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The control of Mycobacterium tuberculosis (Mtb) infection is heavily dependent on the adaptive Th1 cellular immune
response. Paradoxically, optimal priming of the Th1 response requires activation of priming dendritic cells with Th1
cytokine IFN-c. At present, the innate cellular mechanisms required for the generation of an optimal Th1 T cell
response remain poorly characterized. We hypothesized that innate Mtb-reactive T cells provide an early source of IFN-
c to fully activate Mtb-exposed dendritic cells. Here, we report the identification of a novel population of Mtb-reactive
CD4� abTCRþ innate thymocytes. These cells are present at high frequencies, respond to Mtb-infected cells by
producing IFN-c directly ex vivo, and display characteristics of effector memory T cells. This novel innate population of
Mtb-reactive T cells will drive further investigation into the role of these cells in the containment of Mtb following
infectious exposure. Furthermore, this is the first demonstration of a human innate pathogen-specific abTCRþ T cell and
is likely to inspire further investigation into innate T cells recognizing other important human pathogens.

Citation: Gold MC, Ehlinger HD, Cook MS, Smyk-Pearson SK, Wille PT, et al. (2008) Human innate Mycobacterium tuberculosis–reactive abTCRþ thymocytes. PLoS Pathog 4(2):
e39. doi:10.1371/journal.ppat.0040039

Introduction

Approximately one-third of the world’s population is
infected with Mycobacterium tuberculosis (Mtb). Tuberculosis
remains a leading cause of mortality worldwide and is
responsible for 2–3 million deaths per year [1]. Household
contact studies show that over 50% of exposed individuals
never develop a positive tuberculin skin test (TST), and are
considered uninfected [2]. However, in those who have been
detectably infected with Mtb, as assessed by a positive TST,
the lifetime risk of tuberculosis is estimated at 5% to 10% [3].
In the remaining 90% of TST-positive individuals, protection
is associated with the development of an effective adaptive
immune response. Specifically, Th1-like cytokines, including
IFN-c, produced by CD4þ Th1 cells and CD8þ T cells, and
TNF-a , produced by T cells and macrophages, are essential in
the control of tuberculosis [4].

The priming of Mtb-specific naı̈ve T cells requires that
dendritic cells (DC), either infected with Mtb or having
engulfed Mtb-derived antigens, migrate to the lymph nodes
[5,6]. There, to optimally prime pathogen-specific Th1
responses, DC require stimulation through Toll-like recep-
tors (TLRs) [7] by the pathogen as well as host-derived factors
such as type I and type II IFNs, cytokines, and chemokines [8].

Mtb-dependent TLR2 ligation can promote the maturation
of DC via upregulation of costimulatory molecules and the
production of IL-12 [9,10]. However, in comparison to potent
LPS activation associated with TLR-4 ligation, Mtb induces
relatively low levels of IL-12 production [11,12]. Nonetheless,
IL-12 production by DC is essential to prime optimal Th1
responses [9,13–15]. IFN-c, the prototypical Th1 cytokine, can
directly augment the IL-12 production. In addition to NK
cells, MHC Ib-restricted T cells are able to provide an early
source of IFN-c for enhanced IL-12 production by DC
[9,14,15]. One example of these innate T cells comes from

the study of the non-classical MHC-Ib murine molecule H2-
M3. Pamer and colleagues defined H2-M3 restricted, Listeria-
specific, IFN-c-producing T cells, whose response preceded
that of the adaptive T cell response and was therefore
consistent with an innate T cell population [16]. Subse-
quently, Urdahl et al. demonstrated the presence of MHC Ib-
restricted cells in antigen-naı̈ve mice and that found that they
originated from the thymus and displayed properties
associated with effector T cells [17].
In this study we sought to test the hypothesis that humans

possess an innate population of Mtb-reactive T cells. From
this hypothesis, we made the following predictions: 1) the
innate T cell population would, unlike a naı̈ve T cell
precursor population, be present at high frequency in the
circulating pool of lymphocytes; 2) the innate T cell
population could respond directly ex-vivo to Mtb-infected
cells in the absence of clonal expansion; 3) these cells would
be prevalent throughout the human population irrespective
of prior exposure to mycobacteria; and 4) these cells would be
thymically derived.
Here we show that Mtb-reactive thymocytes are present at

frequencies ranging from 0.01% to 0.2% of CD4� thymocytes
in humans. The majority of Mtb-reactive thymocytes express
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the abTCR and an activated phenotype with cytolytic
potential. Mtb-reactive thymocytes require cell contact with
DC infected with live Mtb and respond through a mechanism
most consistent with MHC class Ib–restricted T cells.
Consistent with the hypothesis that humans contain innate
T cells that are capable of responding to Mtb-infected DC, we
have identified a population of Mtb-reactive cells in cord
blood.

Results

Human CD4� Mtb-Reactive Thymocytes Are Present at
High Frequency in the Thymus

To assess whether or not humans contain a population of
innate T cells that can respond to Mtb-infected cells we used
thymocytes from infants undergoing cardiac surgery where
thymectomy is standard procedure. Based on observations
from Pamer and Urdahl, we speculated that such a
population would be found in the CD4-negative population
of thymocytes. Therefore, we used magnetic beads to deplete
thymocytes of CD4þ cells. The CD4-depleted population was
then incubated with autologous monocyte-derived Mtb-
infected DC. We enumerated IFN-c production from thymo-
cytes by IFN-c ELISPOT. Thymocytes from one donor
produced IFN-c in response to autologous DC infected with
Mtb but not to uninfected DC while no IFN-c was detected
from Mtb-infected DC alone (Figure 1A).

We reasoned that these cells were not likely to be classically
HLA-Ia restricted. HLA class Ib molecules, unlike the highly
polymorphic HLA class Ia molecules, have limited poly-
morphism, such that most individuals will express a similar
set of these molecules. As a result, we predicted that
allogeneic DC would serve as antigen-presenting cells (APC)
for these T cells. Allogeneic DC were tested for their ability to
elicit IFN-c production by thymocytes. CD4-depleted thymo-
cytes incubated with allogeneic DC produced IFN-c in
response to Mtb-infected DC but not to uninfected DC from
three separate allogeneic donors (Figure 1B). Further evalua-
tion of over 40 thymocyte donors using allogeneic DC

Figure 1. Mtb-Reactive CD4� Thymocytes Are Present in the Human

Thymus

(A) CD4-depleted thymocytes from thymocyte donor 11 (750,000/well)
were incubated overnight with autologous DC (20,000/well) that were
either infected with Mtb (moi of 50) or left uninfected.
(B) Thymocytes (250,000 cells/well) from one thymocyte donor were
incubated with MHC mismatched DC (50,000 cells/well) from 3 different
donors.
(C) Thymocytes from 4 individual donors were left unfractionated, or
fractionated based on the positive or negative expression of CD4 using
CD4 magnetic bead separation and incubated overnight with Mtb-
infected DC (50,000/well). The dotted line represents the limit of
detection of the assay. The lack of Mtb-reactivity from the CD4þ

thymocytes fraction has been reproducible and repeated with over 10
donors.
(D) CD4-depleted thymocytes (500,000/well) were titrated in a series of 2-
fold dilutions and incubated with Mtb-infected DC (50,000/well).
Frequencies were determined by linear regression analysis as described
in Materials and Methods. In all experiments, IFN-c production was
assessed by ELISPOT. Mtb-reactive thymocytes (n¼ 18) ranged from 16.5
to 381 spot-forming units (sfu)/250,000 CD4� thymocytes with a mean of
115.9 6 SD 101.2.
doi:10.1371/journal.ppat.0040039.g001
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Author Summary
Mycobacterium tuberculosis (Mtb) infects about one-third of the
world’s population. Most people who are exposed remain healthy,
but control of this intracellular bacterium requires a robust cellular
immune response. Production of the pro-inflammatory cytokine IFN-
c from cells in the adaptive immune response is critically important
in the immune control of Mtb. However, this cytokine is also
essential in initiating an optimal adaptive immune response. We
hypothesized that innate cells could provide an early source of IFN-c
to aid in generation of an optimal adaptive immune response. We
looked for IFN-c producing cells in human neonates that were
unlikely to have been previously exposed to either Mtb or other
environmental mycobacteria. Here, we report the identification of a
novel T cell population from the thymus that produces IFN-c in
response to Mtb-infected cells. Mtb-reactive thymocytes are present
at high frequencies, are present in nearly all newborns tested, and
display characteristics of T cells normally associated with a memory
response. This novel innate population of Mtb-reactive cells will
drive further investigation into the role of these cells in the
containment of Mtb following infectious exposure and is likely to
inspire further investigation into innate T cells recognizing other
important human pathogens.



revealed detectable IFN-c responses to the Mtb-infected
allogeneic DC but not to the uninfected DC (data not shown).
The finding that thymocytes are consistently unresponsive to
uninfected allogeneic DC is in sharp contrast to the
predictable response by peripheral T cells that exhibit strong
alloreactivity in response to MHC mismatched DC. Fortu-
itously, the absence of alloreactivity provided us with the
opportunity to employ allogeneic DC given the limited
quantities of PBMC available from the thymocyte donors.
We confirmed that in response to allogeneic Mtb-infected DC
the Mtb-reactive thymocytes are present in the CD4-negative
but not in the CD4þ fraction of thymocytes (Figure 1C). CD8þ

T cells from peripheral blood are distinct from Mtb-specific
CD4þ T cells in that CD8þ T cells preferentially recognize
APC in direct proportion to the degree of intracellular
infection [18]. Similarly, Mtb-reactive thymocytes also pref-
erentially recognize DC infected with Mtb at multiplicities of
infection (MOI) of 30 or higher (Figure S1). Nevertheless,
greater than 90% of DC infected at an MOI of 30 for 18 h of
infection, remain viable, as assessed by trypan blue exclusion
(not shown) and a minority (less than 20%) are apoptotic as
assessed by Annexin V staining (Figure S2). We next sought to
establish the frequency and prevalence of Mtb-reactive
thymocytes. Ex vivo frequencies of Mtb-reactive thymocytes
(n¼ 18) ranged from 16.5 to 381 sfu/250,000 CD4� thymocytes
(mean¼ 115.9 6 SD 101.2) (Figure 1D). Furthermore, we have
detected Mtb-reactive thymocytes from 58 of 60 donors
tested (not shown) demonstrating that Mtb-reactive thymo-
cytes are prevalent in humans.

While cdTCRþ Thymocytes Can Be Detected, the Majority
of Mtb-reactive Thymocytes Express the abTCR

In human peripheral blood, 50% to 90% of all cd T cells
are Mtb-reactive. These T cells primarily express the Vc9Vd2
TCR and can respond to the mycobacterial non-peptide
antigen isopentenyl pyrophosphate (IPP) [19]. Furthermore,
Kabelitz et al. previously described the presence of Vc9-Mtb-
reactive thymocytes in humans [20]. Thus, it was conceivable
that cdTCR-expressing cells constituted the majority of Mtb-
reactive thymocyte responses. Therefore, thymocytes were
sorted by FACS by selecting CD4-negative cells that expressed
CD8 and/or the cdTCR. The subsets were tested on Mtb-
infected and uninfected DC. None of the sorted cells
produced IFN-c in response to uninfected DC (not shown).
Figure 2A shows that both cdTCR� and cdTCRþ thymocytes
respond to Mtb-infected DC and that as expected, a high
frequency of thymocytes that express the cdTCR can respond
to Mtb-infected DC. However, both CD8 single positive (SP)
and CD4�CD8� double negative (DN) thymocytes in the
cdTCR-depleted subset also contained Mtb-reactive thymo-
cytes. Therefore, we used the intracellular cytokine staining
(ICS) assay with unfractionated thymocytes to determine if
the cdTCR-negative cells expressed the abTCR. Figure 2B
shows that CD3þ IFN-cþMtb-reactive thymocytes detected by
ICS express the abTCR and not the cdTCR. The fact that we
did not detect cdTCRþ IFN-cþ Mtb–reactive cells by ICS is
consistent with the observation that less than 1% of all
thymocytes express the cdTCR [21]. Furthermore, these
results indicate that although Mtb-reactive T cells expressing
either the cd or ab TCR are both present in the thymus, the
vast majority of Mtb-reactive thymocytes are abTCRþ CD4� T
cells that are either CD8þ SP or DN.

Mtb-Reactive Thymocytes Express an Activated Effector
Phenotype
Mtb-reactive thymocytes, by virtue of producing IFN-c

directly ex vivo inherently display a Th1-type effector
phenotype. To further characterize the phenotype of Mtb-
reactive thymocytes we used the ICS assay to assess the
expression of molecules associated with effector memory T
cells. As a positive control we used PBMC from an adult
donor with known T cell reactivity to mycobacterial antigens.
PBMC or Mtb-reactive thymocytes were incubated with
allogeneic DC infected with Mtb or left uninfected. As
expected, uninfected allogeneic DC induced a detectable
frequency of PBMC to produce IFN-c while a much lower
frequency was detected from thymocytes. Mtb-reactive cells
were defined by the specific production of IFN-c in response
to Mtb-infected DC. All Mtb-reactive thymocytes expressed
CD3. This confirms the commitment of these cells to the T
cell lineage (Figure 3) [22]. Furthermore, no Mtb-reactive cells
expressed CD161 (data not shown), a marker expressed on
both immature and mature NK cell cells in the thymus [23]
further confirming that these cells are not NK cells.
Consistent with results shown in Figure 2A, a proportion of
the Mtb-reactive thymocytes expressed CD8. The large
majority of Mtb-reactive thymocytes expressed CD25 (Figure
3A, right), and granzyme (Figure 3B), as well as TNF-a (not
shown) consistent with an effector memory phenotype with
cytolytic potential [24]. Furthermore, a proportion of CD4�

thymocytes secreted granzyme in response to Mtb-infected
DC (Figure 3C). Finally, Mtb-reactive thymocytes expressed
higher levels of Bcl-2 (Figure 3B) suggesting these cells are
likely to survive and egress to the periphery [25].

Mtb-Reactive Thymocytes Are Stimulated by DC Infected
with Live Mtb But Not DC Incubated with TLR Agonists
Next, we tested the hypothesis that TLR-activation of DC,

or other stimuli, may be sufficient to stimulate thymocytes.
Mtb principally acts through TLR2 [26–29], TLR9 [29], and to
a lesser extent TLR4 [30]. Therefore, we tested IFN-c
production by thymocytes incubated with DC pre-treated
with agonists to TLR2 (c-irradiated Mtb), TLR4 (LPS), TLR9
(CpG DNA), and TLR3 (poly I:C). None of these TLR stimuli
induced a comparable response to that elicited by live Mtb
infection of DC (Figure 4). We confirmed that treatment of
DC with the c-irradiated Mtb and LPS indeed functioned as
TLR agonists by inducing IL-10 production from the DC
(Figure S3). Furthermore, an additional TLR2 agonist,
lipoteichoic acid, did not induce IFN-c production by
thymocytes (not shown). To test whether or not infection of
DC may be triggering the expression of molecules associated
with cellular stress, we incubated DC with IFN-c, actinomycin
D, or heat shock-treated the DC. CD4� thymocytes did not
respond to the stress-induced DC. We confirmed that
actinomycin D indeed induced apoptosis in over 55% of
the DC as assessed by Annexin-V (Figure S2).

Activation of Mtb-Reactive Thymocytes Requires Cell
Contact with Mtb-Infected DC
To help elucidate the mechanism by which Mtb-reactive

thymocytes respond to Mtb-infected DC, we asked if
thymocytes require direct contact with Mtb-infected targets.
The presence of a transwell between Mtb-infected DC and
thymocytes prevented IFN-c release (Figure 5), demonstrating
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that direct contact of thymocytes with Mtb-infected DC is
required. In addition, cell supernatants from Mtb-infected
DC did not induce IFN-c production by thymocytes suggest-
ing that cytokines produced from Mtb-infected DC are not
sufficient for this response.

Activation of Mtb-Reactive Thymocytes Is Proteasome
Dependent But Is Not Blocked by the Pan–HLA-I Antibody
W6/32
To further evaluate the possibility that Mtb-reactive

thymocytes respond to an antigen processed and presented

Figure 2. The Majority of Mtb-Reactive Thymocytes Are abTCRþ T Cells, While a Minority Express the cdTCR

(A) Thymocytes from 3 random donors were stained with the following fluorochrome-conjugated antibodies: CD4-PE, CD8-APC, cdTCR-FITC. CD4-
negative subsets (cdTCRþ; cdTCR� CD8þ; cdTCR� CD8�) were collected by FACS. Cell subsets were incubated with Mtb-infected DC or uninfected DC in
an IFN-c ELISPOT assay and the response to Mtb-infected DC is shown. No responses to uninfected DC were detected.
(B) Unfractionated thymocytes (500,000 cells/well) were incubated with either uninfected or Mtb-infected DC (50,000 cells/well) and IFN-c production
was detected using the ICS assay. Cells were fixed and permeabilized and stained with fluorochrome-conjugated antibodies to label the following:
cdTCR, abTCR, IFN-c, and CD3. All cells depicted in (B) are CD3þ. Similar results were obtained from 3 separate donors.
doi:10.1371/journal.ppat.0040039.g002
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Figure 3. Mtb-Reactive Thymocytes Display Molecules Associated with an Activated Effector Phenotype

(A) Unfractionated thymocytes (500,000 cells/well) and positive control PBMC (500,000 cells/well) were incubated with allogeneic DC (50,000 cells/well)
infected with Mtb or left uninfected and IFN-c assessed using the ICS assay. Non-specific binding by the mouse IgG1 PE isotype was not observed. The
numbers in the graphs represent the percentage of IFN-c-positive cells of unfractionated cells. Histograms represent expression of CD25, and CD8 on
gated CD3þIFN-cþ cells after stimulation with Mtb.
(B) Histograms depicting granzyme and Bcl-2 expression from CD3þIFN-cþ-gated cells after stimulation with Mtb. Dotted line: isotype control antibody;
Shaded histogram: granzyme or Bcl-2 expression on total CD3þ thymocytes; Bold line: granzyme or Bcl-2 expression on IFN-cþ CD3þ cells (Mtb-reactive).
Data are representative of a minimum of 4 thymocyte donors.
(C) CD4-depleted thymocytes (500,000 cells/well) from 3 individuals were tested for their ability to secrete granzyme in an ELISPOT assay in response to
DC (50,000 cells/well) that were uninfected or infected overnight with Mtb (moi 30).
doi:10.1371/journal.ppat.0040039.g003
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through the HLA-I pathway versus to a cell surface ligand
upregulated by live infection with Mtb, we used blocking
antibodies to molecules induced by infection with Mtb. We
were unable to block responses by Mtb-reactive thymocytes (n
¼ 5) using antibodies against MICA or ULBP1 [31] or the
receptor NKG2D [32] (not shown). We then blocked
proteasomal function to prevent production of HLA class
I–restricted Mtb epitopes. Addition of the proteasomal
blocker, epoxomycin, blocked 88% of the response by Mtb-
reactive thymocytes from donor Th30 and 57% of the
response from donor Th42 (Figure 6A). As expected, the
CD8þ T cell clones H1–2 (restricted by HLA-B1501) and 1–23
(restricted by HLA-E) were also blocked by epoxomycin (62%
and 97% respectively) while the CD4þ T cell clone E12
(restricted by HLA-II) was not blocked. Nevertheless, we have
been unsuccessful in blocking the response by Mtb-reactive
thymocytes using a variety of blocking antibodies to HLA-Ia
and HLA-Ib molecules. Addition of the pan–HLA-I blocking
antibody W6/32 did not inhibit responses by the thymocytes
(Figure 6B). In contrast, the HLA-B44– and HLA-E–restricted
CD8 T cell clones were effectively blocked. Addition of
blocking antibodies to the nonclassical CD1a, b, c, and d
molecules also did not prevent responses by Mtb-reactive
thymocytes (data not shown). Thus, our data suggest that

antigen processing is likely required for activation of at least
a subset of thymocytes. As paraformaldehyde-fixed cells were
used as the APCs in these experiments, an additional
conclusion from these data, in combination with results from
Figure 5, is that a cell surface ligand and not a soluble factor is
required to stimulate Mtb-reactive thymocytes. Thus, while
ligand interaction is required, the cells are not restricted by
HLA-Ia, HLA-E, or CD1 molecules.

Mtb-Reactive Cells Are Present in Cord Blood
Physiologically, the relevance of Mtb-reactive thymocytes

rests in their ability to egress the thymus, and serve as innate
effectors. To address this, we used cord blood mononuclear
cells (CBMC) isolated from healthy neonates, as a source of T
cells that are naı̈ve to exposure to mycobacterial antigens.
The majority of CBMC samples, depleted of cdTCR-positive
cells using magnetic beads, produced IFN-c in response to
Mtb-infected DC in an ELISPOT assay (n¼ 8; range, 0–80 sfu/
250,000 cdTCR-depleted CBMC; mean ¼ 26.75 6 S.D. 33.75)
(Figure 7).

Discussion

In this study, we find that the human thymus contains cells
that recognize Mtb-infected cells. As such, we postulate that

Figure 4. Mtb-Reactive Thymocytes Are Stimulated by DCs Infected with Live Mtb but Not DCs Incubated with TLR Agonists

DC were incubated overnight with TLR agonists specific for TLR2 (c-irradiated Mtb, moi equivalent of 500), TLR3 (poly I:C; 50 lg/ml), TLR4 (LPS; 100 ng/
ml) TLR9 (CpG DNA; 6 lg/ml) or treated with IFN-c (10 ng/ml), or Actinomycin D (10 lM) or heat shock-treated (428C for 90 min) and were tested for
their ability to stimulate DC to elicit IFN-c production by thymocytes in comparison to live Mtb-infected DC (moi 30). Unfractionated thymocytes
(250,000 cells/well) were incubated with the DC (50,000 cells/well) and tested for their ability to produce IFN-c in an ELISPOT assay.
doi:10.1371/journal.ppat.0040039.g004

Figure 5. Mtb-Reactive Thymocytes Require Cell Contact with Mtb-Infected DC to Produce IFN-c
CD4-depleted thymocytes (250,000 cells/well) were tested for their ability to produce IFN-c in an ELISPOT assay in response to uninfected or Mtb-
infected DC (50,000 cells/well) that were either placed directly in contact with the T cells (contact) on the ELISPOT membrane or placed in the upper
wells of a 96-well Transwell plate (0.4-lm pore size) above the ELISPOT plate (transwell). Supernatants (100 ll) from uninfected or Mtb-infected DC were
added directly to the T cells (supernatant). CD8þ T cell clones (15,000 cells/well) were used as positive controls for the response to Mtb-infected DC.
Comparable results were obtained in 3 separate experiments.
doi:10.1371/journal.ppat.0040039.g005
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these cells comprise an innate defense against mycobacterial
infection. Several observations support this hypothesis. The
frequencies of Mtb-reactive thymocytes are substantial
(0.01% to 0.2% of CD4� thymocytes) and appear similar to
frequencies of other innate T cells that mediate immediate
responses [33]. For example, MHC class Ib T22-restricted
cdTCRþ T cells are present at frequencies as high as 0.5% of
cdTCRþ splenocytes in uninfected mice [34]. In this regard,
we note that corticosteroids are frequently administered to
the thymus donors in the peri-operative period. As a result,
we believe that our results likely underestimate the preva-
lence of these cells in the thymus.

In contrast to the delayed responses inherent in the
requisite proliferation, differentiation, and clonal expansion
of adaptively acquired immunity, the thymocytes described
herein exhibit rapid effector function characterized by the
release of IFN-c, TNF-a, and constituents of the cytolytic
granule. Mtb-reactive thymocytes, by virtue of their ability to
produce IFN-c directly ex vivo, display the phenotype of pre-
armed effector Th1-like cells [24]. The rapid production of
IFN-c by T cells is normally induced as a consequence of cell
division and differentiation, and is associated with effector
and memory, but not naı̈ve T cells [35]. The phenotype of
Mtb-reactive thymocytes is reminiscent of cells described by
Urdahl et al. who showed that MHC class Ib–restricted T cells

with an activated effector phenotype could be isolated from
the thymus of naı̈ve mice [16,17]. Therefore, Mtb-reactive
thymocytes may represent a subset of innate T cells with
direct ex vivo effector function in humans.
Mtb-reactive thymocyte responses are present in the

absence of prior antigenic exposure. In children, exposure
to environmental mycobacteria occurs as children begin to
explore their environment [36]. As most of our thymus
donors are very young (all are ,4 mo old and many are less
than 1 wk old) it is unlikely they have been exposed to
environmental mycobacteria. Furthermore, exposure to
tuberculosis is very unlikely in our patient population. In
Oregon, the 2006 case rate of tuberculosis was 2.2/100,000
individuals (Oregon DHS). Moreover, in our limited experi-
ence, we have not found evidence for reactivity to Mtb-
specific antigens such as CFP-10 and ESAT-6 (not shown),
arguing against the possibility of prior exposure to Mtb.
We find it unlikely that Mtb-reactive T cells in the thymus

reflect mature peripheral T cells that have recirculated back
to the thymus. While mouse studies have demonstrated the
capability of peripheral T cells to recirculate to the thymus
[37,38] the injection of substantial numbers of T cells was
required to detect this phenomenon [37,39]. Moreover,
studies by Fink et al. showed that this required exposure to
antigen [38]. As discussed above, it is unlikely that the very
young donors described in this report have had prior
mycobacterial exposure.
The expression of CD3, and the absence of CD161,

demonstrate it is unlikely that the Mtb-reactive thymocytes
are NK cells [23]. Furthermore, Mtb-reactive thymocytes do
not express Va24 (not shown) and are therefore not the well-
defined subset of invariant NKT cells [40]. However, it is
possible that these innate cells are non-invariant TCR NKT
cells or those restricted by an HLA-Ib molecule. These
hypotheses are not mutually exclusive. Innate-like T cells
often recognize a signature antigen in pathogen-infected
cells. With regard to the possibility that these cells are NKT

Figure 6. Activation of Mtb-Reactive Thymocytes Is Proteasome

Dependent but Is Not Blocked by the Pan–HLA-I Antibody W6/32

(A) DC were pretreated for 1 h with epoxomycin (1 lM). The DC were
then infected with Mtb (moi 25). After 24 h, the drug was washed away
and DC were fixed with cold paraformaldehyde (0.1%) for 5 min, washed
twice in PBS, incubated for 2 h in media, and then washed three times.
The DC (50,000 cells/well) were added to T cell clones (5000 cells/well) or
CD4-depleted thymocytes (250,000 cell/well). Comparable results were
obtained in 3 separate experiments.
(B) Mtb-infected DC were incubated with the W6/32 antibody (2 lg/ml)
or a mouse IgG2a isotype control (2 lg/ml) for 15 min before the
addition of CD8þ T cell clones (10,000/well) or CD4-depleted thymocytes
(250,000/well). IFN-c production was evaluated by ELISPOT. The percent
inhibition was calculated from the response to Mtb-infected DC in the
presence of the W6/32 blocking antibody divided by the response to
Mtb-infected DC in the presence of the isotype control.
doi:10.1371/journal.ppat.0040039.g006

Figure 7. Mtb-Reactive Cells Are Present in Cord Blood

Cord blood mononuclear cells (250,000 cells/well) were depleted of
cdTCRþ cells using magnetic bead separation. cdTCR–depleted CBMC
were incubated with autologous DC (50,000 cells/well) that were either
Mtb-infected (moi ¼ 30) of left uninfected. IFN-c production was tested
in an ELISPOT assay (n ¼ 8; range, 0–80 sfu/250,000 cdTCR-depleted
CBMC; mean ¼ 26.75 6 SD 33.75).
doi:10.1371/journal.ppat.0040039.g007
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cells, it is possible that they recognize a danger signal induced
by Mtb in the infected cell that would allow for NK-like
recognition. In this regard, we note that blocking of the
known NK receptor NKG2D and NK and cd T cell ligands
MICA [32], and ULBP1 [31], did not abrogate the recognition
by Mtb-infected cells (data not shown). Alternately, antigen
presented in the context of an MHC class Ib-molecule may
result in T cell activation. Our data support the hypothesis
that Mtb-reactive thymocytes are MHC class Ib-restricted.
Mtb-reactive thymocytes are activated by allogeneic Mtb-
infected DC and activation requires live infection of DC with
Mtb as well as proteasomal processing. As a result, we
conclude that Mtb-reactive thymocytes represent a subset of
T cells that are most likely MHC class Ib-restricted but may
utilize a novel mechanism to detect Mtb-infected DC.

This report provides the first demonstration of a human
innate pathogen-reactive abTCRþ T cell. In preliminary
experiments we have begun to assess the reactivity of
thymocytes to other pathogens (not shown). We have detected
modest responses to Staphylococcus aureus–, E.coli–, and Myco-
bacterium smegmatis–infected DC but did not detect any
responses to Listeria monocytogenes– or vaccinia virus–infected
DC. Thus, it is possible that innate thymocytes provide early
and innate Th1-like immunity at the site of infection with
Mtb and perhaps other pathogens. Furthermore, we have
identified Mtb-reactive cells in cord blood. This finding is
consistent with the potential egress from the thymus of
abTCRþMtb-reactive cells. Through the production of IFN-c,
Mtb-reactive cells may act on Mtb-infected macrophages
early in infection and as such control the spread of Mtb. It is
known that over half of exposed individuals never convert
their TST [2]. Therefore, perhaps innate responses allow the
clearance of the bacterium and obviate the need for adaptive
immunity. Furthermore, IFN-c from Mtb-reactive cells may
provide help to DC to augment the production of IL-12
resulting in an enhanced Th1 response. As such, innate Mtb-
reactive cells could act as a bridge between the innate and
adaptive responses toMycobacterium tuberculosis. These findings
may inspire further investigation into innate T cells
recognizing other important human pathogens.

Materials and Methods

Human subjects. All tissue and blood were obtained under
protocols approved by the Institutional Review Board at Oregon
Health and Science University. Human thymuses were obtained from
children undergoing cardiac surgery at Doernbecher Children’s
Hospital. The majority of children were less than 1 mo of age and
all were less than 4 mo old. However, due to the fact that thymuses
were obtained as de-identified medical waste under an exempt IRB
protocol no additional information is available on the status of the
donors. PBMC were obtained by aphaeresis from normal adult
donors with informed consent. Umbilical cord blood was obtained
from healthy full-term neonates, collected into CPT tubes (BD) and
CBMC were obtained after centrifugation.

Mycobacterium tuberculosis. The H37Rv strain of Mycobacterium
tuberculosis was used for all live Mtb infections and for experiments
using c-irradiated Mtb (Mycobacteria Research Laboratories at
Colorado State University).

Cells. Thymocytes: Thymus tissue was cut into 3-mm3 pieces. Each
piece was ground in a Medimixer with 1 ml of DMEM plus 10% FBS
to form a single cell suspension. The suspension was cryopreserved at
2 3 108 cells/ml in a 90% FBS/10% DMSO freezing solution with a
post-thaw viability of approximately 50%. To deplete CD4þ thymo-
cytes we positively selected CD4þ cells using magnetic bead
separation according to the manufacturer’s instructions (Miltenyi)
and used the remaining untouched cells that contain CD8þ (SP) and

CD8�CD4� (DN) cells. The CD4þ selection procedure resulted in a
population of cells with a mean purity of 80% CD4-negative cells
(range, 60% to 95% CD4-negative cells; not shown).

Monocyte-derived DC: Monocyte-derived DCs were prepared accord-
ing to the method by Romani et al. [41]. Briefly, PBMC or CBMC were
resuspended in 2% human serum (HS) medium and allowed to
adhere to a T-75 (Costar) flask at 378C for 1 h. After gentle rocking,
nonadherent cells were removed and 10% HS medium containing 10
ng/ml of IL-4 (Immunex) and 30 ng/ml of GM-CSF (Immunex) was
added to the adherent cells. After 5 d, cells were harvested with cell-
dissociation medium (Sigma-Aldrich) and used as APC in assays.

Assays. IFN-c ELISPOT assay: All IFN-c ELISPOT assays were
performed as previously described [42]. Thymocytes were incubated
for 24 h with DC that were previously infected overnight with Mtb
H37Rv. A range of multiplicity of infection of 25 to 50 was used
throughout our studies.

Estimation of the frequency of Mtb-reactive thymocytes using the IFN-c
ELISPOT: Thymocytes were added to ELISPOT plates in dupli-
cate over a range of concentrations (5 3 105, 2.5 3 105, 1.25 3 105,
6.25 3 104 cells/well) with DC (50,000 cells/well) infected with Mtb or
left uninfected. For determination of effector cell frequencies, the
general estimating equation in the GraphPad Prism 3.0 software
package was used. If the control frequencies were determined to be
significantly different (p , 0.05) from the treatment group, control
values were subtracted out to determine the frequencies of Mtb-
reactive thymocytes.

Intracellular cytokine staining assay: Thymocytes (500,000/well) were
added to DC (50,000/well) that were either Mtb-infected or uninfected
and incubated for 48 h in the presence of anti-CD28 (1 lg/ml) and
CD49d (1 lg/ml). GolgiStop (BD Pharmingen) was added for the final
6 h of the assay. Cells were fixed with paraformaldehyde (final 1%),
permeabilized with Perm/Wash (BD Pharmingen), and stained with
fluorochrome-conjugated antibodies to both IFN-c and cell surface
receptors. Acquisition was performed with an LSRII flow cytometer
with FACS Diva software. All analyses were performed using FlowJo
software (TreeStar).

IL-10 ELISPOT assay: The Human IL-10 ELISpot PLUS kit (ALP)
was used to detect IL-10 and performed according to the manufac-
turer’s instructions (Mabtech).

Granzyme ELISPOT assay: The BD ELISpot human granzyme B kit
was used to detect human granzyme and performed according to the
manufacturer’s instructions (BD Biosciences Pharmingen, San Diego,
CA).

Reagents.
TLR agonists: c-irradiated Mtb (moi equivalent 500; Mycobacteria

Research Laboratories at Colorado State University); Lipoteichoic
Acid (10 lg/ml; Sigma); LPS (100 ng/ml; Sigma); CpG DNA (6 lg/ml;
Coley Pharmaceuticals); poly I:C (50 lg/ml; Sigma). IFN-c (Sigma) was
used at 10ng/ml. Actinomycin D was used at 10 lM (Sigma). The pan
HLA antibody W6/32 (Serotec) and the mouse IgG2a isotype control
(Biolegend) were used at 2 lg/ml. Annexin V-APC (BD Biosciences)
was used to evaluate apoptosis using flow cytometry according to the
manufacturer’s instructions.

Supporting Information

Figure S1. Mtb-Reactive Cells Preferentially Recognize Heavily
Infected Cells

Dendritic cells (50,000/well) were infected overnight with Mtb H37Rv
at a range of multiplicities of infection (range 0–50) and used as APCs
to detect IFN-c responses by CD4-depleted thymocytes (250,000/well)
from 4 individual thymocyte donors using the ELISPOT assay.

Found at doi:10.1371/journal.ppat.0040039.sg001 (191 KB PDF).

Figure S2. Infection with Mtb Induces a Minority of DC to Become
Apoptotic

Dendritic cells were left untreated, infected with Mtb (moi ¼ 30) or
treated with actinomycin D (10 lM), as a positive control for
induction of apoptosis, for 18 h. Cells were then stained using
Annexin V–APC. The percentage of cells that were Annexin V
positive was: 4% for untreated cells (dashed line); 18% for Mtb-
infected cells (bold line); and 55% for actinomycin D-treated cells
(filled histogram).

Found at doi:10.1371/journal.ppat.0040039.sg002 (183 KB PDF).

Figure S3. Gamma-Irradiated Mtb Induces Stimulation of DC

Dendritic cells (100,000/well) were left untreated or incubated for 18
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h with c-irradiated Mtb H37Rv (moi equivalent 500 to 1), or LPS (100
ng/ml). IL-10 production by DC was detected using an ELISPOT assay.
Found at doi:10.1371/journal.ppat.0040039.sg003 (182 KB PDF).
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