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Abstract: Chalcogenide phase-change materials (PCMs) based random access memory (PCRAM)
enter the global memory market as storage-class memory (SCM), holding great promise for future
neuro-inspired computing and non-volatile photonic applications. The thermal stability of the
amorphous phase of PCMs is a demanding property requiring further improvement. In this work, we
focus on indium, an alloying ingredient extensively exploited in PCMs. Starting from the prototype
GeTe alloy, we incorporated indium to form three typical compositions along the InTe-GeTe tie line:
InGe3Te4, InGeTe2 and In3GeTe4. The evolution of structural details, and the optical properties of
the three In-Ge-Te alloys in amorphous and crystalline form, was thoroughly analyzed via ab initio
calculations. This study proposes a chemical composition possessing both improved thermal stability
and sizable optical contrast for PCM-based non-volatile photonic applications.

Keywords: phase change materials; amorphous phase; germanium telluride; indium alloying;
optical contrast

1. Introduction

Non-volatile memory (NVM) is a rising technology that allows for high-density data
storage and fast data processing [1–6]. Phase-change materials (PCMs)-based random
access memory (PCRAM) is a leading NVM candidate with successful stand-alone mem-
ory products such as Intel Optane. By improving its thermal stability, PCRAM is also a
promising candidate for embedded memory [7,8]. As announced by STMicroelectronics,
PCRAM will be used as embedded memory, replacing Flash memory, for their future mi-
crocontroller units (MCU) for the automotive industry [7]. Moreover, PCRAM is also being
exploited for more advanced applications, including neuro-inspired computing [9–15],
stochasticity-based computing [16,17], flexible electronics [18], optical displays [19–21],
all-optical computers [22–26], low-loss optical modulators [27], metasurfaces [28–32] and
others [33,34].

PCMs can be switched rapidly and reversibly between their amorphous and crystalline
phases via Joule heating induced by electrical or optical pulses [1,35]. The notable contrast
in either electrical resistivity or optical reflectivity between each phase is utilized to encode
digital information [1]. Several demanding requirements, such as high programming speed,
good thermal stability, low power consumption, stable property contrast window and long
cycling endurance, have to be well satisfied for high-performance PCRAM. Germanium
chalcogenides, in particular, GeTe and GeTe-Sb2Te3 pseudo-binary compounds (GST),
especially Ge2Sb2Te5 [36], are one of the most successful material families that could meet
these challenging requirements simultaneously. Doping and alloying are frequently used to
tailor the material properties for faster speed and/or better retention temperature, targeting
different application scenarios [37–44].

Nanomaterials 2021, 11, 3029. https://doi.org/10.3390/nano11113029 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-0720-4781
https://doi.org/10.3390/nano11113029
https://doi.org/10.3390/nano11113029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11113029
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11113029?type=check_update&version=1


Nanomaterials 2021, 11, 3029 2 of 12

For decades, indium has been an important alloying element used in rewritable
optical data storage products [45]. The flagship PCM is AgInSbTe [45–48]. Recently,
indium-alloyed GeTe [49–52] and GST [53,54] were reported, and their enhanced amor-
phous stability makes them suitable candidates for high-temperature PCRAM applications.
In addition, indium forms a unique PCM In3SbTe2 [55–59] that exhibits metallic behavior
in its crystalline phase, but semiconducting behaviors in its amorphous phase, in contrast
to conventional PCMs, which remain semiconducting during memory programming. It
has been suggested that even InTe could also be a potential PCM for non-volatile electron-
ics [53,60]. In this work, we focus on the InTe-GeTe (IGT) tie line, in particular, the three
stoichiometric compositions, namely InGe3Te4, InGeTe2 and In3GeTe4. By performing
thorough ab initio calculations and chemical bonding analyses, we elucidate the role of
indium in altering the structural and optical properties of GeTe.

2. Computational Details

We performed ab initio molecular dynamics (AIMD) simulations based on density
functional theory (DFT) to generate melt-quenched amorphous structures [61]. The second-
generation Car-Parrinello method [62] as implemented in CP2K package [63] was employed
along with Perdew–Burke–Ernzerhof (PBE) functional [64] and the Goedecker pseudopo-
tentials [65]. The canonical NVT ensemble was used and the time step was set at 2 fs.
Vienna Ab-initio Simulation Package (VASP) [66] was employed to relax the amorphous
structures and crystalline counterparts, prior to the calculations of electronic structure
and optical response. For VASP calculations, we applied the PBE functional and projector
augmented-wave (PAW) pseudopotentials [67]. The energy cutoff for plane waves was set
at 500 eV. Chemical bonding analyses were conducted with the LOBSTER code [68–70].
Crystal orbital Hamilton populations (COHP) were applied to separate the covalent inter-
actions into bonding (positive −COHP) and antibonding (negative −COHP) contributions.
Bader charges were calculated to evaluate the atomic charge transfer in the structures [71].
Frequency-dependent dielectric matrix was calculated within the independent-particle
approximation without considering local field effects and many body effects, which proved
to be adequate to account for the optical contrast between crystalline and amorphous
PCMs [72–74]. The absorption α(ω) and reflectivity R(ω) can be calculated from the
dielectric functions [75]:
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√
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where ε1 and ε2 are the real and imaginary parts of the dielectric function. n and k are
the refractive index and extinction coefficient, which can be calculated from the dielectric
functions:
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Van der Waals correction based on the Grimme’s D3 method was considered in
all AIMD and DFT calculations [76,77]. All the electronic structures, chemical bonding
and optical properties were calculated using relaxed structures at zero K with VASP. For
standard calculations, only gamma point was used to sample the Brillouin zone of the
supercell models, while a 3× 3× 3 k-point mesh was used to converge the optical response
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calculations. For statistics, we built three crystalline and three amorphous models for
each composition.

3. Results and Discussion

As reported in Ref. [78], a single-phase rock-salt structure was obtained over a wide
compositional range of 8–75 mole% InTe in IGT at ambient conditions, in which Te atoms
occupied one sublattice, while Ge and In atoms shared the other one. The three IGT
compositions considered in this work, namely InGe3Te4, InGeTe2 and In3GeTe4, fall in
this compositional range, and were expected to take the rock-salt structure. To account
for the compositional disorder of Ge and In atoms on the cation-like sublattice, we built
3 × 3 × 3 supercells (216 atoms in total) and distributed Ge and In atoms using a quasi-
random number generator. Three independent models were considered for each composi-
tion. Each supercell model was fully relaxed with respect to both atomic coordinates and
cell volume by DFT calculations. The relaxed cell-edge of crystalline (c-) InGe3Te4, InGeTe2
and In3GeTe4 is 18.21, 18.28 and 18.55 Å, respectively. The corresponding unit cell lattice
parameters, 6.07, 6.09 and 6.18 Å, are in good agreement with experimental values (5.97,
6.00 and 6.06 Å) [78]. The relaxed structure of c-InGeTe2 is shown in Figure 1a and the
structures of the other two compositions are shown in Figure S1.
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Figure 1. (a) Atomic structures for crystalline and amorphous InGeTe2. Red, silver and blue spheres
represent In, Ge and Te atoms, respectively. (b) Partial radial distribution functions (RDFs) for
each atomic pair in the three amorphous compounds. The “a-134”, “a-112” and “a-314” represent
amorphous InGe3Te4, InGeTe2 and In3GeTe4, respectively.

The relaxed crystalline supercells were then used to generate amorphous (a-) models
following a melt–quench protocol [61]. The supercell models were quickly heated to a
very high temperature to remove the crystalline order. After randomization at 3000 K for
15 ps, the models were quenched down to and equilibrated at 1200 K, above the melting
point of IGT alloys (∼550–750 ◦C) [49] for 30 ps. Amorphous models were then generated
by quenching the liquids down to 300 K with a cooling rate of 12.5 K/ps. During this
quenching process, we stopped the simulation after every 100 K, and the simulation box
size was increased to reduce the internal stress. Within each temperature window, one NVT
calculation was performed using a fixed box size. The model was equilibrated at 300 K
for 30 ps. This density value was then used to generate two additional melt-quenched
amorphous models for each composition. All three amorphous models showed consistently
low pressure values below 3 kbar. The obtained cell edges of amorphous InGe3Te4, InGeTe2
and In3GeTe4 are 18.90, 19.08 and 19.32 Å, respectively. This increase in the cell edge of the
amorphous phase is consistent with the trend observed in their crystalline counterparts.
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Further optimization of the internal stress or the use of the NPT ensemble for melt-quench
simulations could potentially lead to some numerical differences in the mass density, but is
not expected to alter the amorphous structures much.

The amorphous structure of InGeTe2 is shown in Figure 1a and the snapshots of the
other two compositions are in Figure S1. The partial radial distribution functions (RDFs) of
each atomic pair in the three amorphous compounds are shown in Figure 1b. The peak
positions of the heteropolar bonds In–Te (2.87 Å) and Ge–Te (2.78 Å) are not varied with
composition, whereas the homopolar or “wrong” bonds show small shifts. As developed
in our previous work [79], the “bond-weighted distribution function (BWDF)” provides
direct information on the length of chemical bonds in amorphous IGT alloys (Figure S2).
Despite the change in chemical composition, the bond length shows very similar values
in amorphous IGT alloys, i.e., Ge–Te 3.20 Å, In–Te 3.40 Å, Ge–Ge 3.20 Å, In–In 3.25 Å
and Ge–In 3.40 Å. In all three amorphous IGT alloys, Te–Te shows mostly antibonding
interactions. These bond length values are used as cutoffs for the interatomic distance for
the following structural analysis.

The angle distribution function (ADF) of the three amorphous structures (Figure 2a)
shows that In and Ge atoms mainly form local motifs with the central bond angles ranging
from 90◦ to 109.5◦, which corresponds to the bond angles in octahedral and tetrahedral
motifs, respectively. As the concentration of indium increases, the ADF peak for indium
atoms clearly shifts toward 109.5◦, implying an increase in indium-centered tetrahedral
motifs. We used bond order parameter q [80] to quantify the fraction of tetrahedral motifs
in amorphous IGT alloys. Such parameters are frequently used for the structural analysis
of amorphous PCMs [81–83]. As shown in Figure 2b, as indium concentration increases,
the total fraction of In- and Ge-centered tetrahedral motifs (short as tetra-In and tetra-Ge)
increases from 31.6% (a-InGe3Te4), 33.5% (a-InGeTe2) to 42.4% (a-In3GeTe4) in relation to
the total number of In and Ge atoms. Specifically, the fraction of tetra-In increases from
10.1%, 18.6% to 34.6%, while the fraction of tetra-Ge decreases from 21.5%, 14.9% to 7.8%.
The fraction of tetrahedrons for a-InGeTe2 is smaller than that reported in previous work
(38 % in total, with 31.5% for tetra-In and 6.5% for tetra-Ge) [50], due to the different choice
of cutoff values for the interatomic distance and the deviation in calculated density values
(vdW interactions were included in the current work). The ratios of tetrahedral motifs in
amorphous IGT alloys are all higher than that of their parent phase—GeTe, where 25–30%
tetrahedral atoms are typically found in the rapidly quenched amorphous phase [84–86].

In addition to the increase in the total number of tetrahedral motifs from a-InGe3Te4
to a-In3GeTe4, the local bonding configuration also shows a major difference. Despite
the change in chemical compositions, nearly all the tetra-Ge atoms are bonded with at
least one Ge or In atom, while the majority of tetra-In atoms are heteropolar-bonded
in the three amorphous IGT alloys. To quantify the role of “wrong” bonds, we carried
out a projected COHP (pCOHP) analysis. As shown in Figures 3 and S3, the pCOHP of
heteropolar-bonded tetra-Ge atoms demonstrates sizable antibonding interactions right
below Fermi energy (EF), and the presence of wrong bonds (including Ge–Ge and Ge–In)
largely reduces such antibonding contributions, stabilizing the tetrahedral motifs locally.
In contrast, the pCOHP of tetra-In atoms with and without wrong bonds mostly shows
bonding interactions below EF. These results are consistent with the bonding configuration
in the two parent phases, a-GeTe [79] and a-InTe [83], though In–Ge bonds are present
in all three amorphous IGT alloys. Since indium atoms do not require homopolar bonds
to stabilize tetrahedral motifs, the ratio of tetrahedral units is increased with the indium
concentration. As compared to their crystalline counterparts, where all In and Ge atoms are
octahedrally bonded, the enlarged structural deviation will enhance the thermal stability
of amorphous IGT alloys. This observation is consistent with experimental findings, as the
crystallization temperature Tx of doped InGeTe2 [49] and undoped InTe thin films [60] is
increased to ∼276 and ∼300 ◦C, respectively, as compared to that of GeTe Tx ∼190 ◦C [87].
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Figure 2. (a) Angle distribution functions (ADFs) for the amorphous structures of the three In-Ge-Te
compositions. The central bond angles for perfect tetrahedron (109.5◦) and octahedron (90◦) are
marked as dashed lines in ADF plots. (b) Ratios of tetrahedral motifs in the three amorphous
structures. Typical Ge- and In-centered tetrahedral motifs (short as tetra-In and tetra-Ge) in the
amorphous structures are shown on the top panel.
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Figure 3. Projected COHP (pCOHP) for tetra-In and tetra-Ge motifs in a-InGeTe2. Tetrahedral motifs
are classified as the ones with only heteropolar bonds, denoted as In[In0Ge0Te4] and Ge[Ge0In0Te4],
and the others with at least one wrong bond indicated as In[InxGeyTe4−x−y] and Ge[GexInyTe4−x−y]
(x or y ≥ 1, x + y ≤ 4).

The calculated density of states (DOS) of the three IGT alloys in both crystalline and
amorphous forms are shown in Figure 4a,b. Regarding the crystalline models, the overall
DOS profiles are quite similar, and all three alloys exhibit metallic features. By contrast,
all three amorphous models are narrow-gap semiconductors. Statistical sampling yields
consistent results (Figure S4). The large difference in DOS between the crystalline and
amorphous IGT results in a wide resistance contrast window for PCRAM applications [49].
The Bader charge analysis (Figure 4c) details larger net charges for In atoms than for
Ge atoms due to the difference in electronegativity. The bimodal feature of the charges
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of indium atoms is consistent with previous work [50], stemming from different local
environments of indium atoms. The enlarged charge transfer in amorphous structures
increases the probability of long-distance electromigration under the transient electrical
field induced by programming pulses [88], which is detrimental to the cycling endurance of
devices [89,90]. For RESET operations, the higher the melting temperature Tm, the greater
the power consumption. The melting temperature for IGT alloys has a “W” shape profile,
according to the InTe-GeTe phase diagram, which shows that InGeTe2 has a higher melting
temperature Tm (740 ◦C) than GeTe and InTe whose Tm are 715 and 688 ◦C, respectively [49].
Interestingly, the two other compositions, InGe3Te4 and In3GeTe4, demonstrated reduced
Tm (645 and 565 ◦C). Taking into account all these factors for practical applications, we
would suggest keeping the IGT composition within the range of InGeTe2 to In3GeTe4 for
balanced device performance.
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Figure 4. Density of states (DOS) for the (a) crystalline and (b) amorphous structures of the three
In-Ge-Te compositions. The “c-134”, “c-112” and “c-314” represent crystalline InGe3Te4, InGeTe2 and
In3GeTe4, respectively. (c) Bader charges (in electrons per atom) of all atoms in the three amorphous
structures.

The enhanced amorphous stability is also useful for non-volatile photonic applica-
tions [91], yet the incorporation of indium makes IGT alloys metallic, which could affect
the optical contrast between the amorphous and crystalline phase. The significant contrast
of ∼30% in the optical reflectivity of PCMs stems from a fundamental change in bonding
nature from covalent to metavalent bonding (MVB) upon crystallization [92–99]. However,
in comparison with GeTe and GST, which have three p electrons per site (a key feature
of MVB), InTe has a deficient number of p electrons, turning the rock-salt phase from
semiconducting to metallic. As a result, MVB in IGT alloys is expected to be weakened.

For verification, we carried out optical response calculations using the relaxed crys-
talline and amorphous IGT structures. We focused on the spectrum range from 400
to 1600 nm, covering both the visible light region (∼400 nm to 800 nm) for optical dis-
plays [19–21] and the telecom wavelength bands (∼1500 to 1600 nm) for silicon-waveguide-
integrated photonic applications [23–26]. As shown in Figure 5a, the optical absorption and
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reflectivity profiles vary slightly with the chemical compositions in the amorphous phase,
while strong changes are found in the crystalline phase. For InGe3Te4 and InGeTe2, sizable
contrast in reflectivity between the crystalline and amorphous phases is observed over
the whole spectrum, with an average value ∼20%. However, for In3GeTe4, the contrast in
reflectivity nearly vanishes at around ∼900 nm, and it becomes greater below 700 nm, or
above 1000 nm.
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The three IGT crystals have a crossover at ∼1100 nm. For long wavelength or small
photon energy (below ∼1 eV) regions, the optical excitation is mainly determined by states
near EF. With increased DOS near EF by heavier indium alloying (Figure 4a), the absorption
in the long wavelength region is enhanced. However, for the short wavelength or large
photon energy (above ∼2 eV) region, the electronic states of a wider energy range would
participate in the optical excitation. According to the projected DOS (Figure 5b), the valence
states below EF are mainly contributed by Te atoms for all three crystals. However, indium
alloying shifts the DOS peak in the conduction band to a higher energy range. Since fewer
excited states of low energy could contribute to short wavelength excitation, c-In3GeTe4
shows the smallest absorption and reflectivity in the short wavelength region (Figure 5a).

We note that our optical calculations were performed using DFT-PBE functional with
an independent-particle approximation, excluding local field effects and many body effects.
Therefore, the absolute values of optical profiles could vary if more advanced methods
are employed. Nevertheless, the observation of weakened optical contrast due to heavier
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indium alloying should remain valid. Taking into account the enhanced crystallization
temperature and the reduced melting temperature, we predict an optimal IGT composition
within the ranges of InGeTe2 and In3GeTe4 for high-performance non-volatile photonics.
To the best of our knowledge, thorough optical measurements of IGT alloys are still lacking.
Therefore, we anticipate future experiments exploring the suitability of IGT alloys for
optical and photonic PCM applications.

4. Conclusions

In summary, we have carried out systematic ab initio calculations for three typical
compositions of indium incorporated GeTe compounds, InGe3Te4, InGeTe2 and In3GeTe4,
to elucidate the evolution of structural and optical properties along the InTe-GeTe tie
line. Upon indium alloying, the crystalline phase of all the three alloys turns metallic,
while their amorphous counterparts all show semiconducting features with narrow band
gaps. This stark contrast in the electronic structure guarantees a large resistance window
between amorphous and crystalline In-Ge-Te alloys for electrical PCRAM. Yet, too much
indium should be avoided, because the stronger charge transfer could be harmful to
cycling endurance due to electromigration. Regarding optical properties, both InGe3Te4
and InGeTe2 show sizable optical contrast between the crystalline and amorphous phases
in the spectrum range from 400 nm to 1600 nm, covering both visible-light and telecom
bands. Meanwhile, In3GeTe4 shows a less robust contrast window, due to weakened MVB.
Moreover, the increased indium concentration enlarges the ratio of tetrahedral motifs in
the amorphous phase and consequently increases the structural barrier for crystallization.
The InTe-GeTe phase diagram establishes that the melting temperature reaches minimum
around In3GeTe4, indicating lowest power consumption for melt–quench amorphization.
Taking all these factors into account, we suggest that the optimal chemical composition for
In-Ge-Te alloys should be located in the range between InGeTe2 and In3GeTe4, which could
result in the most balanced device performance for PCM-based non-volatile electronic and
photonic applications. Our work should serve as a stimulus for further investigations into
indium-incorporated PCMs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113029/s1. Figure S1: Atomic structures of crystalline and amorphous InGe3Te4
and In3GeTe4 (denoted as c/a-134 and 314); Figure S2: Bond population (left panel) and bond
weighted distribution functions BWDFs (right panel) for each interatomic pair in the three amorphous
compounds. The crossover values from positive to negative in the BWDFs represent cutoff values
for bonding interactions, which are used for structural analysis. Further technical details about
BWDF can be found in [79] of the main text; Figure S3: Projected COHP (pCOHP) for tetra-In and
tetra-Ge motifs in a-InGe3Te4 and a-In3GeTe4. Tetra-hedral motifs are grouped as the ones with only
heteropolar bonds, denoted as In[In0Ge0Te4] and Ge[Ge0In0Te4], and the others with at least one
wrong bond indicated as In[InxGeyTe4−x−y] and Ge[GexInyTe4−x−y] (x or y ≥ 1, x + y ≤ 4). In the
a-314 structure, Ge[Ge0In0Te4] motif is absent; Figure S4: Density of states (DOS) for crystalline and
amorphous structures of the three IGT compositions. Three models for each composition were built,
which show consistent results.
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