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Abstract

Oesophageal cancer is a devastating disease with poor outcomes and is the sixth leading cause of cancer death worldwide.
In the setting of resectable disease, there is clear evidence that neoadjuvant chemotherapy and chemoradiotherapy result
in improved survival. Disappointingly, only 15%–30% of patients obtain a histopathological response to neoadjuvant ther-
apy, often at the expense of significant toxicity. There are no predictive biomarkers in routine clinical use in this setting and
the ability to stratify patients for treatment could dramatically improve outcomes. In this review, we aim to outline current
progress in evaluating predictive transcriptomic biomarkers for neoadjuvant therapy in oesophageal cancer and discuss the
challenges facing biomarker development in this setting. We place these issues in the wider context of recommendations
for biomarker development and reporting. The majority of studies focus on messenger RNA (mRNA) and microRNA (miRNA)
biomarkers. These studies report a range of different genes involved in a wide variety of pathways and biological processes,
and this is explained to a large extent by the different platforms and analysis methods used. Many studies are also vastly
underpowered so are not suitable for identifying a candidate biomarker. Multiple molecular subtypes of oesophageal
cancer have been proposed, although little is known about how these relate to clinical outcomes. We anticipate that the
accumulating wealth of genomic and transcriptomic data and clinical trial collaborations in the coming years will provide
unique opportunities to stratify patients in this poor-prognosis disease and recommend that future biomarker development
incorporates well-designed retrospective and prospective analyses.
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Introduction

Oesophageal cancer is a devastating disease with a poor prog-
nosis and limited treatment options, and has been appropri-
ately designated a ‘cancer of unmet need’ by Cancer Research
UK [1]. Globally, oesophageal cancer is the seventh most
common cancer and the sixth leading cause of cancer death,
with a 5-year overall survival rate of 10%–30% in most countries
worldwide [2, 3]. Histologically, the two most common subtypes
are oesophageal adenocarcinoma (OAC) and oesophageal

squamous-cell carcinoma (OSCC). These differ significantly in
terms of incidence, geographical distribution, risk factors, and
tumour biology [4–6]. OSCC accounts for 90% of oesophageal
cancer worldwide and is the predominant subtype in South-
East and Central Asia [7]. In Western countries, OAC predomi-
nates and, alarmingly, the rates of OAC have risen rapidly over
the past 30 years in Western populations, with the highest inci-
dence being in the UK and the Netherlands [4, 8, 9]. Genomic
profiling has demonstrated that OAC and OSCC are biologically
distinct. Analysis of DNA methylation, messenger RNA (mRNA)
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and microRNA (miRNA) expression, and somatic copy-number
alterations in oesophageal cancer has demonstrated that OAC
bears greater similarity to the chromosomally unstable molecu-
lar subtype of gastric cancer than OSCC, whereas OSCC more
closely resembles squamous-cell head and neck carcinoma
than OAC [5].

In the setting of resectable disease, there is clear evidence
that neoadjuvant treatment in the form of neoadjuvant chemo-
therapy, perioperative chemotherapy, or neoadjuvant chemora-
diotherapy results in improved survival [10–16]. There is
currently insufficient high-quality evidence to support the su-
periority of one modality over another and results of compara-
tive trials such as the Neo-AEGIS and ESOPEC trials in OAC
and the NExT study in OSCC are awaited [17–19]. Specific
chemotherapy regimens and preference for neoadjuvant
chemotherapy or neoadjuvant chemoradiotherapy differ
worldwide, with the main aims being to downstage the tumour,
increase R0 resection rates, and eradicate micro-metastatic
disease. Regarding perioperative chemotherapy, the most
promising results come from the FLOT4-AIO trial, which in-
cluded a subgroup of patients with gastro-oesophageal-junction
carcinomas and reported 5-year overall survival rates of 36%
with ECF/X (epirubicin and cisplatin plus 5-fluorouracil [5-FU]/
capecitabine) and 45% with FLOT (5-FU, leucovorin, oxaliplatin,
and docetaxel) [12].

The ability to downstage the tumour through gaining a path-
ological response is, however, limited. A pathological response
to neoadjuvant chemotherapy and neoadjuvant chemoradio-
therapy in oesophageal cancer, defined as complete resolution
of tumour or the presence of only scattered tumour cells
(tumour-regression grade [TRG] 1–2), is independently predic-
tive of improved overall survival [20–23]. Disappointingly, only
15% of resected tumours demonstrate a histopathological re-
sponse to neoadjuvant chemotherapy and 25%–30% to neoadju-
vant chemoradiotherapy [24–26]. Importantly, neoadjuvant
treatment also has a significant toxicity burden, with >50% of
patients experiencing grade 3 or 4 toxicities in some trials, with
potential resultant delays in time to surgical resection and
missed opportunities to avail of clinical trial options [12, 16].
Given the relatively small chance of benefit, associated toxicity,
and potential quality-of-life implications for patients, it is
crucial that we prospectively identify responders prior to
instituting treatment. In oesophageal cancer, this has proved
challenging and there are currently no predictive biomarkers for
response to neoadjuvant therapy in routine clinical use.

In oesophageal cancer, outcomes for patients with similar
demographic characteristics and stage of disease following
neoadjuvant therapy and surgery are highly variable. Clinical
factors, including TNM stage and tumour location, are not
reliable predictors of response to neoadjuvant therapy and it
has been hypothesized that the differences in response rates
could be due to alterations in tumour biology [24, 25]. Tumour
biopsies are a rich source of information about tumour biology
and potentially chemo- and radio-sensitivity. The rapid devel-
opment of -omics technologies, in particular gene expression
profiling, allows the comprehensive assessment of thousands
of genes at one time and is a powerful technology with which to
explore factors affecting treatment response. As genomic
biomarkers have been widely reviewed previously, we will
focus our attention in this review on transcriptomic biomarkers
[27–29]. We will outline progress to date in evaluating predictive
transcriptomic biomarkers for neoadjuvant therapy in oesopha-
geal cancer and discuss the challenges facing biomarker devel-
opment in this patient group.

Approaches to cancer biomarker development
and reporting
Biomarker development

Broadly, cancer biomarkers are classified into two categories. A
predictive biomarker is defined as ‘a biomarker used to identify
individuals who are more likely than similar individuals with-
out the biomarker to experience a favourable or unfavourable
effect from exposure to a medical product or an environmental
agent’ [30, 31]. Predictive biomarkers can be invaluable in choos-
ing the optimal treatment course for a patient; for example,
HER2 status predicts response to Trastuzumab in metastatic
gastric cancer [32]. A prognostic biomarker relates to the risk of
future clinical outcomes independently of treatment and is de-
fined as ‘a biomarker used to identify likelihood of a clinical
event, disease recurrence or progression in patients who have
the disease or medical condition of interest’; for example, nodal
status in oesophageal cancer [30, 31, 33, 34].

Biomarker development is a complex, expensive, and often
lengthy process requiring high-quality studies with comprehen-
sive validation. Structured guidelines, such as those from the
Institute of Medicine, have been derived in an effort to stan-
dardize approaches and improve quality [35]. The development
of a biomarker with clinical impact encompasses several key
stages: biomarker discovery, assay development, analytical and
clinical validation, and clinical utility [33].

Prospective randomized trials remain the optimal method
for establishing clinical utility in biomarker development; how-
ever, this is not always feasible in terms of cost or sample size
[36, 37]. If researchers wish to use archival tissue, Simon et al.
recommend prospective–retrospective study designs in which
archived samples from prospective clinical trials are used to as-
sess a biomarker [38]. The assay is performed only after a
biomarker-evaluation protocol has been written and assay
evaluation is blinded to clinical data. Similarly, Pepe et al.
recommend a prospective-specimen-collection retrospective-
blinded-evaluation (PRoBe) design [36]. This nested case–control
study design incorporates prospective sample collection prior to
blinded outcome assessment and subsequent biomarker verifi-
cation. Although the authors focus on biomarker-evaluation
studies, the core facets of this design would strengthen many
predictive biomarker studies.

Reporting biomarker studies

The REporting recommendations for tumour MARKer prognostic
studies (REMARK) framework represents an important benchmark
standard for reporting biomarker studies [37, 39, 40]. The authors’
focus is on prognostic studies, but the principles are broadly trans-
latable to predictive biomarker discovery and evaluation as the
REMARK 20-point checklist incorporates key phases of biomarker
development. Although the emphasis is on reporting rather than
study design and conduct, adherence to these guidelines has the
potential to improve both study quality and biomarker utility.
Many key publishers have endorsed the REMARK framework;
however, adherence is sporadic. With these guidelines and frame-
works in mind, we will assess the predictive biomarker landscape
of resectable oesophageal cancer.

Predictive biomarkers in oesophageal cancer

Identifying and adequately validating a reliable predictive bio-
marker for response to therapy in oesophageal cancer has
proved challenging to date and individualized, stratified

412 | A. Lavery and R.C. Turkington



treatment remains an unrealized goal in the neoadjuvant set-
ting. In recent years, the expansion in technology for biomarker
detection has presented new opportunities for robust biomarker
development. A series of studies have sought to evaluate pre-
dictive genomic and transcriptomic biomarkers in oesophageal
cancer. Broadly, these have evaluated single genes, mRNAs, and
miRNAs as potential biomarkers. With regard to epigenetics,
there are few reports relating to DNA methylation and chemo-
sensitivity in oesophageal cancer [41, 42]. This review will pri-
marily focus on the development of predictive transcriptomic
biomarkers for predicting response to neoadjuvant treatment in
oesophageal cancer.

Single-gene biomarkers, gene panels, and epigenetics

To date, numerous single-gene predictive biomarkers have
been studied, where mutational changes or changes in the ex-
pression of one individual gene are used to predict the response
to neoadjuvant treatment and these studies have previously
been extensively reviewed [28, 29, 43–45]. Reported biomarkers
predictive of response include cell-cycle regulators (CDC25B,
Cyclin D1), DNA-repair genes (p53, ERCC1), and genes involved in
5-FU metabolism. Regarding predictive gene panels assessing
several gene mutations, we found no relevant studies in the
neoadjuvant setting in oesophageal cancer on reviewing the lit-
erature, although predictive gene panels have been investigated
in the setting of advanced disease. Okines et al. investigated the
predictive impact of mutations in KRAS, BRAF, PIK3CA, and PTEN

expression in a cohort of patients with inoperable oesophageal
or gastric cancer from the REAL3 trial [46]. There was no rela-
tionship between mutational status and response-evaluation
criteria in solid tumours (RECIST) response but low mutational
frequency limited the power of this study. Despite numerous
single-gene studies, none of these biomarkers has been brought
forward to clinical use, paving the way for a new approach.

Only a small number of studies have examined the role of
predictive epigenetic biomarkers in oesophageal cancer [41, 42].
In one genome-wide methylation analysis of 104 patients with
OSCC, methylation of ZNF695, a zinc-finger protein, was inde-

pendently predictive of chemoradiotherapy response [41]. The
authors hypothesized that ZNF695, thought to be a transcription
factor, regulated the expression of DNA-repair genes involved
in repairing the DNA damage resulting from chemoradiother-
apy. Chang et al. used genome-wide methylation analysis and
pyrosequencing on pretreatment endoscopic OSCC biopsies to
derive a risk score composed of a six-CpG panel of DNA methyl-
ation biomarkers (located in KCNK4, IFNGR2, PAX6, NOTCH4,
NPY, and SOX17) predictive of poor chemoradiotherapy re-
sponse with AUC 0.930 [42].

Given the molecular complexity and heterogeneous land-
scape of oesophageal cancer and the likelihood that multiple
pathways contribute to the sensitivity or resistance to neoadju-
vant treatment, single genes or limited panels of biomarkers
may not adequately reflect the molecular landscape of a tu-
mour. The vast majority of these studies have been performed
in underpowered cohorts without adequate validation and so
have not progressed to routine clinical use. Considering the
small number of studies and low clinical impact of this set of
biomarkers, we will instead focus on the development of tran-
scriptomic biomarkers that are predictive of response to therapy
and not simply prognostic.

Transcriptomic biomarkers

Gene expression profiling is a powerful tool that is now increas-
ingly being used in cancer screening, diagnostics, prediction,
and treatment planning. The most widely used methods are mi-
croarray analysis and RNA sequencing (RNA-seq), although re-
verse transcription–polymerase chain reaction (RT–PCR) assays
may also be employed. Transcriptomic biomarkers are particu-
larly complex, as they are generated using high-dimensional
data and sophisticated computational modelling. This introdu-
ces major challenges, as rigorous statistical, bioinformatics, lab-
oratory, and clinical procedures are required to develop and
validate these tests and evaluate their clinical utility.

mRNA biomarkers
A total of 16 studies describe mRNA biomarkers predicting re-
sponse to neoadjuvant therapy prior to resection (Table 1); how-
ever, considerable heterogeneity exists between the studies in
both design and outcome measures (Supplementary Table 1).
Biomarker analysis was performed on pretreatment biopsy
samples, using fresh frozen tissue samples in the primary data
set in all but three of the studies. Turkington et al. validated a
44-gene assay previously developed in breast cancer, the DNA
damage immune response (DDIR) assay, in routine clinical
formalin-fixed paraffin-embedded (FFPE) biopsies increasing
the clinical applicability of this biomarker [47]. McLaren et al.
also used FFPE endoscopic biopsies to evaluate the expression
of 11 genes using RT–PCR [49]. Most treatment regimens in-
volved platinum agents and 5-FU, although exact regimens var-
ied significantly and the majority of studies assessed
pathological response but utilized a variety of classification sys-
tems and cut-offs. For example, Turkington et al. used the
Mandard classification (response: TRG 1–2, fibrosis with no tu-
mour or scattered tumour cells), whereas Schauer et al. utilized
the Becker tumour-regression grading system (response: <50%
viable tumour cells) [21, 47, 51, 63]. Two studies assessed radio-
logical response only with various imaging modalities
employed, including computed tomography (CT) and endo-
scopic ultrasound (EUS) [50, 55]. The studies listed predomi-
nantly utilized microarrays and 10 different array platforms
were employed across 16 studies. Finally, pathological subtype
(OAC, OSCC, or mixed) varied between studies and this hetero-
geneity of samples and methodology poses challenges when
interpreting study findings.

Microarrays allow a comprehensive assessment of thou-
sands of transcripts simultaneously but have several significant
limitations [64]. First, a microarray can only assess gene expres-
sion for a set of pre-specified probes, potentially limiting the
chance of novel findings. Second, high background levels due to
cross-hybridization can reduce the accuracy of gene expression
results [65, 66]. Finally, differences in data normalization (per-
formed to account for differences in hybridization, labelling,
and detection methodology) and in filtering cause significant
variation in results and caution must be exercised when com-
paring results from different assays and laboratories [64, 67, 68].

High-throughput RNA-seq has revolutionized transcriptome
profiling and has many advantages, including low background
signal, a large dynamic range of detection, and excellent repro-
ducibility, and is not limited by the detection of pre-specified
transcripts [69]. However, it is significantly more expensive,
requires a higher quality of input material, and requires high-
powered computing support with complex bioinformatic analy-
sis methods.
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Oesophageal adenocarcinoma
Six studies explored OAC alone and varied significantly,
reporting genes involved in a wide variety of biological path-
ways [47–52]. The studies used different analysis platforms,
including commercially available and in-house microarrays,
and different treatment regimens, reflecting the geographical
variation in neoadjuvant therapy. In one OAC study, out of
the 86 genes significantly differentially expressed between
neoadjuvant chemotherapy responders compared with non-
responders, the most common were tumour-suppressor genes,
tyrosine kinase receptors, and those involved in apoptosis, cell–
cell interactions, and the cytoskeleton [51]. Upregulation of
Ephrin B3, which is regulated by the Wnt pathway and known to
be involved in chemosensitivity, showed the strongest associa-
tion with response. Another pathway—the TP53-dependent
apoptosis pathway—was implicated in affecting OAC chemo-
sensitivity by Rao et al. [50]. Among the 113 differentially
expressed genes in this study, PERP is an effector in this path-
way and has previously been implicated in chemoradiotherapy
response in OAC and OSCC [50, 55, 62, 70]. These examples indi-
cate the diversity of findings in mRNA OAC studies.

McLaren et al. preselected 11 candidate genes based on their
association with oesophageal cancer prognosis and found that
overexpression of CCL28 and underexpression of DKK3 were sig-
nificantly associated with pathological complete response to
neoadjuvant chemoradiotherapy [49]. CCL28 recruits T regula-
tory cells, is involved in regulation of the immune response,
and was previously identified as being associated with chemo-
therapy response by Maher et al.; however, in that case, CCL28
was downregulated [60, 71–73]. As part of a prospective transla-
tional clinical trial, MacGregor et al. analysed a panel of 280
DNA-repair genes [48]. Relative overexpression of seven DNA-
repair genes was significantly associated with lack of pathologi-
cal response to oxaliplatin-based neoadjuvant chemotherapy.
Using immunohistochemistry (IHC) to further evaluate candi-
date biomarkers, low levels of XPF (closely related to ERCC1)
were associated with treatment response, but no association
was found between XPF and prognosis in a matched cohort
of patients treated with surgery alone, indicating that this is a
biomarker of response to chemotherapy.

Turkington et al. reported a gene expression signature with
predictive and prognostic effect in a cohort of 273 OAC patients
[47]. The 44-gene DDIR assay (Almac Diagnostics, Craigavon,
Northern Ireland) was applied to gene expression microarray
data from pre-chemotherapy OAC samples. In this retrospective
analysis, DDIR-positive patients had significantly improved
relapse-free and overall survival, and the DDIR assay was inde-
pendently predictive for response to neoadjuvant DNA-
damaging chemotherapy in OAC. Notably, DDIR positivity was
associated with a pro-inflammatory, ‘immune-hot’ biology with
elevated levels of PDL-1 and CD8 T lymphocytes. To fully ascer-
tain the clinical utility of the DDIR signature, further retrospec-
tive validation in a randomized clinical trial data set followed
by prospective validation is required. In summary, each of these
studies reports a range of different genes involved in a wide va-
riety of pathways and biological processes, and this is explained
to a large extent by the different platforms and analysis meth-
ods used. The majority of studies are also underpowered and so
not suitable for identifying candidate biomarkers.

Oesophageal squamous-cell carcinoma
Four studies examined mRNA biomarkers in OSCC alone
and, similarly to OAC, they varied significantly [53–56]. Motoori
et al. derived and validated a 199-gene signature predictive ofT
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radiological (by CT) response to neoadjuvant chemotherapy
with 82% accuracy [55]. Also in OSCC, Wen et al. derived a three-
gene model (LIMCH1, MMP1, C1orf226) that was predictive of
pathological complete response to neoadjuvant chemoradio-
therapy [54]. None of the 10 most differentially expressed genes
in this study showed an overlap with previous reports regarding
neoadjuvant chemoradiotherapy in oesophageal cancer and the
authors cited the use of different patient groups and microarray
platforms as a possible explanation. Fujishima et al. used micro-
array data and molecular expression analysis to identify 17 mol-
ecules as predictors of pathological complete response, which
were associated with pathways including transcriptional regu-
lation by STAT, SMAD, and RB/E2F [53]. In a separate study fo-
cusing on the TGF-b pathway, known to be involved in cell-
cycle arrest and apoptotic cell death, increased SMAD4 expres-
sion was significantly higher in tumours with total or partial re-
gression compared to those with little or no regression [56, 74].
The authors hypothesized that SMAD4 could be a rate-limiting
step in the establishment of cell-cycle arrest and apoptosis in
OSCC.

Mixed oesophageal adenocarcinoma and squamous-cell carcinoma
Several studies combined the analysis of both OAC and OSCC,
and, similarly to the reports previously discussed, implicated a
range of genes and pathways in therapy response [57–62]. One
of the earliest gene expression profiling studies in oesophageal
cancer utilized unsupervised hierarchical clustering to derive a
three-gene combination (PERP, SPPR3, and S100A2), overexpres-
sion of which successfully discriminated between pathological
complete response and non-response to neoadjuvant
chemoradiotherapy with sensitivity and specificity of 85% [62].
Two of these genes (S100A2 and SPRR3) are located at the
epidermal differentiation complex and the same group
subsequently showed that downregulation of gene expression
in this region was associated with resistance to neoadjuvant
chemoradiotherapy, albeit in a small cohort of 19 patients [52].
Focusing on a different pathway, Warnecke-Eberz et al. showed
that reduced expression of DPYD, a rate-limiting enzyme in 5-
FU metabolism, was independently associated with histopatho-
logical response to neoadjuvant chemoradiotherapy, indicating
the importance of this enzyme in 5-FU sensitivity [58]. Further
artificial neuronal network analysis using a 17-gene model pre-
dicted sensitivity to cisplatin/5-FU neoadjuvant chemoradio-
therapy with 85% accuracy. In a subsequent prospective study
by the same group in OAC and OSCC patients, ERCC1 rs11615
single nucleotide polymorphism (ERCC1-SNP) combined with
expression of ERCC1, DPYD, and ERBB2 was predictive of a minor
pathological response to neoadjuvant chemoradiotherapy with
an accuracy of 80% [57]. Maher et al. developed a five-gene
model (EPB41L3, RNPC1, RTKN, STAT5B, and NMES1) that pre-
dicted pathological response to neoadjuvant chemoradiother-
apy and was one of the few groups to test the performance of
the biomarker in an independent validation cohort [60]. Overall,
as with publications examining OAC and OSCC alone, there is
wide variation between these studies, reflective of the broader
issues in biomarker discovery in general.

Importantly, publications including both OAC and OSCC
reported varying results depending on the pathological subtype.
In a mixed group of OAC and OSCC patients treated with neoad-
juvant chemoradiotherapy, Duong et al. derived a 32-gene clas-
sifier that correctly identified 10 out of 15 non-pathological
complete responses in OSCC. The classifier was not predictive
in OAC [61]. Similarly, Metzger et al. reported that increased
mRNA expression of CUL2, involved in cell-cycle progression,

was predictive of major histopathological response in OAC and
OSCC, whereas increased expression of STK11, a tumour sup-
pressor, was predictive in OAC only [59]. The differences be-
tween OAC and OSCC are reflective of the known distinct
biology of each subtype and are illustrative of the potential pit-
falls of combining both subtypes in biomarker studies.

mRNA biomarkers and the Hallmarks of Cancer
A wide range of genes with diverse functions were associated
with response to neoadjuvant treatment in mRNA studies. In
order to further understand the biology associated with re-
sponse, we categorized each of the predictive genes reported in
Table 1 according to the most recently updated Hallmarks of
Cancer [75]. The categorization was performed initially by
matching the Gene Ontology terms associated with each gene
with the relevant hallmark according to the categorization table
previously published by Knijnenburg et al. [76, 77]. For those
genes for which no hallmark was derived using this method,
hallmarks were assigned according to gene function and key in-
volved pathways using the Kyoto Encyclopaedia of Genes and
Genomes and National Center for Biotechnology Information
gene resource [78, 79]. Some genes were assigned to more than
one hallmark.

Figure 1 illustrates the number of genes linked to treatment
response associated with each hallmark. The most frequently
associated hallmarks were sustaining proliferative signalling,
resisting cell death, and evading growth suppressors
(Supplementary Table 2). The diverse biologies represented here
are illustrative of the complexity in determining mediators of
treatment response in oesophageal cancer and the significant
challenge faced in deriving suitable predictive biomarkers.

microRNA biomarkers
miRNAs are small non-coding RNAs �20–22 nucleotides long
that act as negative regulators of gene expression post-
transcriptionally by sequence-specific binding to the 3’ untrans-
lated regions (UTR) of mRNAs [80–83]. miRNAs play a role in reg-
ulating the major cell processes including development,
apoptosis, cell proliferation, cell migration, and metastasis [81,
84]. miRNAs have multiple targets, can affect key processes in
cancer development, and can act as tumour suppressors or
oncogenes [83].miRNAs are attractive as potential biomarkers;
they are smaller and more stable than mRNAs and can be rela-
tively easily extracted from plasma or serum, FFPE, and fixed
frozen samples, in addition to a range of body fluids [85–89].
Significant interest has therefore been generated in the poten-
tial for miRNAs as diagnostic, prognostic, and predictive bio-
markers in oesophageal cancer. Several studies have evaluated
miRNAs as predictive biomarkers for response to neoadjuvant
therapy in oesophageal cancer (Table 2 and Supplementary
Table 3). A vast range of miRNAs have been postulated as bio-
markers with little concordance between studies and the major-
ity of reports utilize microarrays in combination with
quantitative RT–PCR.

Oesophageal adenocarcinoma
Following a similar theme to the mRNA studies, miRNA studies
in OAC demonstrate heterogeneity in assay platforms and
results, with few miRNAs being reported as significantly associ-
ated with response in more than one study. Skinner et al. were
the first to propose a miRNA signature validated across several
assay platforms to predict neoadjuvant chemoradiotherapy re-
sponse [93]. A four-miRNA panel (miR-99b, miR-145*, miR-451,
and miR-505*) was significantly predictive of pathological
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complete response in OAC patients treated with neoadjuvant
chemoradiotherapy across discovery, model, and validation
cohorts, each using a different analysis platform. The authors
emphasized that the ability to remain predictive across three
different assay platforms increased applicability. Using an alter-
native approach, Chiam et al. employed small-RNA sequencing
to assess how the miRNA ratio (rather than specific levels) pre-
dicted response to neoadjuvant chemoradiotherapy in OAC [90].
Three ratios (miR-4521/miR-340-5p, miR101-3p/miR-451a, and
miRNA 143-3p/miR-451a) had good cross-validated sensitivities
and specificities for predicting pathological complete response.

Given its role in other malignancies, Lynam-Lennon et al. in-
vestigated the pretreatment expression of miR-187 in OAC in re-
lation to neoadjuvant-chemoradiotherapy response. Levels
were significantly reduced in poor responders with miR-187
also confirmed as having a functional role in sensitivity to cis-
platin and radiotherapy in vitro [91]. In addition, DNA-damage-
response genes (NUPR1, SP100, and IFI16) were downregulated
following the overexpression of miR-187. Taken together, this
suggests that miR-187 is involved in the regulation of pathways
related to DNA damage and so response to platinum-based che-
motherapy or radiotherapy. In a separate study, the same group
also reported downregulation of miR-330-5p in non-responders
[92]. Overall, the OAC studies used several platforms and
reported a wide range of miRNAs involved in a variety of biolog-
ical processes. Studies evaluating reproducibility across gene
expression platforms have shown diverse results and this may
account at least in part for the variation in the study results dis-
cussed here [67, 68, 100–102]. The small numbers involved in
most studies reduce statistical power and this, together with

the differences in patient characteristics and study methodol-
ogy, may explain why none of these biomarkers has been
brought forward to routine clinical use.

Oesophageal squamous-cell carcinoma
In OSCC, Sugimura et al. reported that let-7c played a role in
chemosensitivity through regulation of the IL6/STAT3 pathway;
low expression of let-7b and let-7c was associated with poor re-
sponse to chemotherapy and low expression of let-7c was
correlated with poorer overall survival [96]. Accordingly, upre-
gulation of let-7c in OSCC cell lines increased sensitivity to
cisplatin.

Two studies evaluated predictive biomarkers in OSCC using
an Agilent microarray platform [94, 95]. Wen et al. assessed
miRNA prediction of pathological response in patients receiving
neoadjuvant chemoradiotherapy [95]. Their resultant support
vector machine (SVM) model incorporating four miRNAs had ac-
curacies of 100% and 87.3% in training and validation sets, re-
spectively, for distinguishing pathological responders and non-
responders. The SVM model was the only independent variable
significantly associated with response to neoadjuvant chemora-
diotherapy using multivariate analysis. An important strength
of this study is the external validation of patients treated with
the same neoadjuvant chemoradiotherapy regimen. Slotta-
Huspenina et al. reported two miRNAs associated with response,
miR-194* and miR-665, neither of which had been associated
with response in previous studies [94]. Notably, patients with
partial pathological regression were excluded from the analysis
and the authors cited a small sample size and uncertainty re-
garding the prognostic significance of partial regression as

Figure 1. Genes associated with predicting response to neoadjuvant treatment in mRNA studies, categorized according to the Hallmarks of Cancer.

Reproduced and modified with permission [75].
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mitigating factors. Although both these studies employed an
Agilent experimental platform, they generated diverse bio-
markers. This is often due to variation in patient characteristics,
sample handling, and bioinformatic analyses employed in each
study.

Mixed oesophageal adenocarcinoma and squamous-cell carcinoma
Studies combining miRNA profiling in both OAC and OSCC im-
plicate a range of miRNAs in response to neoadjuvant treatment
[97–99]. In a cohort of 88 patients, distinct miRNA profiles were
seen for OAC and OSCC, and increased expression of two
miRNAs (miR-192 and miR-194) was predictive of therapy re-
sponse in OSCC but not OAC [97]. Ko et al. reported five different
miRNAs (HS-240, miR-296, miR-141, miR-31, and HS_217) differ-
entially expressed between pathological complete responders
and non-responders but acknowledged the limitations of a
small sample size (n¼ 25) [98]. Using quantitative PCR, Lynam-
Lennon et al. analysed the expression of one of these, miR-31, in
a combined cohort of OAC and OSCC patients receiving neoad-
juvant chemoradiotherapy [99]. Reduced miR-31 expression was
significantly associated with a poor pathological response. In
line with this, they observed increased levels of miR-31-
regulated DNA-repair genes. The authors postulated a possible
chemoradiotherapy-resistance mechanism in which miR-31
alters the levels of DNA-repair genes in those exhibiting a poor
response. The variation in virtually all aspects of these studies
highlights the need for caution when incorporating mixed pa-
thologies in predictive studies.

Long non-coding RNA biomarkers
Long non-coding RNAs (lncRNAs) are RNA molecules with >200
nucleotides that have little or no capacity for protein coding
and have been shown to play important roles in the develop-
ment and progression of oesophageal cancer [103–108]. There
are two studies regarding the utility of lncRNAs in predicting re-
sponse to neoadjuvant treatment in oesophageal cancer. Tong
et al. showed that low expression of LOC285194, previously
linked with poor outcomes in other cancer types, was the only
independent risk factor associated with reduced response rates
to neoadjuvant chemoradiotherapy in OSCC [109]. Low expres-
sion of LOC285194 was independently associated with signifi-
cantly worse disease-free survival and overall survival. In OSCC
patients, Chang et al. reported that expression of TUSC7,
thought to act as a tumour suppressor, was upregulated in
patients with a good radiological response to neoadjuvant che-
motherapy compared with non-responders [110].

Discussion

The goal of predictive biomarker research is to identify the
treatment that results in the best outcome for each specific tu-
mour biology. The gene expression biomarker studies outlined
in this review aim to characterize a particular subgroup of
tumours that respond to neoadjuvant therapy. Significant chal-
lenges still exist with interpreting the highly varied results, par-
ticularly in the context of the marked heterogeneity between
studies and understanding the reasons behind response and
non-response at the biological level.

To date, there are no validated genomic or transcriptomic
biomarkers in clinical use in the neoadjuvant setting in oeso-
phageal cancer. This ‘gap’ is reflective of broader issues in
cancer biomarker development in which it is estimated that
<0.1% of clinical biomarkers are translated from basic initial
discovery studies to clinical use [111]. A proportion of these fail

at the analytical and clinical validation stages; however, many
are described only in the literature and are never brought from
discovery to clinical validation [33]. Many common pitfalls at
the discovery stage are relevant to the studies reviewed here.

The studies vary significantly in terms of participant charac-
teristics, pathological subtype, type of sample used, treatment
regimen, assay choice, statistical analysis, and whether valida-
tion is included. This variation, along with small sample sizes,
may account for the lack of congruence between studies.
Interpreting results in the context of such heterogeneity is chal-
lenging. Many of the studies outlined are retrospective in na-
ture, which inherently introduces multiple sources of potential
bias, such as selection bias and confounding factors. To reduce
the risk of bias, blinding to clinical outcomes is widely recom-
mended when conducting marker assessment [36, 39]. Taking
into account the complexity of predictive biomarker studies, the
REMARK authors clearly state that these studies should ideally
occur in the context of prospective randomized trials in which
the Consolidated Standards of Reporting Trials (CONSORT)
guidelines apply [37, 112]. Taken together, these issues highlight
the need for larger studies with more standardized approaches
as well as the importance of reporting standards in biomarker
development.

Biomarker studies to date have been hampered by small pa-
tient numbers and authors frequently cited the inadequate
powering of their studies as a fundamental limitation [49, 52,
61, 90]. Incorporating small sample sizes relative to the number
of gene expression measurements means that gene expression
studies are vulnerable to overfitting, often due to failure to cor-
rect for multiple hypothesis testing [35]. Overfitting can occur
when a computational modelling process unintentionally takes
account of noise or other chance variables in a training data set
so that genes that are predictive in the training data set are not
predictive in a test data set. This highlights the importance of
creating and maintaining high-quality, well-annotated speci-
men repositories, such as that maintained by the Oesophageal
Cancer Clinical and Molecular Stratification (OCCAMS)
Consortium [113]. An important strength of multi-institution
biomarker studies with well-designed protocols is the potential
for wider generalizability. One example of this is the high-
quality retrospective analysis of randomized phase three clini-
cal trial data sets, which led to the routine clinical use of KRAS
as a biomarker for response to anti-EGFR therapies in colorectal
cancer [114, 115]. Only by robustly testing and validating a bio-
marker in sufficiently powered cohorts can we generate mean-
ingful outcomes and biomarkers to take forward into clinical
practice.

In addition to appropriate statistical power, the correct
choice of endpoint is critical in biomarker studies. It is impor-
tant that endpoints reflect meaningful outcomes and those that
matter to patients. The studies outlined used a range of classifi-
cation systems to define pathological response, as previously
described, and two used radiological response alone [50, 55]. CT
response is notoriously difficult to discern in oesophageal can-
cer [116]. Furthermore, imaging using positron emission tomog-
raphy (PET)–CT, CT, and EUS alone is not sensitive enough to
detect pathological complete response [117]. The choice of end-
point should be carefully considered when evaluating potential
biomarkers.

Validation is a key aspect of biomarker discovery and can oc-
cur within a data set or, ideally, using an independent sample
set. Regarding initial validation, several studies reviewed here
included training and test sets [61, 93, 96]. Others utilized cross-
validation approaches in a single data set; this approach can be
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helpful if seeking to evaluate a marker combination, particu-
larly where sample sizes are small [36, 50, 61, 90]. Seven studies
used independent data sets for validation [53–55, 60, 93, 95, 96].
Ultimately, the highest level of evidence of validity comes from
using an independent sample set that is not used to generate
the initial computational model and this is widely recom-
mended [36, 37]. Validation in independent data sets should be
widely adopted in oesophageal cancer biomarker studies going
forward.

In summary, the studies reviewed illustrate the many chal-
lenges involved in biomarker development in oesophageal can-
cer. Sample size, choice of endpoint, variation in treatment and
analysis platform, and validation are recurring themes. Future
studies should aim to address these using the framework pro-
vided by the REMARK criteria and integrate the results with in-
formation about tumour biology and molecular subtype.

A further consideration regarding predictive biomarkers in
OAC is the insights they provide into the biological subtypes un-
derlying response to therapy. Genomic and transcriptomic bio-
markers differ from many other biomarkers in that the
biological rationale and molecular mechanisms behind their
predictive value are often unclear initially. The wide variation
in study results demonstrates that the biological factors
influencing response to neoadjuvant treatment in oesophageal
cancer are not yet fully understood. It is clear, however, that a
subgroup of responders exists and it may be that this represents
a particular molecular subgroup yet to be fully defined. Recent
molecular profiling studies have proposed molecular subtypes
within the broad OAC and OSCC groups; however, it is unclear
how many of these subgroups relate to clinical outcomes, in-
cluding treatment response, and how the subgroups relate to
each other [5, 118].

Several attempts to molecularly subtype OAC and OSCC and
relate these groupings to treatment response and prognosis
have been performed. The Cancer Genome Atlas conducted
comprehensive multi-omics profiling of 164 oesophageal carci-
nomas revealing a strong molecular distinction between OAC
and OSCC [5]. Secrier et al., as part of the UK OCCAMS
Consortium, used a whole-genome sequencing-based approach
to identify molecular subgroups in 129 OAC samples using pre-
specified mutational signatures, previously described by
Alexandrov et al. [118, 119]. This separated OAC into C>A/T-
dominant, DNA-damage-repair impaired, and mutagenic sub-
groups. Importantly, no significant difference between any of
the three groups could be found in terms of tumour grade or
stage, response to chemotherapy, overall survival, recurrence-
free survival, smoking, age, or sex. This may be due to the het-
erogeneous nature of the treatments applied to the cohort and
the fact that mutational signatures, although representative of
the mutational history of a tumour, are not necessarily repre-
sentative of the current biology of a tumour. Similarly, of the 65
driver genes in OAC recently identified by Frankell et al., none
was related to treatment response, with only SMAD4 and
GATA4 mutations independently predicting reduced overall sur-
vival [120]. As previously outlined, using a 44-gene expression
signature, the DDIR assay, we have identified a DNA-repair-
deficient OAC subgroup with pro-inflammatory/immune biol-
ogy. DDIR positivity was associated with improved response to
neoadjuvant chemotherapy and significantly improved overall
survival [47]. Whilst it is clear that a subgroup of clinically
responding patients exists, the precise biology underpinning
this phenotype remains elusive. The cellular response to DNA
damage and its interplay with immune signalling may identify
a subset of tumours primed for response to DNA-damaging

chemotherapy or radiotherapy. However, further validation of
existing biomarkers is required alongside the development and
exploitation of rigorously collated, well-annotated, and suffi-
ciently powered cohorts treated with relevant neoadjuvant
therapy.

The future of predictive biomarker development in oesopha-
geal cancer may also lie in the use of artificial intelligence, for
example, through machine-learning techniques. These techni-
ques have been used to predict treatment response in oesopha-

geal cancer using imaging and clinicopathological data, alone
and in combination [121, 122]. A recent study found that the use
of deep neural networks, which capture key biological pathways
related to treatment response, outperformed current machine-
learning algorithms in predicting drug response [123]. The
authors trained deep neural network models on a database of
1,001 cancer-cell lines and applied these models in a range of
clinical cohorts, including the OAC OCCAMS data set [113]. The
resultant model was able to successfully recognize biological
pathways related to drug response. A key limiting factor is that
oesophageal cancer is characterized by a high level of genomic
instability and significant intra-tumoural heterogeneity [118,
124, 125]. In this setting, a precision medicine biomarker-driven
approach is particularly challenging. Further studies that inte-
grate current knowledge regarding gene expression profiling
with clinical outcomes and robust data sets are required to fully
understand the determinants of response to neoadjuvant treat-
ment in oesophageal cancer and develop robust biomarkers for
use in clinical practice. It must be noted that designing and
implementing such trials are costly and resource-intensive.
Ultimately, this need is best served using well-designed pro-
spective, collaborative trials that utilize expertise at a range of
institutions, increase patient numbers through multicentre re-
cruitment, and use standardized approaches to reduce potential
bias. One such example is the OCCAMS network—a UK-wide
multicentre initiative that leverages the world-leading clinical,
genomics, and bioinformatics expertise alongside industry part-
ners and represents a significant opportunity to prospectively
integrate genomic and transcriptomic data with stratified,
adaptive clinical trials [113].

In conclusion, we have endeavoured to outline the current
status of predictive transcriptomic biomarker development in
neoadjuvant therapy in oesophageal cancer. The ability to strat-
ify patients for neoadjuvant treatment in oesophageal cancer
could dramatically improve outcomes in this poor-prognosis
disease. At present, a greater understanding is needed regarding
how the aforementioned molecular subtypes interrelate, the
molecular determinants of response, and the major biological
pathways involved. The wealth of genomic and transcriptomic
data provided by national and international translational sci-
ence and clinical trial collaborations in the coming years will
provide unique opportunities to stratify patients for neoadju-
vant therapy. Only by paying close attention to the issues of bio-
marker development can we address the challenge of delivering
clinical impact in oesophageal cancer through the application
of precision oncology.
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