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Abstract
In this primer, we give a review of the inverse problem for EEG source localization. This is intended
for the researchers new in the field to get insight in the state-of-the-art techniques used to find
approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore,
a review of the performance results of the different techniques is provided to compare these
different inverse solutions. The authors also include the results of a Monte-Carlo analysis which
they performed to compare four non parametric algorithms and hence contribute to what is
presently recorded in the literature. An extensive list of references to the work of other
researchers is also provided.

This paper starts off with a mathematical description of the inverse problem and proceeds to
discuss the two main categories of methods which were developed to solve the EEG inverse
problem, mainly the non parametric and parametric methods. The main difference between the
two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling
within these categories are described including minimum norm estimates and their generalizations,
LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA
FOCUSS (SLF), SSLOFO and ALF for non parametric methods and beamforming techniques, BESA,
subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and
computational intelligence algorithms for parametric methods. From a review of the performance
of these techniques as documented in the literature, one could conclude that in most cases the
LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher
resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable
biophysical and psychological constraints, as done by LAURA has given superior results. The
Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF, for different
noise levels and different simulated source depths has shown that for single source localization,
regularized sLORETA gives the best solution in terms of both localization error and ghost sources.
Furthermore the computationally intensive solution given by SLF was not found to give any
additional benefits under such simulated conditions.
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1 Introduction
Over the past few decades, a variety of techniques for non-
invasive measurement of brain activity have been devel-
oped, one of which is source localization using electroen-
cephalography (EEG). It uses measurements of the voltage
potential at various locations on the scalp (in the order of
microvolts (μV)) and then applies signal processing tech-
niques to estimate the current sources inside the brain that
best fit this data.

It is well established [1] that neural activity can be mod-
elled by currents, with activity during fits being well-
approximated by current dipoles. The procedure of source
localization works by first finding the scalp potentials that
would result from hypothetical dipoles, or more generally
from a current distribution inside the head – the forward
problem; this is calculated or derived only once or several
times depending on the approach used in the inverse
problem and has been discussed in the corresponding
review on solving the forward problem [2]. Then, in con-
junction with the actual EEG data measured at specified
positions of (usually less than 100) electrodes on the
scalp, it can be used to work back and estimate the sources
that fit these measurements – the inverse problem. The
accuracy with which a source can be located is affected by
a number of factors including head-modelling errors,
source-modelling errors and EEG noise (instrumental or
biological) [3]. The standard adopted by Baillet et. al. in
[4] is that spatial and temporal accuracy should be at least
better than 5 mm and 5 ms, respectively.

In this primer, we give a review of the inverse problem in
EEG source localization. It is intended for the researcher
who is new in the field to get insight in the state-of-the-art
techniques used to get approximate solutions. It also pro-
vides an extensive list of references to the work of other
researchers. The primer starts with a mathematical formu-
lation of the problem. Then in Section 3 we proceed to
discuss the two main categories of inverse methods: non
parametric methods and parametric methods. For the first
category we discuss minimum norm estimates and their
generalizations, the Backus-Gilbert method, Weighted
Resolution Optimization, LAURA, shrinking and mul-
tiresolution methods. For the second category, we discuss
the non-linear least-squares problem, beamforming
approaches, the Multiple-signal Classification Algorithm
(MUSIC), the Brain Electric Source Analysis (BESA), sub-
space techniques, simulated annealing and finite ele-
ments, and computational intelligence algorithms, in
particular neural networks and genetic algorithms. In Sec-
tion 4 we then give an overview of source localization
errors and a review of the performance analysis of the
techniques discussed in the previous section. This is then
followed by a discussion and conclusion which are given
in Section 5.

2 Mathematical formulation
In symbolic terms, the EEG forward problem is that of
finding, in a reasonable time, the potential g(r, rdip, d) at

an electrode positioned on the scalp at a point having
position vector r due to a single dipole with dipole
moment d = ded (with magnitude d and orientation ed),

positioned at rdip (see Figure 1). This amounts to solving

Poisson's equation to find the potentials V on the scalp for
different configurations of rdip and d. For multiple dipole

sources, the electrode potential would be

. Assuming the principle of super-

position, this can be rewritten as

, where g(r,

) now has three components corresponding to the

Cartesian x, y, z directions, di = (dix, diy, diz) is a vector con-

sisting of the three dipole magnitude components, 'T'
denotes the transpose of a vector, di = ||di|| is the dipole

magnitude and  is the dipole orientation. In

practice, one calculates a potential between an electrode
and a reference (which can be another electrode or an
average reference).

For N electrodes and p dipoles:
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A three layer head model.
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where i = 1, ..., p and j = 1, ..., N. Each row of the gain
matrix G is often referred to as the lead-field and it
describes the current flow for a given electrode through
each dipole position [5].

For N electrodes, p dipoles and T discrete time samples:

where M is the matrix of data measurements at different
times m(r, t) and D is the matrix of dipole moments at dif-
ferent time instants.

In the formulation above it was assumed that both the
magnitude and orientation of the dipoles are unknown.
However, based on the fact that apical dendrites produc-
ing the measured field are oriented normal to the surface
[6], dipoles are often constrained to have such an orienta-
tion. In this case only the magnitude of the dipoles will
vary and the formulation in (2a) can therefore be re-writ-
ten as:

where D is now a matrix of dipole magnitudes at different
time instants. This formulation is less underdetermined
than that in the previous structure.

Generally a noise or perturbation matrix n is added to the
system such that the recorded data matrix M is composed
of:

M = GD + n. (4)

Under this notation, the inverse problem then consists of

finding an estimate  of the dipole magnitude matrix
given the electrode positions and scalp readings M and
using the gain matrix G calculated in the forward prob-
lem. In what follows, unless otherwise stated, T = 1 with-
out loss of generality.

3 Inverse solutions
The EEG inverse problem is an ill-posed problem because
for all admissible output voltages, the solution is non-
unique (since p >> N) and unstable (the solution is highly
sensitive to small changes in the noisy data). There are var-
ious methods to remedy the situation (see e.g. [7-9]). As
regards the EEG inverse problem, there are six parameters
that specify a dipole: three spatial coordinates (x, y, z) and
three dipole moment components (orientation angles (θ,
φ) and strength d), but these may be reduced if some con-
straints are placed on the source, as described below.

Various mathematical models are possible depending on
the number of dipoles assumed in the model and whether
one or more of dipole position(s), magnitude(s) and ori-
entation(s) is/are kept fixed and which, if any, of these are
assumed to be known. In the literature [10] one can find
the following models: a single dipole with time-varying
unknown position, orientation and magnitude; a fixed
number of dipoles with fixed unknown positions and ori-
entations but varying amplitudes; fixed known dipole
positions and varying orientations and amplitudes; varia-
ble number of dipoles (i.e. a dipole at each grid point) but
with a set of constraints. As regards dipole moment con-
straints, which may be necessary to limit the search space
for meaningful dipole sources, Rodriguez-Rivera et al. [11]
discuss four dipole models with different dipole moment
constraints. These are (i) constant unknown dipole
moment; (ii) fixed known dipole moment orientation
and variable moment magnitude; (iii) fixed unknown
dipole moment orientation, variable moment magnitude;
(iv) variable dipole moment orientation and magnitude.

There are two main approaches to the inverse solution:
non-parametric and parametric methods. Non-parametric
optimization methods are also referred to as Distributed
Source Models, Distributed Inverse Solutions (DIS) or
Imaging methods. In these models several dipole sources
with fixed locations and possibly fixed orientations are
distributed in the whole brain volume or cortical surface.
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As it is assumed that sources are intracellular currents in
the dendritic trunks of the cortical pyramidal neurons,
which are normally oriented to the cortical surface [6],
fixed orientation dipoles are generally set to be normally
aligned. The amplitudes (and direction) of these dipole
sources are then estimated. Since the dipole location is
not estimated the problem is a linear one. This means that

in Equation 4, { } and possibly ei are determined

beforehand, yielding large p >> N which makes the prob-
lem underdetermined. On the other hand, in the paramet-
ric approach few dipoles are assumed in the model whose
location and orientation are unknown. Equation (4) is

solved for D, { } and ei, given M and what is known

of G. This is a non-linear problem due to parameters

{ }, ei appearing non-linearly in the equation.

These two approaches will now be discussed in more
detail.

3.1 Non parametric optimization methods
Besides the Bayesian formulation explained below, there
are other approaches for deriving the linear inverse oper-
ators which will be described, such as minimization of
expected error and generalized Wiener filtering. Details
are given in [12]. Bayesian methods can also be used to
estimate a probability distribution of solutions rather
than a single 'best' solution [13].

3.1.1 The Bayesian framework

In general, this technique consists in finding an estimator

 of x that maximizes the posterior distribution of x given
the measurements y [4,12-15]. This estimator can be writ-
ten as

where p(x | y) denotes the conditional probability density
of x given the measurements y. This estimator is the most
probable one with regards to measurements and a priori
considerations.

According to Bayes' law,

The Gaussian or Normal density function
Assuming the posterior density to have a Gaussian distri-
bution, we find

where z is a normalization constant called the partition
function, Fα(x) = U1(x) + αL(x) where U1(x) and L(x) are
energy functions associated with p(y | x) and p(x) respec-
tively, and α (a positive scalar) is a tuning or regulariza-
tion parameter. Then

If measurement noise is assumed to be white, Gaussian
and zero-mean, one can write U1(x) as

U1(x) = ||Kx - y||2

where K is a compact linear operator [7,16] (representing
the forward solution) and ||.|| is the usual L2 norm. L(x)
may be written as Us(x) + Ut(x) where Us(x) introduces
spatial (anatomical) priors and Ut(x) temporal ones
[4,15]. Combining the data attachment term with the
prior term,

This equation reflects a trade off between fidelity to the
data and spatial/temporal smoothness depending on the
α.

In the above, p(y | x) ∝ exp(-XT.X) where X = Kx - y. More
generally, p(y | x) ∝ exp(-Tr(XT.σ-1.X)), where σ-1 is the
data covariance matrix and 'Tr' denotes the trace of a
matrix.

The general Normal density function
Even more generally, p(y | x) ∝ exp(-Tr((X - μ)T.σ-1.(X -
μ))), where μ is the mean value of X. Suppose R is the var-
iance-covariance matrix when a Gaussian noise compo-
nent is assumed and Y is the matrix corresponding to the
measurements y. The R-norm is defined as follows:

Non-Gaussian priors
Non-Gaussian priors include entropy metrics and Lp
norms with p < 2 i.e. L(x) = ||x||p.

Entropy is a probabilistic concept appearing in informa-
tion theory and statistical mechanics. Assuming x ∈ Rn

consists of positive entries xi > 0, i = 1, ..., n the entropy is
defined as
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where  > 0 is a is a given constant. The information

contained in x relative to  is the negative of the entropy.

If it is required to find x such that only the data Kx = y is
used, the information subject to the data needs to be min-
imized, that is, the entropy has to be maximized. The
mathematical justification for the choice L(x) = - (x) is
that it yields the solution which is most 'objective' with
respect to missing information. The maximum entropy
method has been used with success in image restoration
problems where prominent features from noisy data are
to be determined.

As regards Lp norms with p < 2, we start by defining these

norms. For a matrix A,  where aij are

the elements of A. The defining feature of these prior mod-
els is that they are concentrated on images with low aver-
age amplitude with few outliers standing out. Thus, they
are suitable when the prior information is that the image
contains small and well localized objects as, for example,
in the localization of cortical activity by electric measure-
ments.

As p is reduced the solutions will become increasingly
sparse. When p = 1 [17] the problem can be modified
slightly to be recast as a linear program which can be
solved by a simplex method. In this case it is the sum of
the absolute values of the solution components that is
minimized. Although the solutions obtained with this
norm are sparser than those obtained with the L2 norm,
the orientation results were found to be less clear [17].
Another difference is that while the localization results
improve if the number of electrodes is increased in the
case of the L2 approach, this is not the case with the L1
approach which requires an increase in the number of grid
points for correct localization. A third difference is that
while both approaches perform badly in the presence of
noisy data, the L1 approach performs even worse than the
L2 approach. For p < 1 it is possible to show that there
exists a value 0 <p < 1 for which the solution is maximally
sparse. The non-quadratic formulation of the priors may
be linked to previous works using Markov Random Fields
[18,19]. Experiments in [20] show that the L1 approach
demands more computational effort in comparision with
L2 approaches. It also produced some spurious sources

and the source distribution of the solution was very differ-
ent from the simulated distribution.

Regularization methods

Regularization is the approximation of an ill-posed prob-
lem by a family of neighbouring well-posed problems.
There are various regularization methods found in the lit-
erature depending on the choice of L(x). The aim is to find
the best-approximate solution xδ of Kx = y in the situation
that the 'noiseless data' y are not known precisely but that

only a noisy representation yδ with ||yδ - y|| ≤ δ is availa-
ble. Typically yδ would be the real (noisy) signal. In gen-

eral, an  is found which minimizes

Fα(x) = ||Kx - yδ||2 + αL(x).

In Tikhonov regularization, L(x) = ||x||2 so that an  is

found which minimizes

Fα(x) = ||Kx - yδ||2 + α||x||2.

It can be shown (in Appendix) that

where K* is the adjoint of K. Since (K*K + αI)-1K* =
K*(KK* + αI)-1 (proof in Appendix),

Another choice of L(x) is

L(x) = ||Ax||2 (5)

where A is a linear operator. The minimum is obtained
when

In particular, if A = ∇ where ∇ is the gradient operator,

then  = (K*K + α∇T∇)-1K*y. If A = ΔB, where Δ is the

Laplacian operator, then  = (K*K + αB*ΔTΔB)-1K*y.

The regularization parameter α must find a good compro-
mise between the residual norm ||Kx - yδ|| and the norm
of the solution ||Ax||. In other words it must find a bal-
ance between the perturbation error in y and the regulari-
zation error in the regularized solution.
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Various methods [7-9] exist to estimate the optimal regu-
larization parameter and these fall mainly in two catego-
ries:

1. Those based on a good estimate of |||| where  is the
noise in the measured vector yδ.

2. Those that do not require an estimate of ||||.

The discrepancy principle is the main method based on
||||. In effect it chooses α such that the residual norm for
the regularized solution satisfies the following condition:

||Kx - yδ|| = ||||

As expected, failure to obtain a good estimate of  will yield
a value for α which is not optimal for the expected solu-
tion.

Various other methods of estimating the regularization
parameter exist and these fall mainly within the second
category. These include, amongst others, the

1. L-curve method

2. General-Cross Validation method

3. Composite Residual and Smoothing Operator
(CRESO)

4. Minimal Product method

5. Zero crossing

The L-curve method [21-23] provides a log-log plot of the
semi-norm ||Ax|| of the regularized solution against the
corresponding residual norm ||Kx - yδ|| (Figure 2a). The
resulting curve has the shape of an 'L', hence its name, and
it clearly displays the compromise between minimizing
these two quantities. Thus, the best choice of alpha is that
corresponding to the corner of the curve. When the regu-
larization method is continuous, as is the case in
Tikhonov regularization, the L-curve is a continuous
curve. When, however, the regularization method is dis-
crete, the L-curve is also discrete and is then typically rep-
resented by a spline curve in order to find the corner of the
curve.

Similar to the L-curve method, the Minimal Product
method [24] aims at minimizing the upper bound of the
solution and the residual simultaneously (Figure 2b). In
this case the optimum regularization parameter is that
corresponding to the minimum value of function P which
gives the product between the norm of the solution and
the norm of the residual. This approach can be adopted to
both continuous and discrete regularization.

P(α) = ||Ax(α)||.||Kx(α) - yδ||

Another well known regularization method is the Gener-
alized Cross Validation (GCV) method [21,25] which is
based on the assumption that y is affected by normally
distributed noise. The optimum alpha for GCV is that cor-
responding to the minimum value for the function G:

Methods to estimate the regularization parameterFigure 2
Methods to estimate the regularization parameter. (a) L-curve (b) Minimal Product Curve.
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where T is the inverse operator of matrix K. Hence the
numerator measures the discrepancy between the esti-
mated and measured signal yδ while the denominator
measures the discrepancy of matrix KT from the identity
matrix.

The regularization parameter as estimated by the Com-
posite Residual and Smoothing Operator (CRESO)
[23,24] is that which maximizes the derivative of the dif-
ference between the residual norm and the semi-norm i.e.
the derivative of B(α):

B(α) = α2||Ax(α)||2 - ||Kx(α) - yδ||2 (7)

Unlike the other described methods for finding the regu-
larization parameter, this method works only for continu-
ous regularization such as Tikhonov.

The final approach to be discussed here is the zero-cross-
ing method [23] which finds the optimum regularization
parameter by solving B(α) = 0 where B is as defined in
Equation (7). Thus the zero-crossing is basically another
way of obtaining the L-curve corner.

One must note that the above estimators for  are the

same as those that result from the minimization of ||Ax||
subject to Kx = y. In this case x = K(*)(KK(*))-1y where K(*)

= (AA*)-1K* is found with respect to the inner product
77x, y88 = 7Ax, Ay8. This leads to the estimator,

x = (A*A)-1K*(K(AA*)-1K*)-1y

which, if regularized, can be shown to be equivalent to
(6).

As regards the EEG inverse problem, using the notation
used in the description of the forward problem in Section

??, the Bayesian methods find an estimate  of D such
that

where

As an example, in [26] one finds that the linear operator
A in Equation (5) is taken to be a matrix A whose rows

represent the averages (linear combinations) of the true
sources. One choice of the matrix A is given by

In the above equation, the subscripts p, q are used to indi-
cate grid points in the volume representing the brain and
the subscripts k, m are used to represent Cartesian coordi-
nates x, y and z (i.e. they take values 1,2,3), dpq represents
the Euclidean distances between the pth and qth grid
points. The coefficients wj can be used to describe a col-
umn scaling by a diagonal matrix while σi controls the
spatial resolution. In particular, if σi → 0 and wj = 1 the
minimum norm solution described below is obtained.

In the next subsections we review some of the most com-
mon choices for L(D).

Minimum norm estimates (MNE)
Minimum norm estimates [5,27,28] are based on a search
for the solution with minimum power and correspond to
Tikhonov regularization. This kind of estimate is well
suited to distributed source models where the dipole
activity is likely to extend over some areas of the cortical
surface.

L(D) = ||D||2

or

The first equation is more suitable when N > p while the
second equation is more suitable when p > N. If we let
TMNE be the inverse operator GT(GGT + αIN)-1, then TMNEG
is called the resolution matrix and this would ideally the
identity matrix. It is claimed [5,27] that MNEs produce
very poor estimation of the true source locations with
both the realistic and sphere models.

A more general minimum-norm inverse solution assumes
that both the noise vector n and the dipole strength D are
normally distributed with zero mean and their covariance
matrices are proportional to the identity matrix and are
denoted by C and R respectively. The inverse solution is
given in [14]:

G
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Rij can also be taken to be equal to σiσjCorr(i, j) where 

is the variance of the strength of the ith dipole and Corr(i,
j) is the correlation between the strengths of the ith and jth
dipoles. Thus any a priori information about correlation
between the dipole strengths at different locations can be
used as a constraint. R can also be taken as

 where  is such that it is

large when the measure ζi of projection onto the noise

subspace is small. The matrix C can be taken as σ2I if it is
assumed that the sensor noise is additive and white with

constant variance σ2. R can also be constructed in such a
way that it is equal to UUT where U is an orthonormal set
of arbitrary basis vectors [12]. The new inverse operator
using these arbitrary basis functions is the original for-
ward solution projected onto the new basis functions.

Weighted minimum norm estimates (WMNE)
The Weighted Minimum Norm algorithm compensates
for the tendency of MNEs to favour weak and surface
sources. This is done by introducing a 3p × 3p weighting
matrix W:

or

W can have different forms but the simplest one is based

on the norm of the columns of the matrix G: W = Ω ^ I3,

where ^ denotes the Kronecker product and Ω is a diago-
nal p × p matrix with

, for β = 1, ..., p.

MNE with FOCUSS (Focal underdetermined system solution)
This is a recursive procedure of weighted minimum norm
estimations, developed to give some focal resolution to
linear estimators on distributed source models
[5,27,29,30]. Weighting of the columns of G is based on
the mag nitudes of the sources of the previous iteration.
The Weighted Minimum Norm compensates for the lower
gains of deeper sources by using lead-field normalization.

where i is the index of the iteration and Wi is a diagonal
matrix computed using

, j ∈ [1, 2, ..., p] is a diagonal matrix for

deeper source compensation. G(:, j) is the jth column of
G. The algorithm is initialized with the minimum norm

solution , that is,

,

where (n) represents the nth element of vector . If

continued long enough, FOCUSS converges to a set of
concentrated solutions equal in number to the number of
electrodes.

The localization accuracy is claimed to be impressively
improved in comparison to MNE. However, localization
of deeper sources cannot be properly estimated. In addi-
tion to Minimum Norm, FOCUSS has also been used in
conjunction with LORETA [31] as discussed below.

Low resolution electrical tomography (LORETA)
LORETA [5,27] combines the lead-field normalization
with the Laplacian operator, thus, gives the depth-com-
pensated inverse solution under the constraint of
smoothly distributed sources. It is based on the maximum
smoothness of the solution. It normalizes the columns of
G to give all sources (close to the surface and deeper ones)
the same opportunity of being reconstructed. This is better
than minimum-norm methods in which deeper sources
cannot be recovered because dipoles located at the surface
of the source space with smaller magnitudes are prive-
leged. In LORETA, sources are distributed in the whole
inner head volume. In this case, L(D) = ||ΔB.D||2 and B =
Ω ^ I3 is a diagonal matrix for the column normalization
of G.

or

Experiments using LORETA [27] showed that some spuri-
ous activity was likely to appear and that this technique
was not well suited for focal source estimation.

LORETA with FOCUSS [31]
This approach is similar to MNE with FOCUSS but based
on LORETA rather than MNE. It is a combination of
LORETA and FOCUSS, according to the following steps:

s i
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1. The current density is computed using LORETA to get

.

2. The weighting matrix W is constructed using (10), the
initial matrix being given by

, where

(n) represents the nth element of vector .

3. The current density  is computed using (9).

4. Steps (2) and (3) are repeated until convergence.

Standardized low resolution brain electromagnetic tomography

Standardized low resolution brain electromagnetic tom-
ography (sLORETA) [32] sounds like a modification of
LORETA but the concept is quite different and it does not
use the Laplacian operator. It is a method in which local-
ization is based on images of standardized current den-
sity. It uses the current density estimate given by the

minimum norm estimate  and standardizes it by

using its variance, which is hypothesized to be due to the
actual source variance SD = I3p, and variation due to noisy

measurements  = αIN. The electrical potential vari-

ance is SM = GSDGT +  and the variance of the esti-

mated current density is

. This is equiv-

alent to the resolution matrix TMNEG. For the case of EEG

with unknown current density vector, sLORETA gives the
following estimate of standardized current density power:

where  ∈ R3 × 1 is the current density estimate at the

lth voxel given by the minimum norm estimate and [ ]ll

∈ R3 × 3 is the lth diagonal block of the resolution matrix

. It was found [32] that in all noise free simulations,

although the image was blurred, sLORETA had exact, zero
error localization when reconstructing single sources, that
is, the maximum of the current density power estimate
coincided with the exact dipole location. In all noisy sim-
ulations, it had the lowest localization errors when com-
pared with the minimum norm solution and the Dale
method [33]. The Dale method is similar to the sLORETA
method in that the current density estimate given by the
minimum norm solution is used and source localization

is based on standardized values of the current density esti-
mates. However, the variance of the current density esti-
mate is based only on the measurement noise, in contrast
to sLORETA, which takes into account the actual source
variance as well.

Variable resolution electrical tomography (VARETA)
VARETA [34] is a weighted minimum norm solution in
which the regularization parameter varies spatially at each
point of the solution grid. At points at which the regulari-
zation parameter is small, the source is treated as concen-
trated When the regularization parameter is large the
source is estimated to be zero.

where L is a nonsingular univariate discrete Laplacian, L3

= L ^ I3 × 3, where ^ denotes the Kronecker product, W is a

certain weight matrix defined in the weighted minimum

norm solution, Λ is a diagonal matrix of regularizing

parameters, and parameters τ and α are introduced. τ con-

trols the amount of smoothness and α the relative impor-
tance of each grid point. Estimators are calculated
iteratively, starting with a given initial estimate D0 (which

may be taken to be ), Λi is estimated from Di - 1, then

Di from Λi until one of them converges.

Simulations carried out with VARETA indicate the neces-
sity of very fine grid spacing [34].

Quadratic regularization and spatial regularization (S-MAP) using 
dipole intensity gradients
In Quadratic regularization using dipole intensity gradi-
ents [4], L(D) = ||∇D||2 which results in a source estimator
given by

or

The use of dipole intensity gradients gives rise to smooth
variations in the solution.

Spatial regularization is a modification of Quadratic regu-
larization. It is an inversion procedure based on a non-
quadratic choice for L(D) which makes the estimator
become non-linear and more suitable to detect intensity
jumps [27].
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where Nv = p × Nn and Nn is the number of neighbours for

each source j, ∇D|v is the vth element of the gradient vector

and . Kv = αv × βv where αv

depends on the distance between a source and its current

neighbour and βv depends on the discrepancy regarding

orientations of two sources considered. For small gradi-
ents the local cost is quadratic, thus producing areas with
smooth spatial changes in intensity, whereas for higher

gradients, the associated cost is finite: Φv(u) ≈ , thus

allowing the preservation of discontinuities. The estima-
tor at the ith iteration is of the form

where Θ is a p by N matrix depending on G and priors

computed from the previous source estimate .

Spatio-temporal regularization (ST-MAP)

Time is taken into account in this model whereby the
assumption is made that dipole magnitudes are evolving
slowly with regard to the sampling frequency [4,15]. For a

measurement taken at time t, assuming that  and 

may be very close to each other means that the orthogonal

projection of  on the hyperplane  perpendicular

to  is 'small'. The following nonlinear equation is

obtained:

where

is a weighted Laplacian and

with

 is the projector onto .

Spatio-temporal modelling
Apart from imposing temporal smoothness constraints,
Galka et. al. [35] solved the inverse problem by recasting
it as a spatio-temporal state space model which they solve
by using Kalman filtering. The computational complexity
of this approach that arises due to the high dimensionality
of the state vector was addressed by decomposing the
model into a set of coupled low-dimensional problems
requiring a moderate computational effort. The initial
state estimates for the Kalman filter are provided by
LORETA. It is shown that by choosing appropriate
dynamical models, better solutions than those obtained
by the instantaneous inverse solutions (such as LORETA)
are obtained.

3.1.2 The Backus-Gilbert method

The Backus-Gilbert method [5,7,36] consists of finding an
approximate inverse operator T of G that projects the EEG
data M onto the solution space in such a way that the esti-

mated primary current density  = TM, is closest to the

real primary current density inside the brain, in a least
square sense. This is done by making the 1 × p vector

 (u, v = 1, 2, 3 and γ = 1, ..., p) as close as pos-

sible to  where δ is the Kronecker delta and Iγ is the

γ th column of the p × p identity matrix. Gv is a N × p matrix

derived from G in such a way that in each row, only the
elements in G corresponding to the vth direction are kept.
The Backus-Gilbert method seeks to minimize the spread
of the resolution matrix R, that is to maximize the resolv-
ing power. The generalized inverse matrix T optimizes, in
a weighted sense, the resolution matrix.

We reproduce the discrete version of the Backus-Gilbert
problem as given in [5]:

under the normalization constraint: . 1p is a p

× 1 matrix consisting of ones.

One choice for the p × p diagonal matrix  is:

where vi is the position vector of grid point i in the head
model. Note that the first part of the functional to be min-

L v v

n

N v

( ) ( )|D D= ∇
=

∑Φ
1

Φ v u u u
K v

( ) = +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1
2

K v
2

ˆ ( , ( ˆ ))D G D Mi iL= −Θ 1

D̂i−1

D̂t−1 D̂t

D̂t E
tD̂ −1

⊥

D̂t−1

G G P P D G MT t
t t t

T
t

T

+ + =− −a b( )Δ 1 1
⊥ ⊥

Δ t
x
T

x
t

x
T

x y
T

y
t

y= −∇ ∇ ∇ − ∇ ∇B B

B x
t

x
t

k k pb= =diag.[ | ] ,...,1

b
x t k

x t k
x
t

k|
( | )

|
.=

′ ∇
∇

Φ D

D2

Pt−1
⊥ E

tD̂ −1

⊥

D̂BG

R T Guv
T

u
T

vg g=

d guv
TI

min{[ ] [ ] ( ) }
T

I G T W G T T G G T
u

u
T

u
T BG

u
T

u vu u
T

v v
T

u

v

I
g

g g g g g g gd− − + −
=

1
1

33

∑
T G 1u

T
u pg = 1

Wg
BG

[ ] || || , , , ...,W v vg aa a g a gBG p= − ∀ =2 1
Page 10 of 33
(page number not for citation purposes)



Journal of NeuroEngineering and Rehabilitation 2008, 5:25 http://www.jneuroengrehab.com/content/5/1/25
imized attempts to ensure correct position of the localized
dipoles while the second part ensures their correct orien-
tation.

The solution for this EEG Backus-Gilbert inverse operator
is:

where:

'†' denotes the Moore-Penrose pseudoinverse.

3.1.3 The weighted resolution optimization

An extension of the Backus-Gilbert method is called the
Weighted Resolution Optimization (WROP) [37]. The
modification by Grave de Peralta Menendez is cited in [5].

 is replaced by  where

The second part of the functional to be minimzed is
replaced by

where

αGdeP and βGdeP are scalars greater than zero. In practice this
means that there is more trade off between correct locali-
zation and correct orientation than in the above Backus-
Gilbert inverse problem.

In this case the inverse operator is:

In [5] five different inverse methods (the class of instanta-
neous, 3D, discrete linear solutions for the EEG inverse
problem) were analyzed and compared for noise-free
measurements: minimum norm, weighted minimum
norm, Backus-Gilbert, weighted resolution optimization
(WROP) and LORETA. Of the five inverse solutions tested,

only LORETA demonstrated the ability of correct localiza-
tion in 3D space.

The WROP method is a family of linear distributed solu-
tions including all weighted minimum norm solutions.
As particular cases of the WROP family there are LAURA
[26,38], a local autoregressive average which includes
physical constraints into the solutions and EPI-FOCUS
[38] which is a linear inverse (quasi) solution, especially
suitable for single, but not necessarily point-like genera-
tors in realistic head models. EPIFOCUS has demon-
strated a remarkable robustness against noise.

LAURA
As stated in [39] in a norm minimization approach we
make several assumptions in order to choose the optimal
mathematical solution (since the inverse problem is
underdetermined). Therefore the validity of the assump-
tions determine the success of the inverse solution. Unfor-
tunately, in most approaches, criteria are purely
mathematical and do not incorporate biophysical and
psychological constraints. LAURA (Local AUtoRegressive
Average) [40] attempts to incorporate biophysical laws
into the minimum norm solution.

According to Maxwell's laws of electromagnetic field, the
strength of each source falls off with the reciprocal of the
cubic distance for vector fields and with the reciprocal of
the squared distance for potential fields. LAURA method
assumes that the electromagnetic activity will occur
according to these two laws.

In LAURA the current estimate is given by the following
equation:

The Wj matrix is constructed as follows:

1. Denote by  the vicinity of each solution point

defined as the hexahedron centred at the point and com-

prising at most  = 26 points.

2. For each solution point denote by Nk the number of
neighbours of that point and by dki the Euclidean distance
from point k to point i (and vice versa).

3. Compute the matrix A using ei = 2 for scalar fields and
ei = 3 for vector fields

and
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4. The weight matrix Wj is defined by:

Wj = PTP

where:

P = WmA ^ I3

where I3 is the 3 × 3 identity matrix and ^ denotes the Kro-
necker product. Wm is a diagonal matrix formed by the
mean of the norm of the three columns of the lead field
matrix associated with the ith point.

3.1.4 Shrinking methods and multiresolution methods
By applying suitable iterations to the solution of a distrib-
uted source model, a concentrated source solution may be
obtained. Ways of performing this are explained in the
next section.

S-MAP with iterative focusing
This modified version [27] of Spatial Regularization is
dedicated to the recovery of focal sources when the spatial
sampling of the cortical surface is sparse. The source space
dimension is reduced by iterative focusing on the regions
that have been previously estimated with significant
dipole activity. An energy criterion is used which takes
into consideration both the source intensities and its con-
tribution to data:

E = 2Ec + Ea

where Ec measures the contribution of every dipole source
to the data and Ea is an indicator of dipole relative magni-
tudes. Sources with energy greater than a certain threshold
are selected for the next iteration. The estimator at the ith
iteration is given by

where Gi is the column-reduced version of G and Θ is a pi

≤ p by N matrix depending on the Gi and priors computed

from the previous source estimate . A similar

approach was used in [31] where the source region was
contracted several times but at each iteration, LORETA
was used to estimate the source tomography.

Shrinking LORETA-FOCUSS
This algorithm combines the ideas of LORETA and
FOCUSS and makes iterative adjustments to the solution
space in order to reduce computation time and increase

source resolution [?, 20]. Starting from the smooth
LORETA solution, it enhances the strength of some prom-
inent dipoles in the solution and diminishes the strength
of other dipoles. The steps [20] are as follows:

1. The current density is computed using LORETA to get

.

2. The weighting matrix W is constructed using (10), its
initial value being given by

.

3. The current density  is computed using (9).

4. (Smoothing operation) The prominent nodes (e.g.
those with values larger than 1% of the maximum value)
and their neighbours are retained. The current density val-
ues on these prominent nodes and their neighbours are
readjusted by smoothing, the new values being given by

where rl is the position vector of the lth node and sl is the
number of neighbouring nodes around the lth node with
distance equal to the minimum inter-node distance d.

5. (Shrinking operation) The corresponding elements in

 and G are retained and the matrix M = D  is com-
puted.

6. Steps (2) to (5) are repeated until convergence.

7. The solution of the last iteration before smoothing is
the final solution.

Steps (4) and (5) are stopped if the new solution space has
fewer nodes than the number of electrodes or the solution
of the current iteration is less sparse than that estimated
by the previous iteration. Once steps (4) and (5) are
stopped, the algorithm becomes a FOCUSS process.
Results [20] using simulated noiseless data show that
Shrinking LORETA-FOCUSS is able to reconstruct a three-
dimensional source distribution with smaller localization
and energy errors compared to Weighted Minimum
Norm, the L1 approach and LORETA with FOCUSS. It is
also 10 times faster than LORETA with FOCUSS and sev-
eral hundred times faster than the L1 approach.

Standardized shrinking LORETA-FOCUSS (SSLOFO)
SSLOFO [41] combines the features of high resolution
(FOCUSS) and low resolution (WMN, sLORETA) meth-
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ods. In this way, it can extract regions of dominant activity
as well as localize multiple sources within those regions.
The procedure is similar to that in Shrinking LORETA-
FOCUSS with the exception of the first three steps which
are:

1. The current density is computed using sLORETA to get

.

2. The weighting matrix W is constructed using (10), its
initial value being given by

.

3. The current density  is computed using (9). The

power of the source estimation is then normalized as

where  and [Ri]ll is the

lth diagonal block of matrix Ri.

In [41], SSLOFO reconstructed different source configura-
tions better than WMN and sLORETA. It also gave better
results than FOCUSS when there were many extended
sources. A spatio-temporal version of SSLOFO is also
given in [41]. An important feature of this algorithm is
that the temporal waveforms of single/multiple sources in
the simulation studies are clearly reconstructed, thus ena-
bling estimation of neural dynamics directly from the cor-
tical sources. Neither Shrinking LORETA-FOCUSS nor
FOCUSS are able to accurately reconstruct the time series
of source activities.

Adaptive standardized LORETA/FOCUSS (ALF)
The algorithms described above require a full computa-
tion of the matrix G. On the other hand, ALF [42] requires
only 6%–11% of this matrix. ALF localizes sources from a
sparse sampling of the source space. It minimizes forward
computations through an adaptive procedure that
increases source resolution as the spatial extent is reduced.
The algorithm has the following steps:

1. A set of successive decimation ratios on the set of possi-
ble sources is defined. These ratios determine successively
higher resolutions, the first ratio being selected so as to
produce a targeted number of sources chosen by the user
and the last one produces the full resolution of the model.

2. Starting with the first decimation ratio, only the corre-
sponding dipole locations and columns in G are retained.

3. sLORETA (Equation(11)) is used to achieve a smooth
solution. The source with maximum normalized power is
selected as the centre point for spatial refinement in the
next iteration, in which the next decimation ratio is
applied. Successive iterations include sources within a
spherical region at successively higher resolutions.

4. Steps 2 and 3 are repeated until the last decimation
ratio is reached. The solution produced by the final itera-
tion of sLORETA is used as initialization of the FOCUSS
algorithm. Standardization (Equation(12)) is incorpo-
rated into each FOCUSS iteration as well.

5. Iterations are continued until there is no change in
solution.

It is shown in [42] that the localization accuracy achieved
is not significantly different than that obtained when an
exhaustive search in a fully-sampled source space is made.
A multiresolution framework approach was also used in
[15]. At each iteration of the algorithm, the source space
on the cortical surface was scanned at higher spatial reso-
lution such that at every resolution but the highest, the
number of source candidates was kept constant.

3.1.5 Summary
Refering to Equation (8), Table 1 summarizes the differ-
ent weight matrices used in the algorithms. Refering to
Subsection 3.1.4, Table 2 summarizes the steps involved
in the different iterative methods which were discussed.

3.2 Parametric methods
Parametric Methods are also referred to as Equivalent Cur-
rent Dipole Methods or Concentrated Source or Spatio-
Temporal Dipole Fit Models. In this approach, a search is
made for the best dipole position(s) and orientation(s).
The models range in complexity from a single dipole in a
spherical head model, to multiple dipoles (up to ten or
more) in a realistic head model. Dynamic models take
into consideration dipole changes in time as well. Con-

D̂ sLOR

W D D D D0 0 0 01 2 3= =diag diag( ) ( ( ), ( ),..., ( ))sLOR p

D̂i

ˆ ( ){[ ] } ( )D R Di
T

i ll il l−1 (12)
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Table 1: Summary of weighting strategies for the various non-
parametric methods. For definition of notation, refer to the 
respective subsection.

Algorithm Weight Matrix W

MNE I3p

WMNE Ω ^ I3

LORETA (Ω ^ I3)ΔTΔ(Ω ^ I3)

Quadratic Regularization ∇

LAURA WmA ^ I3
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straints on the dipole orientations, whether fixed or varia-
ble, may be made as well.

3.2.1 The non-linear least-squares problem

The best location and dipole moment (six parameters in
all for each dipole) are usually obtained by finding the
global minimum of the residual energy, that is the L2-

norm ||Vin - Vmodel||, where Vmodel ∈ RN represents the elec-

trode potentials with the hypothetical dipoles, and Vin ∈
RN represents the recorded EEG for a single time instant.
This requires a non-linear minimization of the cost func-

tion ||M - G({rj, })D|| over all of the parameters

( , D). Common search methods include the gradient,

downhill or standard simplex search methods (such as
Nelder-Mead) [43-46], normally including multi-starts, as
well as genetic algorithms and very time-consuming sim-
ulated annealing [45,47,48]. In these iterative processes,
the dipolar source is moved about in the head model
while its orientation and magnitude are also changed to
obtain the best fit between the recorded EEG and those
produced by the source in the model. Each iterative step
requires several forward solution calculations using test
dipole parameters to compare the fit produced by the test
dipole with that of the previous step.

3.2.2 Beamforming approaches
Beamformers are also called spatial filters or virtual sen-
sors. They have the advantage that the number of dipoles
must not be assumed a priori. The output y(t) of the beam-
former is computed as the product of a 3 × N (each Carte-

sian axis is considered) spatial filtering matrix WT with
m(t), the N × 1 vector representing the signal at the array
at a given time instant t associated with a single dipole
source, i.e. y(t) = WTm(t). This output represents the neu-
ronal activity of each dipole d in the best possible way at
a given time t.

In beamforming approaches [6], the signals from the elec-
trodes are filtered in such a way that only those coming
from sources of interest are maintained. If the location of
interest is rdip, the spatial filter should satisfy the following
constraints:

where G(r) = [g(r, ex), g(r, ey), g(r, ez)] is the N × 3 forward
matrix for three orthogonal dipoles at location r having
orientation vectors ex, ey and ez respectively, I is the 3 × 3
identity matrix and δ represents a small distance.

In linearly constrained minimum variance (LCMV) beam-
forming [49], nulls are placed at positions corresponding
to interfering sources, i.e. neural sources at locations other
than rdip (so δ = 0). The LCMV problem can be written as:

where Cy = E[yyT] = WTCmW and Cm = E[mmT] is the signal
covariance matrix estimated from the available data. This
means that the beamformer minimizes the output energy
WTCmW under the constraint that only the dipole at rdip is
active at that time. Minimization of variance optimally
allocates the stop band response of the filter to attenuate
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Table 2: Steps involved in the iterative methods

Iterative Method Description

S-MAP with Iterative Focusing Uses the S-MAP algorithm; an energy criterion is used to reduce the dimension of G; priors computed from the 
previous source estimate are used at each new iteration.

Shrinking LORETA-FOCUSS
LORETA solution computed; Weighting matrix W constructed; FOCUSS algorithm used to estimate ; 

smoothing of current density values of prominent dipoles and their neighbours; shrinking of  and G; 

computation of M = G ; process (computation of W etc.) repeated.

SSLOFOM
sLORETA solution computed; Weighting matrix W constructed; FOCUSS algorithm used to estimate ; 
source estimation power is normalized; smoothing of current density values of prominent dipoles and their 

neighbours; shrinking of  and G; computation of M = G ; process (computation of W etc.) repeated.

ALF Decimation ratios are defined; first ratio is used to retain the corresponding dipole locations and columns of G; 
sLORETA computed; source with maximum normalized power selected as centre point for spatial refinement; 
next decimation ratio used; process repeated until last ratio is reached; final sLORETA solution used to initialize 
FOCUSS algorithm with standardization.
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activity originating at other locations. By applying
Lagrange multipliers and completing the square (proof in
Appendix), one obtains:

The filter W(rdip) is then applied to each of the vectors

m(t) in M so that an estimate of the dipole moment at rdip

is obtained. To perform localization, an estimation of the

variance or strength (rdip) of the activity as a function

of location is calculated. This is the value of the cost func-
tion Tr{WT(rdip)CmW(rdip)} at the minimum, equal to

.

This approach can produce an estimate of the neural activ-
ity at any location by changing the location rdip. It assumes

that any source can be explained as a weighted combina-
tion of dipoles. Hence the geometry of sources is not
restricted to points but may be distributed in nature
according to the variance values. Moreover, this approach
does not require prior knowledge of the number of
sources and anatomical information is easily included by

evaluating (rdip) only at physically realistic source

locations.

The resolution of detail obtained by this approach
depends on the filter's passband and on the SNR (signal
to noise ratio defined as the ratio of source variance to
noise variance) associated with the feature of interest. To
minimimize the effect of low SNRs, the estimated vari-
ance is normalized by the estimated noise spectral spec-
trum to obtain what is called the neural activity index:

where Q is the noise covariance matrix estimated from
data that is known to be source free.

Sekihara et. al [50] proposed an 'eigenspace projection'
beamformer technique in order to reconstruct source
activities at each instant in time. It is assumed that, for a
general beamformer, the matrix W = [wx, wy, wz] where the
column weight vectors wx, wy and wz, respectively, detect
the x, y and z components of the source moment to be
determined and are of the form

where μ = x, y or z, fx = [1, 0, 0]T, fy = [0,1 0]T, fz = [0, 0, 1]T

and

The weight vectors for the proposed beamformer, , are

derived by projecting the weight vectors wμ onto the signal

subspace of the measurement covariance matrix:

where ES is the matrix whose columns consist of the sig-
nal-level eigenvectors of Cm. This beamformer, when
tested on Magnetoencephalography (MEG) experiments,
not only improved the SNR considerably but also the spa-
tial resolution. In [50], it is further extended to a prewhit-
ened eigenspace projection beamformer to reduce
interference arising from background brain activities.

3.2.3 Brain electric source analysis (BESA)
In a particular dipole-fit model called Brain Electric
Source Analysis (BESA) [27], a set of consecutive time
points is considered in which dipoles are assumed to have
fixed position and fixed or varying orientation. The
method involves the minimization of a cost function that
is a weighted combination of four criteria: the Residual
Variance (RV) which is the amount of signal that remains
unexplained by the current source model; a Source Activa-
tion Criterion which increases when the sources tend to
be active outside of their a priori time interval of activa-
tion; an Energy Criterion which avoids the interaction
between two sources when a large amplitude of the wave-
form of one source is compensated by a large amplitude
on the waveform of the second source; a Separation Crite-
rion that encourages solutions in which as few sources as
possible are simultaneously active.

3.2.4 Subspace techniques
We now consider parametric methods which process the
EEG data prior to performing the dipole localization. Like
beamforming techniques, the number of dipoles need not
be known a priori. These methods can be more robust
since they can take into consideration the signal noise
when performing dipole localization.

Multiple-signal Classification algorithm (MUSIC)
The multiple-signal Classification algorithm (MUSIC)
[6,51] is a version of the spatio-temporal approach. The
dipole model can consist of fixed orientation dipoles,
rotating dipoles or a mixture of both. For the case of a
model with fixed orientation dipoles, a signal subspace is
first estimated from the data by finding the singular value
decomposition (SVD) [8]M = UΣVT and letting US be the
signal subspace spanned by the p first left singular vectors
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of U. Two other methods of estimating the signal sub-
space, claimed to be better because they are less affected
by spatial covariance in the noise, are given in [52]. The
first method involves prewhitening of the data matrix
making use of an estimate of the spatial noise covariance
matrix. This means that the data matrix M is transformed
so that the spatial covariance matrix of the transformed
noise matrix is the identity matrix. The second method is
based on an eigen decomposition of a matrix product of
stochastically independent sweeps. The MUSIC algorithm
then scans a single dipole model through the head vol-
ume and computes projections onto this subspace. The
MUSIC cost function to be minimized is

where  is the orthogonal projector onto

the noise subspace, r and e are position and orientation
vectors, respectively. This cost function is zero when g(r,
e) corresponds to one of the true source locations and ori-

entations, r =  and e = , i = 1, ..., p. An advantage

over least-squares estimation is that each source is found
in turn, rather than searching simultaneously for all
sources.

In MUSIC, errors in the estimate of the signal subspace
can make localization of multiple sources difficult (sub-
jective) as regards distinguishing between 'true' and 'false'
peaks. Moreover, finding several local maxima in the
MUSIC metric becomes difficult as the dimension of the
source space increases. Problems also arise when the sub-
space correlation is computed at only a finite set of grid
points.

Recursive MUSIC (R-MUSIC) [53] automates the MUSIC
search, extracting the location of the sources through a
recursive use of subspace projection. It uses a modified
source representation, referred to as the spatio-temporal
independent topographies (IT) model, where a source is
defined as one or more nonrotating dipoles with a single
time course rather than an individual current dipole. It
recursively builds up the IT model and compares this full
model to the signal subspace.

In the recursively applied and projected MUSIC (RAP-
MUSIC) extension [54,55], each source is found as a glo-
bal maximizer of a different cost function. Assuming g(r,
e) = h(r)e, the first source is found as the source location
that maximizes the metric

over the allowed source space, where r is the nonlinear
location parameter. The function subcorr(h(r), US)1 is the
cosine of the first principal angle between the subspaces
spanned by the columns of h(r) and US given by:

The k-th recursion of RAP-MUSIC is

where  is formed from the

array manifold estimates  of the previ-

ous k - 1 recursions and

 is the projector onto

the left-null space of . The recursions are stopped

once the maximum of the subspace correlation in (13)
drops below a minimum threshold.

A key feature of the RAP-MUSIC algorithm is the orthog-
onal projection operator which removes the subspace
associated with previously located source activity. It uses
each successively located source to form an intermediate
array gain matrix and projects both the array manifold
and the estimated signal subspace into its orthogonal
complement, away from the subspace spanned by the
sources that have already been found. The MUSIC projec-
tion to find the next source is then performed in this
reduced subspace. Other sequential subspace methods
besides R-MUSIC and RAP-MUSIC are S-MUSIC and IES-
MUSIC [54]. Although they all find the first source in the
same way, in these latter methods the projection operator
is applied just to the array manifold, rather than to both
arguments as in the case of RAP-MUSIC.

FINES subspace algorithm
An alternative signal subspace algorithm [56] is FINES
(First Principal Vectors). This approach, used in order to
estimate the source locations, employs projections onto a
subspace spanned by a small set of particular vectors
(FINES vector set) in the estimated noise-only subspace
instead of the entire estimated noise-only subspace as in
the case of classic MUSIC.

In FINES the principal angle between two subspaces is
defined according to the closeness criterion [56]. FINES
creates a vector set for a region of the brain in order to

|| ( , )||

|| ( , )||

P g r e

g r e
S
⊥ 2

2

P I U US S S
T⊥ = − ( )

rdipi
ed i

ˆ arg max( ( ( ), ) )r h r U
r

1 1= subcorr S

subcorr
T

S S
T r

TS( ( ), )
( ( ) , ( ))

( ( ) ( ))
h r U

h r U U h

h r h r
1
2 =

ˆ arg max( ( ( ), ) )ˆ ˆr h r U
r

k G G Ssubcorr
k k

=
− −

Π Π
1 1

1
⊥ ⊥ (13)

ˆ [ (ˆ , ˆ )... (ˆ , ˆ )]G g r e g r ek k k− − −≡1 1 1 1 1

( ( , ) ( ) )g r e h r ei i i i=

Π ˆ ( ˆ ( ˆ ˆ ) ˆ )G I G G G G
k

k k
T

k k
T

−
≡ − − − −

−
−

1
1 1 1

1
1

⊥
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form a projection operator and search for dipoles in this
specific region.

An algorithmic description of the FINES algorithm can be
found in [56]. Simulation results in [56] show that FINES
produces more distinguishable localization results than
classic MUSIC and RAP-MUSIC even when two sources
are very close spatially.

3.2.5 Simulated annealing and finite elements
In [47], an objective function based on the current-density
boundary integral associated with standard finite-element
formulations in two dimensions is used instead of meas-
ured potential differences, as the basis for optimization
performed using the method of simulated annealing. The
algorithm also enables user-defined target search regions
to be incorporated. In this approach, the optimization
objective is to vary the modelled dipole such that the Neu-
mann boundary condition is satisfied, that is, the current
density at each electrode approaches zero.

where C(xp, yp, θp, dp)l is the objective function associated

with the lth electrode resulting from p dipoles, N is the
number of electrodes, Jl is the current density associated

with the lth electrode, ψl represents the weighting function

associated with the lth electrode and  is the outward-
pointing normal direction to the boundary of the prob-
lem domain. This formulation allows for the single calcu-
lation of the inverse or preconditioner matrix in the case
of direct or iterative matrix solvers, respectively, which is a
significant reduction in the computational time associ-
ated with 3-D finite element solutions.

3.2.6 Computational intelligence algorithms
Neural networks
Since the inverse source localization problem can be con-
sidered a minimization problem – find the optimal coor-
dinates and orientation for each dipole – the optimization
can be performed with an artificial neural network (ANN)
based system.

The main advantage of neural network approaches [57] is
that once trained, no further iterative process is required.
In addition, although iterative methods are shown to be
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General block diagram for an artificial neural network system used for inverse source localizationFigure 3
General block diagram for an artificial neural network system used for inverse source localization.
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better in noise free environments, ANN performs best in
environments with low signal to noise ratio [58]. There-
fore ANNs seem to be more noise robust. In any case,
many research works [59-67] claim a localization error in
ANN methods of less than 5%.

A general ANN system for EEG source localization is illus-
trated in Figure 3. According to [65], the number of neu-
rons in the input layer is equal to the number of electrodes
and the features at the input can be directly the values of
the measured voltage. The network also consists of one or
two hidden layers of N neurons each and an output layer
made up of six neurons, 3 for the coordinates and 3 for
dipole components. In addition each hidden layer neuron
is connected to the output layer with weights equal to one
in order to permit a non-zero threshold of the activation
function. Weights of inter connections are determined
after the training phase where the neural network is
trained with preconstructed examples from forward mod-
eling simulations.

Genetic algorithms
An alternative way to solve the inverse source localization
problem as a minimization problem is to use genetic algo-
rithms. In this case dipoles are modelled as a set of param-
eters that determine the orientation and the location of
the dipole and the error between the projected potential
and the measured potentials is minimized by genetic algo-
rithm evolutionary techniques.

The minimization operation can be performed in order to
localize multiple sources either in the brain [68] or in
Independent Component backprojections [69,70]. If
component back-projections are used, the correlation
between the projected model and the measured one will

have to be minimized rather than the energy of the differ-
ence.

Figure 4 shows how the minimization approach develops.
An initial population is created, this being a set of poten-
tial solutions. Every solution of the set is encoded e.g.
binary code and then a new population is created with the
application of three operators: selection, crossover and
mutation. The procedure is repeated until convergence is
reached.

3.2.7 Estimation of initial dipoles for parametric methods
In most parametric methods, the final result is extremely
dependent on the initial guess regarding the number of
dipoles to estimate and their initial locations and orienta-
tions. Estimates can be obtained as explained below.

The optimal dipole
In this model, any point inside the sphere has an associ-
ated optimal dipole [71], which fits the observed data bet-
ter than any other dipole that has the same location but
different orientation. The unknown parameters of an opti-
mal dipole are the magnitude components dx, dy and dz
(which is a linear least-squares problem).

There are two possible ways for finding the required opti-
mal dipoles. The first is a minimization iteration, where a
few optimal dipoles are found in an arbitrary region. The
steepest slope with respect to the spatial coordinate is then
found and a new search region is obtained. Optimal
dipoles in that region are found, a new slope is deter-
mined and so on, until the best of all optimal dipoles is
found.

Genetic algorithm schemaFigure 4
Genetic algorithm schema.
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The second way is to find optimal dipoles at a dense grid
of points that covers the volume in which the dipolar
source is expected to be. The best of all the optimal
dipoles is the chosen optimal dipole.

Stagnant dipoles

Stagnant dipoles [10] have only time varying amplitude
(dipole magnitude). So the number of unknowns is p(5 +
T) where p is the number of dipoles and T is the number
of time-samples. In this model, the minimum number of
dipoles L (assumed to be smaller than N or T) required to
describe the observed responses adequately was deter-
mined. The resulting residual between the data matrix M

and the corresponding model predictions  is expressed
as

where  is a N × T matrix of rank L. It is found that the
resulting residual will never exceed the true residual H:

This is equivalent to

where λk are the singular values of M, arranged in decreas-
ing order. Hence more sources haveto be included in the
model till the lower bound is smaller than the noise level
H.

4 Performance analysis
In this section we do a comparative review of the perform-
ance of different methods as recorded in the literature and
subsequently report our own Monte-Carlo comparative
experiments. Various measures have been used to deter-
mine the quality of localization obtained by a given algo-
rithm and each measure represents some performance
aspect of the algorithm such as localization error,
smoother error, generalization etc. In the following we
review a number of measures that capture various charac-
teristics of localization performance.

For a single point source, localization error is the distance
between the maximum of the estimated solution and the
actual source location [20,27,32]. An extension of this
which takes into consideration the magnitudes of other
sources besides the maximum is the formula

where dn = |  - rdip| is the distance from the nth element

to the true source [30].

The energy error [20], which describes the accuracy of the
dipole magnitudes, is defined as

where  is the power of the maxima in the esti-

mated current distribution and ||D|| is the power of the
simulated point source.

Baillet and Garnero [4] also determine the Data Fit and
Reconstruction Error to evaluate the performance of their
algorithms where Data Fit is defined as

and the Reconstruction Error (in which orientation of the
dipoles is taken into consideration) is defined as

Baillet [27] also estimates the distance between the actual
source location and the position of the centre of gravity of
the source estimate by:

where  is the location of the nth source with intensity

(n) and rdip is the original source location.

Espurious [27] is defined as the relative energy contained in
spurious or phantom sources with regards to the original
source energy.

For two dipoles [30], the true sources are first subtracted
from the reconstructions. The error is:
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where dn1 and dn2 are the distances from each element to
the corresponding source, sn1 and sn2 were used to reduce
the penalty due to the distance between a source and a
part of the solution near the other source. This means that
a large dipole magnitude solution near to one source
should not give rise to an improper error estimate due to
the potentially large distance to the other source. sn1 can
be chosen in the following way:

and similarly for sn2 using dn1.

In [72], Yao and Dewald used three indicators to deter-
mine the accuracy of the inverse solution:

1. the error distance (ED) which is the distance between
the true and estimated sources defined as

 is the real dipole location of the simulated EEG data.

 is the source location detected by the inverse calcula-

tion method. i and j are the indices of locations of esti-
mated and the actual sources. NI and NJ are the total

numbers of estimated and undetected sources respec-
tively. In current distributed-source reconstruction meth-
ods, a source location was defined as the location where
the current strength was greater than a set threshold value.
The first term in (14) calculates the mean of the distance
from each estimated source to its closest real source. The
corresponding real source is then marked as a detected
source. All the undetected real sources made up the ele-
ments of data set J. The second term calculates the mean
of the distance from each of the undetected sources to the
closest estimated sources.

2. the percentage of undetected source number (PUS)

defined as  where Nun and Nreal are the numbers of

undetected and real sources respectively. An undetected
source is defined as a real source whose location to its

closest estimated source is larger than 0.6 times the unit
distance of the source layer.

3. the percentage of falsely-detected source number (PFS)

defined as  where Nfalse and Nestimated are the

numbers of falsely-detected and estimated sources respec-
tively. A falsely-detected source is defined as an estimated
source whose location to its closest real source is larger
than 0.6 times the unit distance of the source layer.

The accuracy with which a source can be localized is
affected by a number of factors including source-mode-
ling errors, head-modeling errors, measurement-location
errors and EEG noise [73]. Source localization errors
depend also on the type of algorithm used in the inverse
problem. In the case of L1 and L2 minimum norm
approaches, the localization depends on several factors:
the number of electrodes, grid density, head model, the
number and depth of the sources and the noise levels.

In [3], the effects of dipole depth and orientation on
source localization with varying sets of simulated random
noise were investigated in four realistic head models. It
was found that if the signal-to-noise ratio is above a cer-
tain threshold, localization errors in realistic head models
are, on average, the same for deep and superficial sources
and no significant difference in accuracy for radial or tan-
gential dipoles is to be expected. As the noise increases,
localization errors increase, particularly for deep sources
of radial orientation. Similarly, in [46] it was found that
the importance of the realistic head model over the spher-
ical head model reduces by increasing the noise level. It
has also been found that solutions for multiple-assumed
sources have greater sensitivity to small changes in the
recorded EEGs as compared to solutions for a single
dipole [73].

4.1 Literature review of performance results of different 
inverse solutions
This section provides a review of the performance results
of the different inverse solutions that have been described
above and cites literature works where some of these solu-
tions have been compared.

In [5], Pascual-Marqui compared five state-of-the-art par-
ametric algorithms which are the minimum norm (MN),
weighted minimum norm (WMN), Low resolution elec-
tromagnetic tomography (LORETA), Backus-Gilbert and
Weighted Resolution Optimization (WROP). Using a
three-layer spherical head model with 818 grid points
(intervoxel distance of 0.133) and 148 electrodes, the
results showed that on average only LORETA has an
acceptable localization error of 1 grid unit when simulat-
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ing a scenario with a single source. The other four inverse
solutions failed to localize non-boundary sources and
hence the author states that these solutions cannot be
classified as tomographies as they lack depth information.
When comparing MN solutions and LORETA solutions
with different Lp norms, Jun Yao et al. [72] have also found
out that LORETA with the L1 norm gives the best overall
estimation. In this analysis a Boundary Element Method
(BEM) realistic head model was used and the simulated
data consisted of three different datasets, designed to eval-
uate both localization ability and spatial resolution.
Unlike the data in [5], this simulated data included noise
and the SNR was set to 9–10 dB in each case. The results
provided were the averaged results over 10 time samples.
In [72] these current distribution methods were also com-
pared to dipole methods where only a number of discrete
generators are active. Results showed that although these
methods give relatively low error distance measures,
meaning that a priori knowledge of the number of dipoles
could improve the inverse results, a medial and posterior
shift occurred for all the three datasets. This shift was not
present for current distribution methods. Jun Yao et al.
have also used the percentage of undetected sources
(PUS) as a measure to compare solutions. LORETA with
the L1 norm resulted in a significantly smaller and less var-
iable PUS when compared to all other methods tested in
this paper [72]. The techniques were also applied to real
data and once again the same approach gave qualitatively
superior results which match those obtained with other
neuroimaging techniques or cortical recordings.

Pascual-Marqui has also tested the effect on localization
when the simulated data is made up of two sources [5]. In
this case the LORETA and WROP solutions were used to
localize these two sources, one of which was placed very
deep. LORETA identified both sources but gave a blurred
result, hence its name low resolution, but WROP did not
succeed in identifying the two sources. MN, WMN and
Backus-Gilbert gave a similar performance. From this
analysis, Pascual-Marqui concluded that LORETA has the
minimum necessary condition of being a tomography,
however this does not imply that any source distribution
can be identified suitably with LORETA [5].

In [32], Pascual-Marqui developed another algorithm
called sLORETA. The name itself gives the impression that
this is an updated version of LORETA but in fact it is based
on the MN solution. The latter is known to suffer consid-
erably when trying to localize deep sources. sLORETA
handles this limitation by standardizing the MN estimates
and basing localization inference on these standardized
estimates [32]. When using a 3-layer spherical head model
registered to the Talairach human brain atlas and assum-
ing 6340 voxels with 5 mm resolution, sLORETA was
found to give zero localization error for noiseless, single

source simulations. In this case the solution space was
restricted to the cortical gray matter and hippocampus
areas. The same algorithm was tested on noisy data with
noise scalp field standard deviation equal to 0.12 and
0.082 times the source with lowest scalp field standard
deviation. The regularization parameter was in this case
estimated using cross-validation. When compared to the
Dale method, sLORETA was found to have the lowest
localization errors and the lowest amount of blurring
[32].

Another inverse solution considered as a complement to
LORETA is VARETA [34]. This is a weighted minimum
norm solution in which a regularization parameter that
varies spatially is used. In LORETA this regularization
parameter is a constant. In VARETA this parameter is
altered to incorporate both concentrated and distributed
sources. In [34], this inverse solution is compared to the
FOCUSS algorithm [30]. The latter is a linear estimation
method based on recursive, weighted norm minimiza-
tion. When tested on noise-free simulations made up of a
single or multi-source, FOCUSS achieved correct identifi-
cation but the algorithm is initialization dependent. Iter-
atively it changes the weights based on the strength of the
solution data in the last iteration and it converges to a set
of concentrated sources which are equal in number to the
number of electrodes. VARETA on the other hand is based
on a Bayesian approach and does not necessarily converge
to a set of dipoles if the simulated sources are distributed
[34].

In [20], Hesheng Liu et al. developed another algorithm
based on the foundation of LORETA and FOCUSS. This
algorithm, called Shrinking LORETA FOCUSS (SLF) was
tested on single and multi-source reconstruction and was
compared to three other inverse solutions, mainly WMN,
L1-NORM and LORETA-FOCUSS. In all scenarios consid-
ered, consisting of a number of sources organized in dif-
ferent arrangements and having different strengths and
positions, SLF gave the closest solution to what was
expected. WMN often gave a very blurred result, L1-
NORM resulted in spurious sources or solutions with
blurred images and incorrect amplitudes and LORETA-
FOCUSS gave generally a high resolution but some
sources were sometimes lost or had varying magnitude.
LORETA-FOCUSS was found to have a localization error
which was 3.2 times larger than that of SLF and an energy
error which is 11.6 times larger. SLF is based on the
assumption that the neuronal sources are both focal and
sparse. If this is not the case and sources are distributed
over a large area, then a low resolution solution as that
offered by LORETA would be more appropriate [20].

Hesheng Liu [41] states that in situations where few
sources are present and these are clustered, high resolu-
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tion algorithms such as MUSIC can give better results.
Solutions such as FOCUSS are also capable of reconstruct-
ing space sources. The performance of these algorithms
degrades when the sources are large in number and
extended in which case low resolution solutions such as
LORETA and sLORETA are better. To achieve satisfactory
results in both circumstances Hesheng Liu developed the
SSLOFO algorithm [41]. Apart from localizing the sources
with relatively high spatial resolution this algorithm gives
also good estimates of the time series of the individual
sources. Algorithms such as LORETA, sLORETA, FOCUSS
and SLF fail to recover this temporal information satisfac-
torily. When compared with sLORETA for single source
reconstruction, the mean error for SSLOFO was found to
be 0 and the mean energy error was 2.99%. The mean
error for sLORETA is also 0 but the mean energy error goes
up to 99.55% as sLORETA has very poor resolution and a
high point spread function [41]. In this same paper the
authors have also analyzed the effect of noise. Noise levels
ranging from 0 to 30 dB were considered and the mean
localization error over a total of 2394 voxel positions was
found. WMN and FOCUSS both resulted in large localiza-
tion errors. sLORETA compared well with SSLOFO for a
single source especially when the level of noise was high.
When it comes to temporal resolution however, SSLOFO
gave the best results. WMN mixed signals coming from
nearby sources, sLORETA can only give power values and
FOCUSS cannot produce a continuous waveform [41].

Another technique similar to SSLOFO in that it can cap-
ture spatial and temporal information is the ST-MAP [4].
If only spatial information is taken into account, the so
called S-MAP succeeds in recovering most edges, preserv-
ing the global temporal shape but with possible sharp
magnitude variations. The ST-MAP however gives a much
smoother reconstruction of dipoles which helps stabilize
the algorithm and reduce the computation time by 22%
when compared to the S-MAP. These results were com-
pared to those obtained by Quadratic Regularization
(QR) and LORETA and the error measures were based on
the data fit and reconstruction error. S-MAP and ST-MAP
were both found to be superior to these algorithms as they
give much smoother solutions and reasonably lower
reconstruction errors [4].

Since the inverse problem in itself is underdetermined,
most solutions use a mathematical criteria to find the
optimal result. This however leaves out any reliable bio-
physical and psychological constraints. LAURA takes this
into consideration and incorporates biophysical laws in
the minimum norm solutions (MN, WMN, LORETA and
EPIFOCUS [38]) and the simulation showed that EPIFO-
CUS and LAURA outperform LORETA. This comparison
was done by measuring the percentage of dipole localiza-
tion error less than 2 grid points.

Another solution to the inverse problem which was men-
tioned in Section 3.2.1 is BESA. This technique is very sen-
sitive to the initial guess of the number of dipoles and
therefore is highly dependent on the level of user exper-
tise. In [74] it is shown that the grand average location
error of 9 subjects who were familiar with evoked poten-
tial data was 1.4 cm with a standard deviation of 1 cm.

Rather than finding all possible sources simultaneously as
is the case with direct least squares methods such as MN
and LORETA, another class of inverse solutions exist
based on signal subspace decomposition. A well known
technique falling within this class is the multiple signal
Classification (MUSIC) algorithm and its variants. These
algorithms were developed because generally solutions
were based on fitting a multiple modeling technique to a
single time sample of EEG data [53]. Processing the whole
length of data available then resulted in a large set of
unknown parameters. Furthermore many techniques
have the problem of getting trapped in local minima
when minimizing their cost function. MUSIC and its var-
iants were developed to overcome these problems and
this is achieved by scanning a single dipole through a
voxel grid placed within the 3D head model and working
out the forward model at each voxel within the grid, pro-
jected against a signal subspace computed for that EEG
data. Locations within this grid where the source model
gave the best projections onto the signal subspace corre-
spond to the dipole positions. In [54] a conventional two
source uniform linear array example was used to compare
various versions of MUSIC. A Monte Carlo test was carried
out by allowing various runs to find each individual
source. For uncorrelated sources all algorithms (MUSIC,
S-MUSIC, IES-MUSIC, R-MUSIC and RAP-MUSIC) gave
similar results but different performances were then
observed as the level of correlation increased. At a correla-
tion coeficient of 0.7, IES-MUSIC and RAP-MUSIC were
found to have an RMS error around 25% better than that
of MUSIC and S-MUSIC and 50% better than R-MUSIC.
As the correlation increases RAP-MUSIC was found to give
the best performance but at a value of 0.975 all methods
experienced comparable difficulties in estimating the
sources. RAP-MUSIC has the added advantage that it pro-
vides an automatic way of terminating the search for addi-
tional sources when the signal subspace is overestimated
[54].

Another comparison with MUSIC and RAP MUSIC was
done by using FINES, another signal subspace algorithm.
In [56] a two-dipole simulated dataset in both noise-free
and noisy environments was used for this comparison. In
the noise-free case, FINES performs better than MUSIC
with 0.2 mm and 1 mm lower error for the two dipoles
respectively. When noise was added, FINES was still found
to be superior than both MUSIC and RAP-MUSIC. The
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localization error for a SNR of 14 dB was found to be 1.4
mm and 1.5 mm lower when using FINES. In [75], He and
Ding applied a similar analysis but this time using a real-
istic head model. The results are consistent with [56]
showing that FINES is superior in the noisy scenario.

The literature review above shows that various compari-
sons have been performed between groups of inverse
solutions. In the following subsection we would like to
contribute to this comparative study by discussing the
results obtained when performing a Monte-Carlo analysis
to compare four non-parametric approaches of solving
the EEG inverse problem. To our knowledge, such an
analysis has not yet been carried out in the literature.

4.2 Monte Carlo performance analysis of non-parametric 
inverse solutions
Four widely used non-parametric approaches of solving
the inverse problem were compared using a Monte-Carlo
analysis where at each simulated dipole position (108
positions considered in total) a total of 100 source locali-
zation trials were performed. The effects of regularization
and noise on each respective inverse solution were also
analyzed.

4.2.1 Inverse solutions
The four inverse solutions compared here were all imple-
mented in MATLAB and included:

• Weighted Minimum Norm (WMN)

• Low Resolution Electromagnetic Tomography
(LORETA)

• Standardized LORETA (sLORETA)

• Shrinking LORETA-FOCUSS (SLF)

These techniques were described in detail in earlier sec-
tions, thus they will not be described again here. For the
SLF algorithm, however, the authors would like to point

out that during the smoothing process, nodes at the
boundary of the solution space were not smoothed as they
have a limited amount of neighbours attributed to them.
Also the recursive procedure was repeated until one of the
following conditions was true: i) the number of promi-
nent nodes in the solution space is less than the number
of sensors, ii) the difference between the norms of consec-
utive current densities is less than 0.001, iii) the number
of prominent nodes increases from one iteration to the
next.

4.2.2 Simulated data
A three-layer spherical head model with the properties as
shown in Table 3 was considered:

Within the cortex, a grid made up of 755 voxels with inter-
voxel distance of 1 cm was used. This choice was similar
to that in [5] where the assumed unit spherical head
model consisted of a grid made up of 818 voxels with an
inter-voxel distance of 0.133. Higher resolutions of 7 mm
and 5 mm were used in [20] and [32] respectively but the
Monte Carlo analysis performed here placed some com-
putational constraints restricting the choice of a finer res-
olution. Furthermore, in this analysis singular radial
dipoles were considered. These dipoles had unit magni-
tude and were placed at each of 108 equally distributed
positions out of the available 755 positions. For a radial
dipole with Cartesian coordinates (a, b, c) and a sphere
with center at (0, 0, 0), the dipole moment ed is given by:

For each simulated radial dipole, the resultant EEG at 32
electrodes, as specified by the 10–20 International elec-
trode placement system, was calculated. Additive white
Gaussian noise was then added to the noise-free data
under four different signal-to-noise ratios conditions,
namely 25 dB, 15 dB, 10 dB and 5 dB. To perform a
Monte-Carlo analysis, for each of the 108 positions con-
sidered and for each SNR, 100 trials were simulated where
the difference between trials is simply a different additive
noise vector.

4.2.3 Procedure
Current density estimate
For each scalp potential recording, the current density at
each of the 755 voxels within the brain was estimated
using the four different inverse solutions respectively. In
order to analyze the effect of regularization on the solu-
tions, the four methods were applied both without regu-
larization and with regularization. For the latter case,
Tikhonov regularization was used and the optimal value
for the regularization parameter was found using the L-

e
a b c

a b c
d =

+ +

( , , )
2 2 2

(15)

Table 3: Properties of the 3-layer spherical head model

Radius of scalp 8 cm

Radius of skull 8/1.06 cm

Radius of cortex 8/1.15 cm

Conductivity of scalp 2860 mS/m

Conductivity of skull 2860/80 mS/m

Conductivity of cortex 2860 mS/m
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curve method. The MATLAB toolbox of Christian Hansen
was used in this case [21].

Maxima
Once the current density estimates were available, the
locations and normalized magnitudes of local maxima
were found. A voxel was considered to hold a local maxi-
mum if the magnitude 28 of its neighbours was found to
be lower than the magnitude of itself.

Error distance measures

The locations and magnitudes of the local maxima were
used to find the deviations of estimated solution from the
expected solution. Two different error measures were used
compare the different inverse solutions. Error Distance

measure ED1 was based on the distance between the loca-

tion of the global maximum  to that of the actual

position rdip of the simulated dipolar source.

The goal of using this error measure is that for the single
dipolar source scenario as considered here, this is a good
measure to identify whether the largest activity corre-
sponds to the actual simulated activity. However, in a real
data scenario it is unknown as to the actual number of
sources being active within the brain at a particular instant
in time. For this reason, a second error measure was used
which penalizes each solution for the number of resulting

rdipmax

ED r rdip dipmax
1 = −| | (16)

Individual Layers in which the simulated dipoles lieFigure 5
Individual Layers in which the simulated dipoles lie. Red crosses represent sources lying close to the surface (57 in 
total), black crosses represent sources lying in the middle of the spherical cortex model (37 in total) and blue crosses repre-
sent sources lying deep within the cortex (14 in total).
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'ghost' maxima. A ghost maxima is one which was not
actually present in the simulated scenario. This measure,
ED2, sums a weighted distance measure across the result-

ing number of local maxima p where dn = |  - rdip| and

| (n)| is the magnitude of the local maxima  nor-

malized to the value of the global maximum of | (n)|.

Statistical analysis
The error distance measures ED1 and ED2 were used as
the cost functions to compare the different inverse solu-
tions, their response in different noise conditions and the
effect of regularization on the solution. Rather than ana-
lyzing the differences at each of the 108 considered dipole
locations, the simulated sources were grouped into three
regions made up of:

• Surface sources

• Mid-depth sources

• Deep sources

Figure 5 shows the individual layers in which the consid-
ered sources lie and the way in which these sources are
grouped. Red crosses represent the surface sources, black
crosses the mid-depth sources and blue crosses the deep
sources. Layers are stacked onto each other at a distance of
2 cm.

The error distance measures for sources within each region
were then averaged giving an average error value per
region. These were then used to compare the different
solutions. Statistical analysis of the data was then carried
out through SPSS [76]. To identify whether there are sig-
nificant differences between the four implemented solu-
tions, ANOVA which is based on the following set of
assumptions was used:

rdipn

D̂ rdipn

D̂

ED d D nn

n

p

2
1

=
=

∑ . | ( ) | (17)

Table 4: Error measure ED1 for the four inverse algorithms, without regularization, under four different noise levels: 25 dB, 15 dB, 10 
dB and 5 dB. Each cell value gives the mean and standard deviation.

ED1

Unregularised

SNR/dB 5 10 15 25

Layer

WMN Surface 5.71 ± 0.49 3.75 ± 0.36 2.36 ± 0.27 1.18 ± 0.04

Middle 7.21 ± 0.42 6.58 ± 0.52 5.11 ± 0.37 2.74 ± 0.18

Deep 6.76 ± 0.39 6.72 ± 0.35 6.46 ± 0.39 4.98 ± 0.33

sLORETA Surface 4.47 ± 0.43 2.05 ± 0.31 0.81 ± 0.13 0.04 ± 0.03

Middle 6.46 ± 0.42 4.76 ± 0.43 2.12 ± 0.34 0.11 ± 0.05

Deep 6.48 ± 0.37 6.01 ± 0.50 3.68 ± 0.64 0.15 ± 0.11

LORETA Surface 5.49 ± 0.46 3.59 ± 0.39 2.03 ± 0.25 1.32 ± 0.02

Middle 6.23 ± 0.41 5.54 ± 0.48 3.64 ± 0.44 1.14 ± 0.09

Deep 5.78 ± 0.37 5.64 ± 0.37 5.30 ± 0.41 2.69 ± 0.39

SLF Surface 6.38 ± 0.39 5.17 ± 0.36 3.65 ± 0.36 2.17 ± 0.14

Middle 5.91 ± 0.45 5.35 ± 0.44 3.92 ± 0.41 1.92 ± 0.17

Deep 5.31 ± 0.49 5.08 ± 0.43 4.46 ± 0.55 1.95 ± 0.46
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1. Observations within each population must be normally
distributed

2. Variances between populations must be homogeneous

3. The populations represent independent random sam-
ples

Since the data being analyzed was coming from four dif-
ferent solutions, assumption 3 was automatically vali-
dated. If assumptions 1 and 2 were found to be true,
ANOVA was then used to find whether there are signifi-
cant differences between the four solutions and if such
differences were found, post-hoc tests were used to iden-
tify which pairs of solutions are causing these differences.
If all assumptions 1 to 3 were true, Tukey's test was used
for post-hoc analysis and if the homogeneity assumption
2 was violated, Games-Howell test was used instead. If on
the other hand both normality and homogeneity of vari-
ance tests failed, violating assumptions 1 and 2, then the
equivalent non-parametric approach to ANOVA was used
– the Kruskal-Wallis test. In this case post hoc tests were

carried out using the Mann-Whitney test with Bonferroni
correction [76].

4.2.4 Discussion of results
Tables 4 – 5 and 6 – 7 show the averaged error distance
measures, ED1 and ED2 respectively, for surface, mid-
depth and deep sources, for each of the four implemented
inverse algorithms.

Regularized sLORETA is shown to have the lowest errors
both in terms of localization error (ED1) and ghost
sources (ED2) (see Figure 6b). This is consistent with [32]
where sLORETA was proven to have zero localization
error for a single source in all noise-free simulations. Fur-
thermore, it can be observed that the error measures and
ghost maxima of sLORETA solutions can be reduced con-
siderably when regularization is used – this improvement
is particularly marked at large noise levels for ghost
sources – see Figure 6 where the results for ED2 for the 5
dB scenario are displayed.

In contrast with the other algorithms studied here, SLF is
an iterative method and consequently much more com-

Table 5: Error measure ED1 for the four inverse algorithms, with regularization, under four different noise levels: 25 dB, 15 dB, 10 dB 
and 5 dB. Each cell value gives the mean and standard deviation.

ED1

Regularised

SNR/dB 5 10 15 25

Layer

WMN Surface 3.46 ± 0.42 2.10 ± 0.28 1.34 ± 0.11 1.13 ± 0.03

Middle 5.08 ± 0.50 3.94 ± 0.38 2.95 ± 0.21 2.40 ± 0.03

Deep 5.91 ± 0.39 5.31 ± 0.36 4.61 ± 0.24 3.89 ± 0.15

sLORETA Surface 0.99 ± 0.1 0.49 ± 0.08 0.11 ± 0.04 0.00 ± 0.00

Middle 1.61 ± 0.13 0.84 ± 0.11 0.25 ± 0.07 0.00 ± 0.00

Deep 1.79 ± 0.25 0.95 ± 0.16 0.39 ± 0.13 0.00 ± 0.00

LORETA Surface 2.32 ± 0.08 2.18 ± 0.04 2.16 ± 0.03 2.21 ± 0.02

Middle 1.51 ± 0.13 1.15 ± 0.08 0.95 ± 0.07 1.05 ± 0.06

Deep 2.30 ± 0.21 1.81 ± 0.13 1.59 ± 0.11 1.53 ± 0.09

SLF Surface 5.27 ± 0.30 4.50 ± 0.28 3.81 ± 0.20 2.98 ± 0.13

Middle 4.53 ± 0.39 4.09 ± 0.35 3.50 ± 0.31 2.51 ± 0.15

Deep 3.89 ± 0.55 3.70 ± 0.45 3.27 ± 0.48 1.73 ± 0.30
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putationally intensive. Table 6 shows that SLF solutions
without regularization have the lowest number of ghost
sources; this emerges since during the iterative process
voxels having a large current density are retained whereas
the current density in most other voxels is set to zero.
Although unregularized SLF performed better than unreg-
ularized sLORETA in terms of ghost sources, unlike SLF,
sLORETA benefited greatly from regularization (Table 7),
reducing its ghost sources to well below those found by
regularized SLF.

It is also observed that unregularized LORETA performs
badly in terms of ghost sources. However, regularized
LORETA is shown to reduce ghost sources considerably
and to a level below regularized SLF. Furthermore, Table
5 shows that regularized LORETA solutions also have a
lower localization error better than for regularized SLF.
Whereas LORETA localization error and ghost sources
improve greatly with regularization, WMN and SLF do not
seem to benefit appreciably from regularization; in fact,
SLF may be slightly worsened with regularization for low
noise levels. A notable exception to the improvement of

localization error of regularised LORETA occurs for sur-
face sources with low noise levels, namely, 15 dB and 25
dB, in which case a lower error is obtained with unregular-
ized LORETA.

Greater noise levels are expected to result in larger locali-
zation errors and ghost sources. All methods studied here
have in fact followed this trend with ED1 and ED2
decreasing with higher SNRs.

For WMN and sLORETA, with and without regularization,
and the unregularized LORETA, deeper sources tend to
have larger localization errors and more ghost sources.
Conversely, regularizing the LORETA solution resulted in
higher localization errors and more ghost sources for the
surface layer. Localization errors and ghost sources of SLF
solutions, with or without regularization, do not appear
to have a definite trend with source depth – this may be
due to border artefacts involved in the SLF iterations
which will affect most seriously the surface sources possi-
bly resulting in elevated artefactual errors for the surface
sources.

Table 6: Error measure ED2 for the four inverse algorithms, without regularization, under four different noise levels: 25 dB, 15 dB, 10 
dB and 5 dB. Each cell value gives the mean and standard deviation.

ED2

Unregularised

SNR/dB

Layer 5 10 15 25

WMN Surface 38.49 ± 1.70 30.92 ± 1.34 19.32 ± 0.94 9.91 ± 0.40

Middle 39.39 ± 2.04 37.90 ± .81 29.13 ± 1.39 18.28 ± 0.92

Deep 37.65 ± 3.18 37.16 ± 3.11 31.80 ± 2.71 28.79 ± 2.21

sLORETA Surface 21.35 ± 1.25 12.13 ± 0.81 4.85 ± 0.41 0.44 ± 0.05

Middle 25.50 ± 1.59 21.06 ± 1.51 11.15 ± 0.83 0.83 ± 0.15

Deep 24.90 ± 2.60 23.22 ± 2.31 15.57 ± 1.90 0.65 ± 0.31

LORETA Surface 33.45 ± 1.16 27.10 ± 1.05 19.31 ± 0.80 8.56 ± 0.29

Middle 32.17 ± 1.23 30.22 ± 1.31 25.43 ± 1.18 10.10 ± 0.56

Deep 29.88 ± 1.92 29.20 ± 1.85 27.32 ± 1.71 13.95 ± 1.53

SLF Surface 8.82 ± 0.66 7.19 ± 0.64 4.93 ± 0.48 2.56 ± 0.16

Middle 8.17 ± 0.72 7.30 ± 0.64 5.27 ± 0.60 2.23 ± 0.23

Deep 7.36 ± 0.77 6.86 ± 0.74 5.99 ± 0.83 2.56 ± 0.62
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In summary, it can be stated that for single source locali-
zation, regularized sLORETA does indeed produce solu-
tions with the lower localization errors and least number
of ghost sources; regularization has a marked effect on
these results. These statistical results also showed that reg-
ularized LORETA is the second best performing algorithm
in terms of both performance measures with the excep-
tion of surface sources at low noise levels. Therefore, for
single source localization, the computational cost of SLF
does not yield any additional benefits over the direct
methods of sLORETA and LORETA. It should also be
recalled that in addition to source localization, LORETA
provides source orientation estimates, which are unavail-
able in sLORETA solutions.

5 Discussion and conclusion
In EEG source analysis, the inverse problem estimates the
sources within the brain giving rise to a scalp potential
recording. Throughout the years various techniques have
been developed to solve the inverse problem for EEG
source localization and these techniques fall mainly in
two categories: parametric and non parametric. The

former estimates the dipole parameters of an a priori deter-
mined number of dipoles and the latter estimates the
dipole magnitude and orientation of a number of dipoles
at fixed positions distributed in the brain volume. Since in
non parametric techniques the dipole location is not esti-
mated, such techniques present a linear problem which
can be solved by various methods. The non-parametric
methods reviewed in this paper include MNE, LORETA,
sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert,
LAURA, Shrinking LORETA FOCUSS (SLF), SSLOFO and
ALF. A series of regularization methods to approximate an
ill-posed problem with a family of well-posed problems
have also been discussed. On the other hand, the com-
plexity of parametric models varies depending on the a
priori chosen number of dipoles. Since in this case a search
is made for dipole position, orientation and magnitude
which appear non-linearly in the equations, parametric
approaches present a non-linear problem. Parametric
techniques reviewed in this paper include Beamforming
techniques, BESA, subspace techniques such as MUSIC
and other methods derived from it, FINES, simulated
annealing and computational intelligence algorithms.

Table 7: Error measure ED2 for the four inverse algorithms, with regularization, under four different noise levels: 25 dB, 15 dB, 10 dB 
and 5 dB. Each cell value gives the mean and standard deviation.

ED2

Regularised

SNR/dB 5 10 15 25

Layer

WMN Surface 34.79 ± 1.74 25.88 ± 1.02 17.14 ± 0.71 6.91 ± 0.23

Middle 35.74 ± 1.75 31.41 ± 1.87 25.6 ± 1.30 12.04 ± 0.57

Deep 34.72 ± 2.50 31.14 ± 2.29 25.86 ± 2.32 16.75 ± 1.70

sLORETA Surface 1.02 ± 0.10 0.49 ± 0.08 0.11 ± 0.04 0.00 ± 0.00

Middle 1.62 ± 0.13 0.84 ± 0.11 0.25 ± 0.07 0.00 ± 0.00

Deep 1.80 ± 0.25 0.95 ± 0.16 0.39 ± 0.13 0.00 ± 0.00

LORETA Surface 6.33 ± 0.57 4.56 ± 0.25 3.97 ± 0.16 3.66 ± 0.07

Middle 4.30 ± 0.46 3.16 ± 0.28 2.63 ± 0.20 1.79 ± 0.13

Deep 4.20 ± 0.53 2.71 ± 0.36 2.42 ± 0.33 1.67 ± 0.14

SLF Surface 6.85 ± 0.46 5.79 ± 0.44 4.82 ± 0.31 3.52 ± 0.20

Middle 5.92 ± 0.65 5.38 ± 0.58 4.58 ± 0.46 3.01 ± 0.22

Deep 5.25 ± 0.84 5.03 ± 0.75 4.44 ± 0.75 2.27 ± 0.42
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Apart from the technical details of the individual algo-
rithms, this paper also provided a performance review of
a large number of these algorithms as reported in the lit-
erature. From the non parametric techniques, LORETA
was shown to give satisfactory results in most cases. How-
ever, taking into account reliable biophysical and psycho-
logical constraints as done by LAURA for example, was
shown to give less localization error than solutions like
LORETA. Algorithms such as SSLOFO and ST-MAP have
also been developed to capture the temporal information
of the individual estimated sources. In environments
where there are few sources which are clustered, paramet-
ric higher resolution algorithms such as MUSIC give supe-
rior performance. Comparative analysis of parametric
techniques based on signal subspace decomposition, such
as MUSIC, its variants and FINES have been reported in
the literature with results showing that FINES is superior
in both the noise-free and noisy scenarios.

In addition to this literature review, this paper presented a
Monte Carlo analysis of four widely used non parametric
inverse solutions: WMN, LORETA, sLORETA and SLF.
These solutions were compared at different noise levels
and for simulated dipoles at different depths within the
brain. Using a three-layer spherical head model, results
show that for a single source, regularized sLORETA gives
the best performance both in terms of localization error
and ghost sources, followed by regularized LORETA. From

this one could conclude that for single source localization,
the computational cost of SLF does not give any addi-
tional benefits over direct methods such as LORETA and
sLORETA.

The use of these techniques for EEG (and MEG) source
localization in fundamental brain research and direct clin-
ical application is today rapidly evolving. It is used not
only in clinical neuroscience, i.e. neurology, psychiatry
and psychopharmacology but also in cognitive neuro sci-
ence research. The analyses for clinical settings differ from
those used for research in the developmental neuro-
sciences, as they are concerned largely with the identifica-
tion and localization of abnormalities in the EEG [77],
and the utilization of this information for neurosurgical
interventions in the most severe cases [78,79].

In cognitive neuroscience such techniques have been used
to localize the sources of the different frequency bands, to
assess the dynamics of different mental states, such as per-
ception, motor preparation and higher cognitive func-
tions [80,81]. In clinical neuroscience source imaging
allows the analysis of EEG changes in psychiatric and neu-
rological patients [82-84] and is extensively used to test
and characterize effects of various psychopharmacological
agents [85,86].

Box-whisker diagramsFigure 6
Box-whisker diagrams. These show the median (horizontal line within each box), the interquartile range (between the bot-
tom and top of each box) and the range of scores (shown by the whiskers). Circles represent outliers. Plots (a) and (b) show 
the results for each of the four inverse solutions (horizontal axis) for error measure ED2 with a SNR of 5 dB. (a) shows the 
results without regularization and (b) shows the results with regularization.
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However, the main clinical application concerns pre-sur-
gical mapping in patients undergoing resection of tumors
by allowing for better pre-surgical planning and the local-
ization of epileptic foci as a non-invasive procedure to
provide significant source of information for guiding sur-
gical decisions. More specifically, it has been validated for
the presurgical evaluation of adult patients suffering from
refractory epilepsy [87-89] and in children with Landau-
Kleffner syndrome [90]. Source localization is even feasi-
ble in neonates [91]. It allows the epileptogenic area to be
located and comparisons to be made with clinical infor-
mation, magnetic resonance imaging (MRI) anatomical
data, and the results of metabolic imaging techniques.
Finally, another application is in the localization of invar-
iant quantitative EEG (QEEG) correlates of the loss and
return of consciousness during anesthesia [92].

It should be noted that even though source localization
has been used in many different domains, it is difficult to
validate the accuracy of the results. However, when such
validation was attempted on epileptic patients, even
though there were some inherent limitations in localiza-
tion of deep temporal structures, the results have been
quite encouraging [93,94].
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Appendix
1. The minimization of Fα(x) = ||Kx - yδ||2 + α||x||2 leads
to

Proof. Taking the derivative of Fα and setting to zero to
solve for x gives: h

2. The inverse operators (K*K + αI)-1K* and K*(KK* +
αI)-1 are equal.

Proof. Assume K is a N × p linear operator. Then h

3. The solution of the LCMV problem

is .

Proof. Let 2L be a 3 × 3 matrix of Lagrange multipliers. The
cost function is added with the inner product of the
Lagrange multipliers and the constraint to obtain the
Lagrangian L(W, L):

L(W, L) = Tr{WTCmW + (WTG - I)2L}.

Noting that Tr{A} = Tr{AT} for any square matrix A, the
above equation can be rewritten as:

Only the first term in the brackets is a function of W. The
matrix Cm is positive definite so the minimum of L(W, L)
is attained by setting the first term to zero, that is:

The Lagrange multiplier matrix L is now obtained by sub-
stituting W in the constraint WTG = I to obtain:

or

Substituting Equation (19) in Equation (18) yields the
solution: h
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