region Proposal Network; CN, Classification Network; 
Faster R-CNN, faster region-based convolutional neural networks.

Previous frame Current frame

Optical flow map

Figure 3 The sample of optical flow map obtained from two sequential images. The optical flow map was generated as an optical movement 
vector of each pixel in the two-dimensional direction from sequential images. Red color code indicates the amount of change in the 
horizontal direction. Green color code indicates the amount of change in the vertical direction. Blue color code is set as a fixed value of 111.
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features map and movement information that is important 
to tumor detection. A features map including changes in 
three dimensions is generated by the aggregation layer and 
combined with the current features map.

Dataset

To evaluate our model, a training dataset is created from an 
ultrasound video of a patient with HCC at The University 
of Tokyo Hospital. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). This 
study was approved by the appropriate institutional review 
board of Graduate School of Medicine and Faculty of 
Medicine, The University of Tokyo (No. 2019166NI) and 
informed consent was obtained in the form of opt-out on 
the website. The video is a 2 min 58 s video taken during an 
intraoperative ultrasonography performed during surgery 

on one HCC patient. The video contained one tumor and 
its size was about 2 cm. We picked some scenes, which are 
1.1 s in total, from the video where tumors and blood vessels 
were continuously visible and cropped. Ultrasound images 
from the videos were labeled with a rectangular frame 
and classified as either tumor or blood vessel, as shown in  
Figure 4. Labeling for tumor and anatomical structure 
was done with experienced HPB surgeon. The location 
of tumors was recognized by preoperative contrast-
enhancement CT (CE-CT) images, EOB-MRI images, 
intraoperative ultrasound (IOUS) images and post-operative 
pathological findings. The whole labeled data were obtained 
from 91 images. Seventy-two images of the dataset were 
used to train the model and 19 images were used to evaluate 
the model. 

Training settings and evaluation method

To realize the tumor detection, it is necessary to repeatedly 
train the model with the correct data. The procedures 
of training are as follows. The first step is inputting the 
image of the training dataset to the model and predicting 
the coordinates and labels of the objects in the image. 
The second step is calculating the error between the 
correct outputs and predicted outputs. The third step is 
optimization of the parameters to reduce the error. We 
used Adam (24), which is often used in deep learning, as the 
optimization method. Adam is a gradient descent algorithm 
with an adaptive momentum that computes adaptive 
learning rates for each parameter of neural networks. These 
processes are called epoch. The error usually becomes 
smaller through multiple epochs. However, this only 
indicates that the trained model can detect the objects with 
high accuracy for known data. Therefore, we train the 
model with the 72 images divided for training in section 
“Dataset” as the training dataset and evaluate COCO mean 
average precision (mAP) (25) for 19 images divided for 
evaluation in section “Dataset” as the heretofore unseen 
dataset. As for the evaluation of accuracy, mAP is a general 
unitless metric for the object detection considering not only 
the accuracy of the label of object predicted by the model but 
also the accuracy of the detected area. The mAP measures 
Average Precision for intersection over union (IoU) from 
0.5 to 0.95 with a step size of 0.05, which is the actual metric 
for object detection. There are other metrics such as average 
precision at IoU =0.50 (AP50) and average precision at IoU 
=0.75 (AP75), which are less strict than mAP.

Original images Labeled images

Figure 4 Examples of training images.
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Results

Performance evaluation

We trained our model and Faster R-CNN with 400 epochs 
using Adam with learning rates starting at 1×10−3. The 
evaluation results are shown in Table 1. The results are 
the best values in 400 epochs. Each model performed well 
at detecting tumors and blood vessels. The mAP of our 
model reaches 0.549, which is 0.019 better than the average 
accuracy of Faster R-CNN. 

Comparison of sensitivity by label

Our model showed better results in mAP for evaluation data 
in section “Performance evaluation”. However, it is difficult 
to accurately evaluate the generalization performance of the 
models because the data collected in this study is obtained 
from only one patient and the size of data is small. For model 
improvement and performance comparison, we applied the 
two top-performing models obtained in section “Performance 
evaluation” to 30 scenes extracted from the video mentioned 
in section “Dataset”. Each scene has 5 images that were 
not included in the training and evaluation data. The total 
number of the images reaches 150. These images contain 
142 tumors and 689 blood vessels. We applied each model to 
the 30 scenes and tallied the object count as 1 whenever IoU 

between true area and predicted area is 0.5 or more while 
the label is also correct. We calculated sensitivities for each 
label per scene. The mean sensitivity per scene of each model 
and the paired two-samples t-test are shown in Table 2. The 
mean sensitivity per scene of our model reaches 0.627±0.390, 
which is 0.171 better than that of Faster R-CNN. The P 
value in tumor detection performance is 0.003. Lastly, results 
of tumor detections predicted from some scenes are shown in 
Figure S1.

Discussion 

The system built in this study focuses on morphological 
distinguishment between tumor tissues and blood vessels in 
the ultrasound images. Many object detection models, such 
as Faster R-CNN (16), Single Shot Detector (SSD) (26),  
and You Only Look Once (YOLO) (27), have been 
proposed for general object recognition and shown excellent 
results in detecting people or cars. The processing speed 
of Faster R-CNN is 4 frames per second, slower than the 
other methods though, can determine the position of the 
object with a higher accuracy. Furthermore, we can detect 
the specific area containing the object like segmentation by 
extending Faster R-CNN to Mask R-CNN (28). Hence, we 
used Faster R-CNN as the baseline framework in this study. 
The system will enable a simple and remote examination of 
HCC from ultrasound images, without consulting a liver 
specialist. Hence, it can be expected that the early detection 
of HCC may be realized with such a system in the near 
future.

As a related task, there are the detection and classification 
of thyroid nodules. In thyroid nodule recognition 
in ultrasound images, deep learning model based on  
YOLOv2 (29)  showed performances  comparable 
to experienced radiologists (10). Unlike the thyroid 
ultrasonography, liver ultrasonography is often observed 
from multiple angles, and the viewpoints changes 
significantly. Therefore, it would also be difficult to apply 
the method to ultrasound liver images in a straightforward 
manner,  because object  detect ion model  such as 
YOLOv2 and Faster R-CNN used to be employed in the 
identification of two-dimensional features from a single 
image. To capture features of dynamic ultrasound images, 
a new object detection model has to be constructed for 
extracting the three-dimensional features from the dynamic 
ultrasound images.

Our model showed better performance than Faster 
R-CNN does in terms of mAP, which is a general criterion 

Table 2 Comparison of mean sensitivity and detection results by 
paired two-samples t-test

Label
Mean sensitivity per scene

P value t-value
Our model Faster R-CNN

Tumor 0.627±0.390 0.456±0.411 0.003 −2.921

Blood vessel 0.558±0.201 0.576±0.202 0.290 −0.559

Faster R-CNN, faster region-based convolutional neural 
networks.

Table 1 Comparison of AP in tumor detection

Accuracy
Methods

Our model Faster R-CNN

Mean AP 0.549 0.530

AP50 0.887 0.881

AP75 0.641 0.625

AP, average precision; Faster R-CNN, faster region-based 
convolutional neural networks.

https://cdn.amegroups.cn/static/public/HBSN-21-43-Supplementary.pdf
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for object detection. A comparison of sensitivity to 
heretofore unseen sequential images in section “Comparison 
of sensitivity by label” shows that the performance of our 
model in the detection of tumor is higher. In the paired two-
samples t-test, the P value in tumor detection performance 
was below 0.05, the standard of a statistical difference. On 
the other hand, there was no significant difference between 
both models in the sensitivity of blood vessels. Rather, our 
model showed a tendency to detect one blood vessel as a 
plurality of objects in Figure S1. The reason that our model 
showed the better performance only in detecting tumors 
is that the shape and position of the tumor do not change 
much between the two sequential frames, while the shape 
and position of the blood vessels vary significantly. When 
the change of the object between two frames is small, the 
aggregation framework can easily recognize the same object 
in the two frames as the same and make the features map 
reflect this recognition. On the other hand, if the change 
of the object in two frames is large, the same object may be 
recognized as different objects, hence the detection is not 
successful. This phenomenon can be seen from the result 
that one blood vessel is detected as a plurality of objects in 
other scenes of Figure S1. In addition, as a common trend 
in detections, shadows are mistakenly recognized as blood 
vessels in both models, and blood vessels outside the liver 
region are also detected. 

In section “Results”, 72 images were used as training 
data, and the total of 169 unlearned images were used as 
evaluation data. The evaluation data is used more than 
twice as much as the training data, and it is considered 
that the amount of data is sufficient for evaluating the 
detection performance of the ultrasound image. However, 
there is few learning data to evaluate the generalization 
performance about the tumor detection and blood vessels 
are not included in the data. The amount of data used in 
the study of Faster R-CNN and the studies applying image 
recognition to CT (4-6) or MRI (7-9) is enormous, exceeded 
at least triple-digits. As a study using deep learning related 
tumor detection with dynamic ultrasound images, there 
are erosions and ulcerations detection model trained with 
440 dynamic images of wireless capsule endoscopy (30) and 
breast cancer detection model trained with 8,145 images 
of ultrasonography (31). Comparing these studies with our 
study, the amount of data is overwhelmingly insufficient. 
A large amount of diverse data is usually required for deep 
learning, and it is only possible to effectively recognize 
unlearned data by learning the features of general objects 
from the data. In addition, there is a lack of diversity because 

the data used in our study was obtained from one patient. 
Training the detection model with dynamic ultrasound 
images of the liver requires more diverse data than the 
CT and MRI. Usually, when performing an ultrasound 
examination of the liver, the viewpoint of ultrasonography 
differs depending on the operator and the position of the 
tumor. For more accurate tumor detection, it is desirable to 
collect not only images of liver tumors but also images of 
the liver and extrahepatic object taken in various situations 
from various angles. Moreover, the anatomical feature 
of liver and tumor appearance could be diverse by each 
patient. Thus, it is necessary to collect data from as many 
patients as possible to create the versatile system. Ensuring 
this diversity will be one of subject for future study. For 
additional learning data, it is appropriate to use images 
obtained from an intraoperative ultrasonography as we did 
in this study. Because an intraoperative ultrasonography is 
possible to obtain images from multiple directions without 
being disturbed by an intestinal tract, bones, and muscle 
tissues, compared with an extracorporeal ultrasonography. 
However, intraoperative ultrasonography, which can obtain 
a variety of liver images, may increase the cost of model 
training and training data creation. Meanwhile, there 
are data augmentation methods which can compensate 
for such shortage of data amount and diversity. We are 
planning to use Random Erasing (32) and noise addition 
which have been proposed as data augmentation for general 
still images. In addition, Generative Adversarial Network 
(GAN) (33) which generates similar data to learned data 
is also considered effective method for data augmentation. 
However, while GAN can generate synthetic dynamic 
ultrasound images, we basically require it to generate 
continuous ultrasound images as one scene. This is because 
it is not useful as learning data unless generating data similar 
to actual situation. There is the study of GAN (34) for the 
generation of continuous data. In that study, by inputting 
the facial expression into a model which has been trained 
with images of a particular person, images of that person 
having the facial expression can be created. By applying this 
method into the ultrasound image of the liver, continuous 
ultrasound may be created by inputting the tumor position 
which is designated continuously. If it can be applied to 
ultrasound images, we shall solve the problem of lack of data.

In conclusion, we developed a deep learning model using 
to detect a liver tumor in dynamic ultrasound images. In 
situations involving a limited amount of data, our model 
performs better than Faster R-CNN. In the future, we will 
collect more data on various liver tumors and improve our 

https://cdn.amegroups.cn/static/public/HBSN-21-43-Supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-21-43-Supplementary.pdf


Karako et al. Automated liver tumor detection in abdominal ultrasonography682

© HepatoBiliary Surgery and Nutrition. All rights reserved. HepatoBiliary Surg Nutr 2022;11(5):675-683 | http://dx.doi.org/10.21037/hbsn-21-43

model to detect tumors and detailed areas. 

Acknowledgments 

Funding: This work was supported by JSPS KAKENHI 
(20K20214) to YM; and a grants-in-aid of the 106th annual 
congress of JSS Memorial Surgical Research Fund, Tokyo, 
Japan to YM.

Footnote

Reporting Checklist: The authors have completed the STARD 
reporting checklist. Available at https://hbsn.amegroups.
com/article/view/10.21037/hbsn-21-43/rc

Data Sharing Statement: Available at https://hbsn.
amegroups.com/article/view/10.21037/hbsn-21-43/dss

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://hbsn.
amegroups.com/article/view/10.21037/hbsn-21-43/coif). 
YM reports grants form JSPS KAKENHI and a grants-in-
aid of the 106th annual congress of JSS Memorial Surgical 
Research Fund. KH serves as an unpaid editorial board 
member of Hepatobiliary Surgery and Nutrition. The other 
authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
appropriate institutional review board of Graduate School 
of Medicine and Faculty of Medicine, The University of 
Tokyo (No. 2019166NI) and informed consent was taken 
from all individual participants. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet 
classification with deep convolutional neural networks. 
Proceedings of the 25th International Conference on 
Neural Information Processing Systems. Lake Tahoe, NV, 
Dec. 2012:1097-105.

2. He K, Zhang X, Ren S, et al. Spatial pyramid pooling in 
deep convolutional networks for visual recognition. IEEE 
Trans Pattern Anal Mach Intell 2015;37:1904-16.

3. Ronneberger O, Fischer P, Brox T. U-net: Convolutional 
networks for biomedical image segmentation. Medical 
Image Computing and Computer-Assisted Intervention 
(MICCAI), Springer, LNCS, 2015;9351:234-41.

4. Sharma B, Venugopalan K. Classification of hematomas in 
brain CT images using neural network. 2014 International 
Conference on Issues and Challenges in Intelligent 
Computing Techniques (ICICT). 7-8 Feb. 2014; 
Ghaziabad, India. IEEE, 2014:41-6.

5. Teramoto A, Fujita H, Yamamuro O, et al. Automated 
detection of pulmonary nodules in PET/CT images: 
Ensemble false-positive reduction using a convolutional 
neural network technique. Med Phys 2016;43:2821-7.  

6. Huang X, Shan J, Vaidya V. Lung nodule detection in 
CT using 3D convolutional neural networks. 2017 IEEE 
14th International Symposium on Biomedical Imaging 
(ISBI 2017). 18-21 April 2017; Melbourne, VIC, Australia. 
IEEE, 2017:379-383.

7. Shi J, Zheng X, Li Y, et al. Multimodal Neuroimaging 
Feature Learning With Multimodal Stacked Deep 
Polynomial Networks for Diagnosis of Alzheimer's 
Disease. IEEE J Biomed Health Inform 2018;22:173-83.

8. Pereira S, Pinto A, Alves V, et al. Brain Tumor 
Segmentation Using Convolutional Neural Networks in 
MRI Images. IEEE Trans Med Imaging 2016;35:1240-51.

9. Saman Sarraf, Ghassem Tofighi, for the Alzheimer’s 
Disease Neuroimaging Initiative. DeepAD: Alzheimer’s 
Disease Classification via Deep Convolutional Neural 
Networks using MRI and fMRI. bioRxiv 070441. doi: 
https://doi.org/10.1101/070441. 

10. Wang L, Yang S, Yang S, et al. Automatic thyroid nodule 
recognition and diagnosis in ultrasound imaging with the 
YOLOv2 neural network. World J Surg Oncol 2019;17:12.

11. Chi J, Walia E, Babyn P, et al. Thyroid Nodule 
Classification in Ultrasound Images by Fine-Tuning 
Deep Convolutional Neural Network. J Digit Imaging 
2017;30:477-86.

12. Persichetti A, Di Stasio E, Coccaro C, et al. Inter- and 

https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/rc
https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/rc
https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/dss
https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/dss
https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/coif
https://hbsn.amegroups.com/article/view/10.21037/hbsn-21-43/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


683

© HepatoBiliary Surgery and Nutrition. All rights reserved. HepatoBiliary Surg Nutr 2022;11(5):675-683 | http://dx.doi.org/10.21037/hbsn-21-43

HepatoBiliary Surgery and Nutrition, Vol 11, No 5 October 2022

Intraobserver Agreement in the Assessment of Thyroid 
Nodule Ultrasound Features and Classification 
Systems: A Blinded Multicenter Study. Thyroid 
2020;30:237-42.

13. Xu Y, Wang Y, Yuan J, et al. Medical breast ultrasound 
image segmentation by machine learning. Ultrasonics 
2019;91:1-9.

14. Tanaka H, Chiu SW, Watanabe T, et al. Computer-aided 
diagnosis system for breast ultrasound images using deep 
learning. Phys Med Biol 2019;64:235013.

15. Lee JH, Joo I, Kang TW, et al. Deep learning with 
ultrasonography: automated classification of liver fibrosis 
using a deep convolutional neural network. Eur Radiol 
2020;30:1264-73.

16. Ren S, He K, Girshick R, et al. Faster R-CNN: Towards 
real-time object detection with region proposal networks. 
Proceedings of the 28th International Conference on 
Neural Information Processing Systems - Volume 1, 
2015:91-9.

17. He K, Zhang X, Ren S, et al. Deep residual learning for 
image recognition. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR). 27-30 June 2016; 
Las Vegas, NV, USA. IEEE, 201:770-778.

18. Russakovsky O, Deng J, Su H, et al. ImageNet Large 
Scale Visual Recognition Challenge. Int J Comput Vis. 
2015;115:211-52.

19. Dosovitskiy A, Fischer P, Ilg E, et al. FlowNet: Learning 
Optical Flow with Convolutional Networks. 2015 IEEE 
International Conference on Computer Vision (ICCV). 
7-13 Dec. 2015; Santiago, Chile. IEEE, 2015:2758-66.

20. Ranjan A, Black MJ. Optical Flow Estimation Using a 
Spatial Pyramid Network. 2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 21-26 
July 2017; Honolulu, HI, USA. IEEE, 2017:2720-9.

21. Ilg E, Mayer N, Saikia T, et al. FlowNet 2.0: Evolution of 
Optical Flow Estimation with Deep Networks. 2017 IEEE 
Conference on Computer Vision and Pattern Recognition 
(CVPR). 21-26 July 2017; Honolulu, HI, USA. IEEE, 
2017:1647-55.

22. Hui T, Tang X, Loy CC. LiteFlowNet: A lightweight 
convolutional neural network for optical flow estimation. 
Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 2018:8981-9.

23. Zagoruyko S, Komodakis N. Wide residual networks. 
arXiv preprint arXiv:1605.07146, 2016.

24. Kingma DP, Ba J. Adam: A method for stochastic 

optimization. CoRR 2014;abs/1412.6980. 
arXiv:1412.6980.

25. COCO: Common Objects in Context. Available online: 
http://cocodataset.org/#detection-eval (accessed March 
24, 2020)

26. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot 
multibox detector. European conference on computer 
vision. Springer, Cham, 2016:21-37.

27. Redmon J, Divvala S, Girshick R, et al. You only look 
once: Unified, real-time object detection. Proceedings 
of the IEEE conference on computer vision and pattern 
recognition. 2016:779-88.

28. He K, Gkioxari G, Dollár P, et al. Mask R-CNN. 
Proceedings of the IEEE international conference on 
computer vision. 2017:2961-9.

29. Redmon J, Farhadi A. YOLO9000: Better, Faster, 
Stronger. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 21-26 July 2017; Honolulu, 
HI, USA. IEEE, 2017:6517-25.

30. Aoki T, Yamada A, Aoyama K, et al. Automatic detection 
of erosions and ulcerations in wireless capsule endoscopy 
images based on a deep convolutional neural network. 
Gastrointest Endosc 2019;89:357-63.e2.

31. Qi X, Zhang L, Chen Y, et al. Automated diagnosis of 
breast ultrasonography images using deep neural networks. 
Med Image Anal 2019;52:185-98.

32. Zhong Z, Zheng L, Kang G, et al. Random Erasing Data 
Augmentation. Proceedings of the AAAI Conference on 
Artificial Intelligence, 2020;34:13001-8.

33. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative 
adversarial nets. 2014 Neural Information Processing 
Systems 2014;27:2672-80.

34. Otberdout N, Daoudi M, Kacem A, et al. Dynamic 
facial expression generation on Hilbert hypersphere with 
conditional Wasserstein generative adversarial nets. IEEE 
Trans Pattern Anal Mach Intell 2022;44:848-63

Cite this article as: Karako K, Mihara Y, Arita J, Ichida A, 
Bae SK, Kawaguchi Y, Ishizawa T, Akamatsu N, Kaneko J, 
Hasegawa K, Chen Y. Automated liver tumor detection in 
abdominal ultrasonography with a modified faster region-based 
convolutional neural networks (Faster R-CNN) architecture. 
HepatoBiliary Surg Nutr 2022;11(5):675-683. doi: 10.21037/
hbsn-21-43


