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A B S T R A C T

We built and validated a deep learning algorithm predicting the individual diagnosis of Alzheimer's disease (AD)
and mild cognitive impairment who will convert to AD (c-MCI) based on a single cross-sectional brain structural
MRI scan. Convolutional neural networks (CNNs) were applied on 3D T1-weighted images from ADNI and
subjects recruited at our Institute (407 healthy controls [HC], 418 AD, 280 c-MCI, 533 stable MCI [s-MCI]). CNN
performance was tested in distinguishing AD, c-MCI and s-MCI. High levels of accuracy were achieved in all the
classifications, with the highest rates achieved in the AD vs HC classification tests using both the ADNI dataset
only (99%) and the combined ADNI + non-ADNI dataset (98%). CNNs discriminated c-MCI from s-MCI patients
with an accuracy up to 75% and no difference between ADNI and non-ADNI images. CNNs provide a powerful
tool for the automatic individual patient diagnosis along the AD continuum. Our method performed well without
any prior feature engineering and regardless the variability of imaging protocols and scanners, demonstrating
that it is exploitable by not-trained operators and likely to be generalizable to unseen patient data. CNNs may
accelerate the adoption of structural MRI in routine practice to help assessment and management of patients.

1. Introduction

The diagnosis of Alzheimer's disease (AD) can be improved by the
use of biomarkers (Albert et al., 2011; Dubois et al., 2014; McKhann
et al., 2011). Structural MRI, which provides biomarkers of neuronal
loss, is an integral part of the clinical assessment of patients with sus-
pected AD (Albert et al., 2011; Dubois et al., 2014; McKhann et al.,
2011). Several studies have shown that atrophy estimates in char-
acteristically vulnerable brain regions, particularly the hippocampus
and entorhinal cortex, reflect disease stage and are predictive of pro-
gression of mild cognitive impairment (MCI) to AD (Frisoni et al.,
2010). The clinical utility of structural MRI in differentiating AD from
other diseases, such as vascular or non-AD dementia, has been also
established (Frisoni et al., 2010). However, the value of structural MRI
will be increased by standardization of acquisition and analysis

methods, and by development of robust algorithms for automated as-
sessment. All of these are needed to achieve the ultimate goal of in-
dividual patient diagnosis with a single cross-sectional structural MRI
scan and for structural MRI to be definitely qualified by regulatory
agencies as a biomarker for enrichment of pre-dementia AD trials
(Frisoni et al., 2017).

Previous work in computer-aided classification of AD and MCI pa-
tients has used several machine learning methods applied to structural
MRI (Rathore et al., 2017). The most popular among these methods is
Support Vector Machine (SVM) (Rathore et al., 2017). SVM extracts
high-dimensional, informative features from MRI to build predictive
classification models that facilitate the automation of clinical diagnosis
(Rathore et al., 2017). However, feature definition and extraction ty-
pically rely on manual/semi-automatic outlining of brain structures,
which is laborious and prone to inter- and intra-rater variability, or
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complex image pre-processing, which is time-consuming and compu-
tationally demanding.

An alternative family of machine learning methods, known as deep
learning algorithms, are achieving optimal results in many domains
such as speech recognition tasks, computer vision and natural language
understanding (Lecun et al., 2015) and, more recently, medical analysis
(Esteva et al., 2017; Vieira et al., 2017; Xiong et al., 2015). Deep
learning algorithms differ from conventional machine learning methods
by the fact that they require little or no image pre-processing and can
automatically infer an optimal representation of the data from the raw
images without requiring prior feature selection, resulting in a more
objective and less bias-prone process (LeCun et al., 2015; Vieira et al.,
2017). Therefore, deep learning algorithms are better suited for de-
tecting subtle and diffuse anatomical abnormalities (LeCun et al., 2015;
Vieira et al., 2017). Recently, deep learning has been successfully ap-
plied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset
to identify AD patients from healthy controls (Table 1) (for a review see
(Vieira et al., 2017)). Only one study so far has applied deep learning
algorithms, without a priori feature selection (considering gray matter
[GM] volumes as input), to the prediction of AD development within
18months in individuals with MCI using ADNI structural MRI scans
(Suk et al., 2017) (Table 1).

The aim of the present study was to build and validate a deep
learning algorithm (specifically convolutional neural networks [CNN])
that can predict the individual diagnosis of AD and the development of
AD in MCI patients based on a single cross-sectional brain structural
MRI scan. A robust diagnostic marker should adapt to various datasets
to diminish discrepancies in data distribution and biases toward specific
groups (Frisoni et al., 2017). One of the most important caveats of
previous works is the single-center origin of imaging data that limits the
generalizability of findings. In light of this, one of the main goal and
novelty of our study was to overcome this limit by comparing data from
different centers, neuroimaging protocols and scanners, in order to
reach both reliability and reproducibility of results.

2. METHODS

2.1. Participants

We used the structural brain MRI scans from the ADNI dataset
(ADNI.LONI.USC.EDU). The ADNI was launched in 2003 as a public
private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial MRI,
positron emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date information, see
WWW.ADNI-INFO.ORG. A total of 1409 subjects (294 patients with
probable AD, 763 patients with MCI, and 352 healthy controls) were
considered in this study (Table 2). Standard 3 T baseline T1-weighted
images were included from the ADNI dataset. We included all ADNI1,
ADNI2 and ADNI-GO subjects that had baseline 3D T1-weighted scans.
After 36months, 253 MCI patients (33%) converted clinically to AD (c-
MCI).

An independent dataset of 3D T1-weighted images were obtained
from 229 subjects (hereafter named as “Milan” dataset) including 124
patients with probable AD (McKhann et al., 2011), 50 patients with MCI
(Albert et al., 2011), and 55 healthy controls who were recruited con-
secutively at the Department of Neurology, Scientific Institute and
University Vita-Salute San Raffaele, Milan (Table 3). After 36months,
27 (54%) MCI patients converted clinically to AD. An experienced
neurologist blinded to MRI results performed clinical assessments.
Healthy controls with no history of neurologic, psychiatric or other
major medical illnesses were recruited among friends and spouses of
patients and by word of mouth (Table 3).

In both datasets (ADNI and Milan), the conversion from MCI to
dementia was established clinically. This was a judgment made byTa
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skilled clinicians on the determination of whether or not there was
significant interference in the ability to function at work or in usual
daily activities based on the information obtained from the patient and
from a knowledgeable caregiver.

This cross-sectional study was approved by the Local Ethical
Committee on human studies and written informed consent from all
subjects was obtained prior to their enrolment.

2.2. MRI acquisition protocol

Details about the ADNI MRI data acquisition protocol can be seen in
ADNI's official webpage (ADNI.LONI.USC.EDU). Patients and healthy
controls from the Milan dataset underwent a 3.0 T MR scan using a
Philips Medical Systems Intera machine. The following sequences were
acquired: (i) T2-weighted spin echo (SE) (repetition time
[TR]= 3000ms, echo time [TE]= 85ms, flip angle= 90°, echo train
length=15, thickness= 3mm, 46 contiguous axial slices, field of view
[FOV]= 230×208mm2, matrix size= 256×242); (ii) fluid-atte-
nuated inversion recovery (FLAIR) (TR=11,000ms, TE=120ms, in-
version time=2800ms, flip angle= 90°, echo train length= 21,
thickness= 3mm, 46 contiguous axial slices, FOV=230×183mm2,
matrix size =256×192); and (iii) 3D T1-weighted fast field echo
(TR=25ms, TE=4.6ms, flip angle= 30°, thickness= 1mm, 220
contiguous axial slices, and in-plane resolution 0.89×0.89mm2,
FOV=230×230mm2, matrix size= 256×256).

2.3. MRI analysis

An experienced observer, blinded to patients' identity, performed
MRI analysis. MRI analysis and CNN procedures were performed on a
Dell Powerdge T630 Linux, including high-performance GPU NVIDIA
Tesla K40, with 2880 CUDA cores and High Frequency Intel Xeon
E5–2623 v3 with 78 GB memory overall.

3D T1-weighted images from both datasets were normalized to the
MNI space using Statistical Parametric Mapping (SPM12; HTTP://
WWW.FIL.ION.UCL.AC.UK/SPM/) and the Diffeomorphic Anatomical
Registration Exponentiated Lie Algebra (DARTEL) registration method
(Ashburner, 2007). Briefly, (i) T1-weighted images were segmented to
produce GM, white matter (WM) and cerebrospinal fluid (CSF) tissue
probability maps in the Montreal Neurological Institute (MNI) space;
(ii) the segmentation parameters obtained from the step (i) were im-
ported in DARTEL; (iii) the rigidly aligned version of the images pre-
viously segmented (i) was generated; (iv) the DARTEL template was
created and the obtained flow fields were applied to the modulated 3D
T1-weighted images of single subjects (generated by the segmentation
step) to warp them to the common DARTEL space and then modulated
using the Jacobian determinants. Since the DARTEL process warps to a
common space that is smaller than the MNI space, we performed an
additional transformation as follows: (v) the modulated 3D T1-
weighted images from DARTEL were normalized to the MNI template
using an affine transformation estimated from the DARTEL GM tem-
plate and the a priori GM probability map without resampling (HTTP://
BRAINMAP.WISC.EDU/NORMALIZEDARTELTOMNI).

2.4. Convolutional neural networks

Mimicking how the human brain processes information, the
building blocks of deep learning networks, known as ‘artificial neurons’,
are organized in layers in which each ‘neuron’ is fully connected to all
‘neurons’ in the next layer through weighted connections (Lecun et al.,
2015). Briefly, deep learning networks (i) ‘learn’ from a series of inputs
that are the data inputted into the model, (ii) propagate learned in-
formation through the network from the input to the output layer, (iii)
calculate the error signal (i.e., difference between the network output
and target value), and (iv) propagate the error signal back. After that,
deep learning networks adjust their weights and repeat all the stepsTa
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from (i) to (iv) until the error becomes as small as possible. Finally,
trained networks are used to blind-predict the class of new (unseen)
observations.

There are several architectures currently used for deep learning
(Vieira et al., 2017). CNNs are a special type of feedforward neural
networks that were initially designed to process images regardless
various distortions, and as such are biologically-inspired by the visual
cortex (Lecun et al., 1998). As illustrated in Fig. 1, standard CNNs ty-
pically alternate convolutional and max-pooling layers followed by a
small number of fully-connected layers, in addition to the input and
output layers. In the convolutional layer, which is the first neuronal
layer receiving an input signal, neurons identify the main features that
characterize the images, storing the information into a ‘feature map’
containing the relationship between the neurons and their features.
Immediately after each convolutional layer, it is convention to apply a
nonlinear layer (or activation layer). This layer, which just changes all
the negative activations to 0, increases the nonlinear properties of the
model and the overall network without affecting the receptive fields of
the convolutional layer. The most common activation function is the
Rectified Linear Unit, due to its faster training speed. A pooling (or
subsampling) layer follows, which performs a downsampling operation
along the spatial dimension. The last layers in the network are the fully-
connected layers, where the neurons are connected to all neurons from
the previous layer. CNN properties reduce the number of parameters
that must be learned, thus improving training performance upon gen-
eral deep learning algorithms (Lecun et al., 2015).

Here, we introduce in detail the CNNs implemented in our study.
First, given the volumetric nature of MR images, a network architecture
that uses 3D convolutions was developed. The inputs were normalized
3D T1-weighted images and the outputs to be predicted were subject
groups. The architecture of the network contains: 12 repeated blocks of
convolutional layers (2 blocks with 50 kernels of size 5× 5×5 with
alternating strides 1 and 2 and 10 blocks with 100 to 1600 kernels of
size 3×3×3 with alternating strides 1 and 2); a Rectified Linear Unit
(activation layer); a fully-connected layer; and one output (logistic re-
gression) layer. The network used in our study differs from the standard
CNNs as max-pooling layers were replaced by standard convolutional
layers with stride of 2 (‘all convolutional network’(Springenberg et al.,
2015)). The "all convolutional network" is a basic architecture reaching
good performance without the need for complicated activation func-
tions, any response normalization or max-pooling (Springenberg et al.,
2015). All software was written in Python using Theano, a scientific
computing library with support for machine learning and GPU com-
puting.

2.5. Experiments

Performance of the 3D CNN was validated and tested on patients
and controls, with six binary classifications: AD vs HC, c-MCI vs HC,
stable MCI (s-MCI) vs HC, AD vs c-MCI, AD vs s-MCI, c-MCI vs s-MCI. For
each classification, the CNN was evaluated firstly on ADNI dataset and
then on ADNI + Milan dataset (12 classifications in total). Each clas-
sification included three steps (Fig. 2): (i) training, (ii) validation, and
(iii) testing. First, MRI data of each classification dataset was randomly
split into a large training and validation set (90% of images) and a
testing set (10% of images). Data augmentation was then applied on
images selected for training and validation (not testing) in order to
generate additional artificial images and consequently prevent over-
fitting, which can occur when a fully connected layer occupies most of
the parameters. Providing a CNN with more training and validation
examples can reduce overfitting. Data augmentation strategy consisted
of deformation, flipping, scaling, cropping and rotation of images (see
examples in Fig. 3). We augmented the dataset of each subject group in
any of the 12 classifications up to 1000. Each augmented dataset was
randomly split into two subsets (90% for training and 10% for valida-
tion). For each classification, (i) CNN was trained on the augmented
dataset and (ii) validated using a 10-fold cross validation. To improve
the performance of our classifier, a so-called transfer learning was ap-
plied, i.e., weights of the CNN used to classify ADNI AD vs HC were
transferred to the other CNNs and used as (pre-trained) initial weights
(Hosseini-Asl et al., 2016). “Transferring” the learned features reduces
training time and increases the network efficiency.

CNN was finally used to classify raw images of the testing set (iii).
CNN's performance was evaluated by several performance measures, i.e.
sensitivity, specificity and accuracy. Sensitivity measures the propor-
tion of true positives correctly identified, whereas specificity refers to
the proportion of true negatives correctly identified. The accuracy of a
classifier represents the overall proportion of correct classifications.

3. RESULTS

Table 4 reports binary classification performances of the CNNs in
the testing datasets. The results demonstrated that high levels of ac-
curacy were achieved in all the comparisons. Highest accuracy, sensi-
tivity and specificity (higher than 98%) were obtained in the AD vs HC
classification tests using both the ADNI dataset and the combined ADNI
+ Milan dataset (Table 4). CNNs were also able to discriminate be-
tween c-MCI patients and HC with an optimal performance (accuracy,
sensitivity and specificity values higher than 86%; Table 4). In distin-
guishing c-MCI from s-MCI subjects, CNNs reached an accuracy up to

Fig. 1. Architecture of a typical convolutional neural
network. a) Input layer: the data is given to the
network. b) Convolutional layer: neurons identify
the main features that characterize the images,
storing the information into a ‘feature map’ (e.g., red,
blue and yellow blocks). c) Pooling layer: the size of
each feature map is reduced with a downsampling
operation along the spatial dimension (e.g., red, blue
and yellow blocks). d) Fully-connected layer: the
neurons are connected to all neurons from the pre-
vious layer. e) Output layer: the step that returns the
probability of the input data to belong to each class.
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about 75%, with no differences between ADNI and non-ADNI images
(Table 4).

4. DISCUSSION

Effective and accurate AD diagnosis is critical for early treatment.
Therefore many researchers have devoted their efforts to develop a
computer-aided system, which can diagnose AD in the early stages and
on an individual basis (Rathore et al., 2017; Vieira et al., 2017). In this
study, we built and validated a deep learning algorithm that predicts
the individual diagnosis of AD and MCI who will convert to AD based
on a single cross-sectional brain structural MRI scan. Results showed
that our CNN was highly-performing in differentiating AD and MCI
patients from healthy controls and good-performing in predicting
conversion to AD within 36months. Importantly, our algorithm per-
formed well without any prior feature engineering and regardless the
variability of imaging protocols and scanners, demonstrating that it is
exploitable by not-trained operators and likely to be generalizable to
unseen patient data.

The strengths of our approach relative to previous deep learning
studies in AD (Vieira et al., 2017) (Table 1) are several. First, hetero-
geneous MRI data proved to be a challenge for all evaluated models,
with performance deteriorating more when images were obtained using
different MR protocols and areas of the images known to be important
for identity inference are inhomogeneous, deformed or lacking (Han
et al., 2006; Takao et al., 2014). Structured programs aimed at stan-
dardizing and harmonizing MRI acquisition and analysis for AD diag-
nosis and management are ongoing in research settings (Frisoni et al.,
2015; Reijs et al., 2015; Weiner et al., 2017). However, data obtained in
these selected frameworks might not be representative of real-world
populations. This is one of the main reasons why current diagnostic
criteria for AD are extremely cautious on recommending the use of MRI
in a clinical setting (Albert et al., 2011; Dubois et al., 2014; McKhann
et al., 2011). In our experiments, CNN was trained, validated and tested
using two datasets obtained by different MR protocols and scanners in
order to capture the full spectrum of heterogeneity among data and
provide a less dataset-specific approach. In fact, our approach

overcomes the caveats of previous works, which have obtained data
from single-center datasets leading to a limited reproducibility of
findings.

We also observed that the studied model is not affected by image
quality to different degrees as provided by data augmentation. Second,
transfer learning from the AD vs controls ADNI comparison was applied
for computational efficiency (Hosseini-Asl et al., 2016). Models trained
with AD and control subjects can be particularly effective when at-
tempting to distinguish c-MCI and s-MCI patients, as the differences
among MCI groups are expected to be smaller than those between AD
and controls (Bozzali et al., 2006). Therefore, a pre-trained model is the
ideal tool to be used in routine clinical practice because it is a less time-
consuming task and can provide high performance in distinguishing
only slightly different images. Our approach is finally unique as we used
a simplified CNN architecture called “all convolutional network”,
which is optimized to achieve state-of-the-art performances with the
minimum necessary CNN components (Springenberg et al., 2015). The
great advantage of such a network model relative to standard CNNs is
that it greatly reduces the number of network parameters and thus
serves as a form of regularization (Springenberg et al., 2015).

As in previous supervised and unsupervised machine learning stu-
dies (Rathore et al., 2017; Vieira et al., 2017) (Table 1), accuracy in
identifying c-MCI from s-MCI patients was not as high as when classi-
fying AD or MCI patients from healthy controls. Using deep neural
networks, combined with sparse regression models, a recent structural
MRI study obtained a similar accuracy in identifying c-MCI patients
(Suk et al., 2017). Importantly, multiple biomarker modalities may help
enhance the diagnostic accuracy in MCI population. The most widely
accepted diagnostic criteria for AD assume that the greatest accuracy
can be achieved with a combination of amyloidosis and neurodegen-
eration biomarkers (Albert et al., 2011; Dubois et al., 2014; McKhann
et al., 2011). It is worth noting that the accuracy achieved by our al-
gorithm is also comparable to that of previous studies applying deep
learning algorithms on multimodal datasets (e.g., clinical, cognitive,
CSF, MRI, and PET (Vieira et al., 2017)), thus suggesting that there may
be a huge margin of improvement using our simplified deep learning
architecture in a multimodal biomarker framework. In light of this, in

Fig. 2. Flowchart of the main steps of the experiments performed. MRI data of each classification dataset (AD vs HC, c-MCI vs HC, s-MCI vs HC, AD vs c-MCI, AD vs s-
MCI, c-MCI vs s-MCI) were randomly split into a large training and validation set (90% of images) and a testing set (10% of images). Data augmentation was applied
on images selected for training and validation. See text for further details.
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particular for the crucial comparison between c-MCI and s-MCI, future
studies should consider to add other MRI sequences (such as functional
MRI and/or diffusion tensor imaging), PET and CSF biomarkers

together with neuropsychological scores and genetic information in
order to improve the power of classification.

There are some limitations that need to be considered. First, we
cannot exclude the presence of future c-MCI among s-MCI patients.
Indeed, a longer clinical follow up may improve clinical diagnosis and
thus our algorithm performance. Second, as previously mentioned, our
model should be tested in combination with clinical, cognitive, genetic,
PET and CSF biomarkers to improve the prediction of full-blown de-
mentia development in MCI patients. Third, AD is a clinically hetero-
geneous disease and this should not be ignored. Effective diagnostic
tools should be developed that can deal with atypical AD presentations,
like posterior cortical atrophy and logopenic variant of primary pro-
gressive aphasia. Finally, neurodegeneration due to AD occurs years,
even decades, before the clinical onset (Jack Jr. and Holtzman, 2013).
Future studies are warranted to test the accuracy of the procedure in
identifying subjects in the preclinical phase of the disease and, poten-
tially, as a screening tool in the general population to identifying people
at high risk of developing dementia.

In conclusion, CNNs show promises for building a model for the
automated, individual and early detection of AD and thus accelerating
the adoption of structural MRI in routine practice to help assessment
and management of patients.

Fig. 3. Examples of images after data augmentation, i.e., deformation, cropping, rotation, flipping, and scaling. Axial and coronal images are shown. A= anterior;
L= left; P= posterior; R= right.

Table 4
Binary classification results on testing datasets.

Accuracy Sensitivity Specificity

AD vs HC ADNI dataset 99.2% 98.9% 99.5%
ADNI+Milan dataset 98.2% 98.1% 98.3%

c-MCI vs HC ADNI dataset 87.1% 87.8% 86.5%
ADNI+Milan dataset 87.7% 87.3% 88.1%

s-MCI vs HC ADNI dataset 76.1% 75.1% 77.1%
ADNI+Milan dataset 76.4% 75.1% 77.8%

AD vs c-MCI ADNI dataset 75.4% 74.5% 76.4%
ADNI+Milan dataset 75.8% 74.8% 77.1%

AD vs s-MCI ADNI dataset 85.9% 83.6% 88.3%
ADNI+Milan dataset 86.3% 84.0% 88.7%

c-MCI vs s-MCI ADNI dataset 75.1% 74.8% 75.3%
ADNI+Milan dataset 74.9% 75.8% 74.1%

Abbreviations: AD=Alzheimer's disease; ADNI=Alzheimer's Disease
Neuroimaging Initiative; HC=healthy controls; MCI=Mild Cognitive
Impairment (c= converters; s= stable).
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