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Abstract: Image segmentation is an essential but critical component in low level vision, image analy-
sis, pattern recognition, and now in robotic systems. In addition, it is one of the most challenging
tasks in image processing and determines the quality of the final results of the image analysis. Colour
based segmentation could hence offer more significant extraction of information as compared to
intensity or texture based segmentation. In this work, we propose a new local or global method for
multi-label segmentation that combines a random walk based model with a direct label assignment
computed using a suitable colour distance. Our approach is a semi-automatic image segmentation
technique, since it requires user interaction for the initialisation of the segmentation process. The ran-
dom walk part involves a combinatorial Dirichlet problem for a weighted graph, where the nodes
are the pixel of the image, and the positive weights are related to the distances between pixels: in
this work we propose a novel colour distance for computing such weights. In the random walker
model we assign to each pixel of the image a probability quantifying the likelihood that the node
belongs to some subregion. The computation of the colour distance is pursued by employing the
coordinates in a colour space (e.g., RGB, XYZ, YCbCr) of a pixel and of the ones in its neighbourhood
(e.g., in a 8–neighbourhood). The segmentation process is, therefore, reduced to an optimisation
problem coupling the probabilities from the random walker approach, and the similarity with re-
spect the labelled pixels. A further investigation involves an adaptive preprocess strategy using a
regression tree for learning suitable weights to be used in the computation of the colour distance.
We discuss the properties of the new method also by comparing with standard random walk and
k−means approaches. The experimental results carried on the White Blood Cell (WBC) dataset and
GrabCut datasets show the remarkable performance of the proposed method in comparison with
state-of-the-art methods, such as normalised random walk and normalised lazy random walk, with
respect to segmentation quality and computational time. Moreover, it reveals to be very robust with
respect to the presence of noise and to the choice of the colourspace.

Keywords: image segmentation; random walks; graph theory; colour distance

1. Introduction

Splitting an image into non-overlapping sets of pixels is the purpose of image seg-
mentation. The resulting sets, called regions (or segments or objects), are defined based
on visual properties extracted by local features. The pixels within a region are required
to possess some specified properties of homogeneity or similarity [1]. The typical classi-
fication consists in dividing segmentation algorithms as follows: pixel-based algorithms,
when individual pixel values form the only information used to perform segmentation;
edge-based algorithms, when segmentation is based on the detection of the edges present
within the given image; and region-based algorithms, when both pixel values and the
surrounding information are utilised to form different regions. Image segmentation is
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an essential step towards high-level image processing task, such as image analysis, pat-
tern recognition [2–4], and computer vision [5]. In different applications of colour image
processing, great importance is attached to the techniques used for image segmentation,
because the results of the further steps of image processing depend on the segmentation
quality (the object recognition and tracking, the retrieval in image databases, etc.).

Numerous image segmentation algorithms have been developed in the literature,
from the earliest methods, such as thresholding [6], region growing [7,8], k–means cluster-
ing [9], watersheds [10], to more advanced methods, such as power watershed [11–13],
watershed-cut [14], mutex watershed [15], active contours [16,17], graph cuts [18–22],
Markov random fields [23], and sparsity based methods [24]. The interested reader may
refer to ([25] Section 2) for an exhaustive review of the literature regarding segmenta-
tion algorithms. Moreover, segmentation techniques can be further classified into several
classes. In particular, it is possible to consider semi-automatic and automatic algorithms.
The semi-automatic approach requires user intervention. A common scenario has the user
marking each of the objects of interest, with each mark corresponding to a given object and
indicating a small number of pixels that are contained within that object. Other types of
user inputs, such as bounding boxes and the like, are possible as well. In any case, the user
input should be simple enough to be given in a short time. Semi-automatic segmentation is
an attractive approach both for applications (e.g., in biomedical imaging [26]), and from the
algorithmic perspective. For example, a large scientific interest lies in how the information
spreads from a small set of known samples (the user input) to the entire image: in [27] a
Susceptible–Infectious–Recovered (SIR) model is applied to image segmentation task.

At first, the segmentation techniques were mainly proposed for grey-level: the reason
is that processing colour images requires computational times considerably larger than
those needed for grey-level images, although colour information permits a more complete
representation of images and more reliable segmentations. It has long been recognised
that the human eye can differentiate thousands of colour shades and intensities but only
two dozen shades of grey. For some class of segmentation problems, using grey-scale
only does not provide reliable result, for example due to the low contrast or to similar
intensity values of different objects. As compared to monochrome images provide further
information in addition to simple intensity levels. Colour image processing has thus
become increasingly more attractive, although most of the techniques for colour images
are derived from monochrome image segmentation. The techniques for segmentation of
monochrome images are based on the several principles, such as histogram thresholding,
edge detection, and region growing. These principles are employed in many colour image
segmentation algorithms, together with different colour models (e.g., RGB, L∗a∗b∗, HSV).
To reduce the gap between the computed segmentation and the one expected by the user,
these properties tend to embed the perceived complexity of the regions and sometimes
their spatial relationship as well [28].

One of the main assumptions in colour image segmentation framework is that ho-
mogeneous colours in the image correspond to separate clusters, and, hence, meaningful
objects in the image. In other words, each cluster defines a class of pixels that share similar
colour properties. As the segmentation results depend on the used colour space, there is
no single colour space that can provide acceptable results for all kinds of images. For this
reason, many authors tried to determine the colour space that will suit their specific colour
image segmentation problem [29,30]. If we consider the image as a graph whose vertices
are the image pixels, similarity between pixels in terms of colour or texture features is
modelled by a weight function defined on the set of vertices. The weights can be calculated
based on appropriate distance functions defined in a suitable colour space [31]. In several
papers (see, e.g., [30,32–35]) the segmentation problem was rephrased in this graph frame-
work by means of the graph cut objective function. Follow-up works on the use of graph
based approaches are, for instance, ref. [36] where an iterative application of heat diffusion
and thresholding, also known as the Merriman–Bence–Osher (MBO) method is discussed
for binary image labelling, and [37] where the Mumford–Shah model is reinterpreted in a
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graph setting. We point out that most of these methods rely on non-quadratic energies, thus
demanding the use of sophisticated and computationally costly optimisation tools [38–40].
Ensuring accuracy and smooth solution is also an issue for existing methods. Eventually,
we mention machine learning approaches [41–43] which reveal to be really powerful in the
case one possess a huge image dataset for the training phase.

In this work we present a novel local/global method for semi-automatic multi-label
segmentation. The main innovations introduced are:

• The development of a similarity index/distance between pixel using a given colour
space and involving pixels in a neighbourhood, in order to improve the random
walker approach and a basic clustering step;

• A modified energy related to the random walker approach which improves the quality
of the image segmentation and considers only the minimisation of a quadratic function;

• A combination of the above techniques, which overcomes the issues presented by
those approaches when they are applied alone;

• A machine-learning approach to adapt the weights of the colour distance (modifying
hence the Euclidean distance), acting as a preprocessing on the images.

The interest for a modified energy related to the random walker has been considered
by others Authors, see, e.g., [25,27], by using some kind of suitable coordinates or some post-
processing step of the probabilities map obtained with random walk approach. We point
out that our method involves in a different non-linear way two terms and it is not a
thresholding post-process step. In fact, the colour distances affect at the same time the
similarity between labelled and unlabelled pixels and on the construction of the graph for
the part of the random walk. Due to the connection between the random walk method and
the discrete Dirichlet problem, we could consider it as a Laplacian-based manifold method
with application to more general data and with some theoretical justification [44].

The proposed method is applied and tested using some benchmark images, together
with a series of numerical tests on different colour spaces, a comparison with the k–means
algorithm and the original random walker method [45] to assess the robustness of the
proposed procedure with respect the presence of noise. Two public datasets are used for a
performance comparison with state-of-the-art algorithms, namely the normalised random
walk and the normalised lazy random walk [27]. The paper further presents a discussion
about the properties and the possible developments of the approach.

The remaining sections of the paper are organised as follows. Section 2 introduces
the new method and the random walker segmentation algorithm. Moreover, we will also
discuss a new definition of non-local distance between pixels. Section 3 is devoted to the
numerical experiments. In this section we address the problem of learning suitable weights
for the novel colour distance discussed in Section 2. Following the findings of the case
study, the conclusions is presented in the last Section 4.

2. An Improved Image Segmentation Method

The problem of semi-automatic or interactive segmentation has attracted quite a bit of
interest from the computer vision, image processing, and computer graphics communities
over the last years. The general idea is to segment an image into two or more separate
regions, each corresponding to a particular object (or the background), with the aid of some
user input. The goal of this work is to segment images into homogeneous colour-texture
regions. The proposed approach does not attempt to estimate a specific model for a texture
region, instead it tests for the homogeneity of a given colour-texture pattern in a region.
In order to identify this homogeneity, the following assumptions about the image are made:

(a) The image contains a set of approximately homogeneous colour regions (avoid
segmentation too granular or too noisy);

(b) The colour information in each image region can be represented by a set of few
quantised colours (we can consider some kind of colour categorisation model);

(c) The colours between two neighbouring regions are distinguishable (a suitable
definition for similarity between pixels).
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The first assumption requires images that present several regions with similar colour.
Moreover, in practical application (such as in astronomical or medical imaging) the images
are perturbed by noise, which is due to the physics beyond image acquisition process
(see [46] for a deeper insight on the topic): this requirement asks for a noise level that
allows to distinguish the different coloured regions. Figure 1 presents several cases of
different noise levels (see Section 2.3 Equation (18) for the Gaussian case).

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Example of several noise levels of different types. (a) Classical peppers image from the
default image dataset of MatLab. (b–d) peppers image affected by Gaussian noise of level 0.1, 0.4,
and 0.7, respectively. (e–g) pepper image with different Poisson noise levels. The Poisson noise has
been added via the MatLab function imnoise.

Recently, a growing interest is attracted by an interactive graph based image segmen-
tation algorithms such as graph cut [47] and random walker (RW) [25,27,45] algorithms.
The random walker algorithm represents a recent noteworthy development in the weighted
graph-based interactive segmentation methods. This technique with user interaction is
more suitable for volumetric medical images to guarantee the reliability, accuracy, and fast
speed demands.

2.1. The Random Walker Method

The framework of the RW involves an undirected graph G = (V, E), where V and E
are the set of vertexes and the set of edges, respectively. The set of the vertex V = {vi} is
the set of pixels present in the image, whose number is denoted with |V|. The vertex set
can be partitioned into two further sets: V = Vm

⋃
Vu. One set is “marked vertices” Vm,

which are marked by user, also called seeds, as belonging to the several objects, and the rest
of the image pixels is the set Vu or the “unlabelled vertices”. The set of the edges E consists
of the pairs of pixels which are neighbours in the image, e.g., standard 4-neighbourhood or
8-neighbourhood. We denote with eij the edge linking the vertexes vi and vj.

The weight of an edge eij can be represented by a function ω(vi, vj) based on the
intensities’ difference of the two pixels.

For example, suppose we consider the classical RGB colour coordinates of a pixel
corresponding to a vertex vi: this consists in a vector C(vi) ∈ R3. Denote with d(vi, vj) =
‖C(vi)− C(vj)‖ a colour distance between two pixels, namely vi, vj, being ‖ · ‖ a norm in
R3. A classical choice for the RGB space is

d(vi, vj) =
√
(ri − rj)2 + (gi − gj)2 + (bi − bj)2 (1)
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where (ri, gi, bi)
> are the colour coordinates of the pixel vi. Using a different colour spaces

may induce to employ more suitable other distances. For example, in the CIE L∗a∗b∗ space
the following distances [48] can be used

d(vi, vj) = ∆E∗ab(vi, vj) =
√
(L∗i − L∗j )

2 + (a∗i − a∗j )
2 + (b∗i − b∗j )

2 (2)

d(vi, vj) = ∆E∗94(vi, vj) =

√√√√( L∗i − L∗j
kLSL

)2

+

(
∆C∗ab
kCSC

)2

+

(
∆H∗ab
kHSH

)2

(3)

where

C∗ab =
√

a∗i
2 + b∗i

2 −
√

a∗j
2 + b∗j

2

∆H∗ab =
√
(a∗i − a∗j )

2 + (b∗i − b∗j )
2 − ∆C∗ab

2

SL = 1, SC = 1 + K1

√
a∗i

2 + b∗i
2

SH = 1 + K2

√
a∗i

2 + b∗i
2

with kC = kH = 1 and kL, K1, K2 depend on the application.
Once the couple colourspace/colour distance is chosen, some possible choices for

weights are

ω(vi, vj) = e−β d(vi ,vj)
2

or ω(vi, vj) =
1

ε + σ d(vi, vj)
(4)

where the value of the parameters β, σ, ε > 0 can be tuned accordingly. The weights of
the edge lie in the range (0, 1), for similar pixels we will have a weight close to 1, whereas
for very different pixels the weight is close to 0. Having the above graph structure in
hand, the idea of the RW method is as follows. It is assumed that image consists of K
possible regions (objects) and each labelled vertices of VM belongs to one of these K regions.
If we consider a weighted edge eij whose endpoints are vi and vj, the weight of the edge
ω(vi, vj) ∈ (0, 1) can be interpreted as the measurement of transition probability of a
random walk from one vertex to another vertex. Depending on the weight of the edge,
the random walk is likely to transition form vi to vj if the vertexes are very similar in
colour, and is unlikely to move from vi to vj if they are very dissimilar. Given the above
probabilities, the segmentation algorithm computes the probability for each vertex vi that
a random walker leaving that pixel reaches any one of the labelled vertices belonging
to the k-th object: we denote this probability by xk

i . Then the image segmentation is
done according to these probabilities. More specifically, for any vertex vi, we classify
it as belonging to the k-th region if xk

i > xk̄
i for all k̄ 6= k. We observe that edges in

the image correspond to low transition probabilities, as they involve a rapid change in
colour or intensity. Thus, this algorithm will tend to respect image edges in performing
the segmentation.

It was shown in [45] that these probabilities may be calculated analytically by solving
a linear sparse system of equations with the graph Laplacian matrix. The Laplacian matrix
is defined as

Lij =


di, if i = j
−ω(vi, vj), if vi and vj are adjacent nodes
0, otherwise,

(5)

where Lij is indexed by vertices vi and vj, and

di = ∑ ω(vi, vj)
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for all edges eij incident on vertex vi. Assuming that each node vj ∈ Vm has also been

assigned with a label k, we can compute the probabilities, xk =
(

xk
1, xk

2, . . . , xk
|V|
)>

, that a
random walker leaving node vi arrives at a marked node vj by solving the minimisation of

E(xk) =
1
2 ∑

(vi ,vj)∈E
ω(vi, vj)(xk

i − xk
j )

2 =
1
2

xT
k L xk. (6)

Since L is positive semi-definite, the only critical points of E will be minima. Note also
that the solution x that minimises E is also called combinatorial harmonic function [49],
because the corresponding continuous problem leads to the minimisation of the Dirichlet
integral via harmonic functions. Moreover, the problem

xD = argmin
x

E(x), (7)

is also called combinatorial Dirichlet problem.
We consider the partition of the vertices into two sets, namely Vm, the marked vertices

by the user, and Vu, the unmarked nodes, such that Vm
⋃

Vu = V and Vm
⋂

Vu = ∅. Note
that Vm contains all marked points, regardless of their label. We may assume without loss
of generality that the nodes in L and x are ordered, such that marked nodes are first and
unmarked nodes are second. Therefore, we may decompose (with abuse of notation) the
above formula into

E(xm, xu) =
1
2

[
x>m , x>u

][ Lm B
B> Lu

][
xm
xu

]
, (8)

where xm and xu correspond to the probabilities of the marked and unmarked nodes,
respectively, while B represents the anti-diagonal blocks of the Laplacian. Moreover,
for simplicity of notation we omit here the index k. The same problem could be interpreted
as an interpolation of missing data: indeed, assume that we have a graph where we have
defined some (numerical) values for a subset of the vertices (our labelled nodes), and that
we want to somehow fill in the missing data for the remaining nodes.

The Equation (8) reads,

E(xm, xu) =
1
2

x>mLmxm + x>u B>xm +
1
2

xT
u Luxu (9)

and the unknowns are the entries of the vector xu. Differentiating E with respect to xu and
finding the critical point, yields

Luxu = −B>xm (10)

which is a system of linear equations with |Vu| unknowns. If the graph is connected, or if
every connected component contains a seed, then this equation will be non-singular. Define
the set of labels for the marked vertices as a function Q(vj) = k, ∀vj ∈ VM, where k ∈ N,
0 < k ≤ K. Let mk ∈ R|Vm | for each label k, at vertex vj ∈ Vm as

mk
j =

{
1, if Q(vj) = k
0, if Q(vj) 6= k.

Therefore, for label k, the solution to the combinatorial Dirichlet problem (7) may be found
by solving

Luxk
u = −B>mk. (11)

Thus, each unlabelled pixel gets K probabilities which indicate that a random walker
starting from the unmarked pixel reaches each k-marked region. Eventually, the label
assigned to each unlabelled pixel corresponds to the index in the solution of (10) of the
largest probability. For example, suppose that an image contains only K = 3 marked
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regions. For sake of simplicity, consider just one pixel x̃: the solution of (10) for this pixel
reads as x̃u = (x̃1, x̃2, x̃3) = (0.1, 0.6, 0.3)>: this means that a random walker starting from
such a pixel has a probability of reaching the region k = 1 equal to 0.1, it has a probability of
reaching the region corresponding to the label k = 2 of 0.6 and eventually with probability
of 0.3 it reaches the region marked as k = 3. Then, this unmarked pixel shall be labelled
with k = 2 since a random walker is more likely attracted from the region k = 2. This
approach is adopted also in [25].

2.2. A Suitable Similarity Measure

In many real-world applications, the object of interest may contain several colour
shades: thus, the RW approach may encounter some issues in recognising pixels belonging
to the same object, due the large influence of the colour distance in the Laplacian formula-
tion. This imposes an unusual constraint on the RW algorithm if the weight between two
pixels is solely based on the Euclidean distance between their respective colour vectors,
or even when a more sophisticated measure such as (3) is employed. Moreover, we do
possess prior information: the user input in the form of seeds gives us some important
information about the colour distribution of the various objects. This further information
is exploited in formulating more meaningful edge weights: in particular, we consider not
only the colour of a single pixel but also the colours of its adjacent pixels, chosen in a
suitable neighbourhood.

We fix a system of neighbourhoods with N pixels, for each pixel, for example
8–neighbourhoods, and a colour space: hereafter, we consider, by way of example, the RGB
system. Then, for a pixel P we consider the vectors (ri, gi, bi), i = 1, ..., N of the RGB com-
ponents of the colour for each pixel in the neighbourhood (see Figure 2). Finally, we collect
all the entries of the colour vectors in a single vector VP ∈ R3N . We fix a distance d3N in the
space R3N and for a couple of pixels P and Q we compute d3N(P, Q).

(r1, g1, b1)
>

(r1, g1, b1)
>

(r2, g2, b2)
>

(r2, g2, b2)
>

(r3, g3, b3)
>

(r3, g3, b3)
>

(r4, g4, b4)
>

(r4, g4, b4)
>

(r5, g5, b5)
>

(r5, g5, b5)
>

(r6, g6, b6)
>

(r6, g6, b6)
>

(r7, g7, b7)
>

(r7, g7, b7)
>

(r8, g8, b8)
>

(r8, g8, b8)
>

(r9, g9, b9)
>

(r9, g9, b9)
>

∈ R27

∈ R27

Distance in R27

P

Q

Figure 2. The definition of a new distance between pixel P and pixel Q in a colour image. We select a neighbourhood for
each pixel, here a 8-neighbourhood, and consider the components of each pixel in the neighbourhood in some fixed colour
space, in this example the RGB space. For the pixel P we have the vectors (ri, gi, bi), i = 1, ..., 9, while for the pixel Q the
vectors (ri, g

i
, bi), i = 1, ..., 9. Finally, we collect all the entries and form two vectors VP, VQ, and compute some distance,

e.g., the Euclidean one, between these two vectors.
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We define hence the similarity index S(P, Q) = (d3N(P, Q))−1 to be used as weight
in (4).

Remark 1. The proposed similarity index can be seen as the first step of a k-means algorithm,
where the starting centroids are computed using as seed the marked regions.

This similarity, or the distance, could be used in a clustering algorithm and this
represents a global measure or comparison between pixels. This distance allows to see the
colour of the pixel not as a single information, but in relation to its neighbours. Moreover,
using patches instead of single pixels induces a smoothing effect [50] which may provide
some advantage in presence of noise: Figure 3a refers to this similarity index applied to
the Peppers image, where each pixel contains the value of the distance from the very pixel
from its 4 neighbours: one can note that the boundaries between different objects are well
emphasised, while the uniform regions inside them have very small values. For example,
this means that the distance among the pixels of the yellow pepper at the centre of the
image is small, while the distance between the pixels of its boundary and those of the
surrounding green and red peppers is large. Figure 3b on the other hand shows that
classical Euclidean distance is able to recognise the boundaries too, but at the same time it
maintains an high level of details inside the objects and low values. The interest of having
high values for these colour distance finds its meaning in Equation (4): the greater the
distance the smaller the weight, hence the probability for the random walker to move
among objects with different colours is small. Figure 3c shows that the usage of patches
is important in presence of noise: the induced smoothing effect controls the influence of
the noise, avoiding thus the loss of information as it happens in Figure 3d, where patches
were not being considered. Moreover, the influence of the noise can be further reduced
by employing larger patches. One may observe that the presence of noise affects also
the values of the proposed distance. Indeed, consider a pixel P: denote with V∗P ∈ R3N

its corresponding colour vector and with VP ∼ V∗P +N (0, σ2 Id) its noisy version when
Gaussian noise with zeros mean and covariance matrix σ2 Id is considered, being Id the
identity matrix. Consider another pixel Q, such that the intersection of the neighbourhoods
of P and Q are empty. We can give an estimation of the expected value E

[
d3N(Q, P)2] of

the distance

E
[
d3N(Q, P)2

]
= ‖V∗P −V∗Q‖2 + 2× 27σ2 = d∗3N(Q, P)2 + 54σ2 (12)

A similar estimation can be given when the noise affecting the pixels is not addictive but
signal dependent: for the case of Poisson noise VP ∼ Poiss(V∗P ) one obtains

E
[
d3N(Q, P)2

]
= ‖V∗P −V∗Q‖2 + |V∗P + V∗Q|1 = d∗3N(Q, P)2 + ‖V∗P + V∗Q‖1 (13)

where ‖ · ‖1 is the `1 norm in R3N and d∗3N(Q, P) is the similarity index between the clean
pixels. The above estimations are based on the fact that for a random variable X one has
E[X2] = E[X]2 + σ2(X), with σ2(X) the variance of X.

This non-local method is inspired by recent approaches in signal analysis [3,51,52].
Now, we consider the vertex labelling function, for simplicity we will consider labels

represented by integers,

FL : V → SL = {1, 2, . . . , K}, K ∈ N, K > 1 (14)

which associates a label in a certain set to each vertex (pixel). We combine the RW approach,
with the new distance defined above, and the new similarity measure and define FL as

FL(vi) = argmax
k∈SL

(S(i, k)α (xk
i )

β) (15)
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where α ≥ 0, β ≥ 0 are two parameters introduced for adding flexibility to the algorithm
and to provide different weights to the two components of the labelling function. Due to
the concavity of the logarithm function, and the positivity of S(i, k), and xk

i , we can rewrite
the labelling problem in an equivalent way as follows

FL(vi) = argmax
k∈SL

log
(
S(i, k)α (xk

i )
β
)
= argmax

k∈SL

(
α log(S(i, k)) + β log(xk

i )
)

. (16)

The proposed method, therefore, can be summarised in Algorithm 1.

200 400 600 800 1000 1200 1400 1600

(a)

20 40 60 80 100

(b)

200 400 600 800 1000 1200 1400 1600

(c)
20 40 60 80 100

(d)

Figure 3. Colour distances on Peppers image. (a) proposed similarity index. Each pixel of this image depicts the proposed
distance from its 4-neighbours. The smoothing effect promotes the difference between different objects and at the same
time uniform coloured regions are discarded. (b) each pixel of this image depicts the classical Euclidean distance from
its 4 neighbours. Several unwanted details are maintained inside the object of interest. (c) proposed similarity index in
presence of Poisson noise. This distance preserves the boundary between objects of different colours. (d) classical Euclidean
distance in presence of Poisson noise. The majority of colour information is lost due to the noise affecting the image.

Remark 2. The two terms in the functional in (16) could be considered as a “fidelity term”,
the α log(S) part, and a regularising term, the β log(x) part.
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Algorithm 1 Random walk by colour similarity algorithm (RaWaCS)
1. Set the parameters α, β, the neighbours system and the similarity function.
2. Acquisition of user-marked pixels.
3. Compute the global similarity index S(i, k) for any vi ∈ Vu and vk ∈ Vm.
4. Solve systems (10) for any labelled vertices in Vm, where the Laplacian matrix uses the
index computed at step 3.
5. Evaluate the labelling function as in (16).

In the next section we will discuss the proposed combination of RW probabilities and
similarity index. The weights in Equation (6) are chosen as

ω(vi, vj) =
1

S(i, j) + ε
, ε = 10−3 (17)

2.3. Combined Role of the Similarity Index and Random Walk Approach

We consider two different images to justify the introduction of the similarity index S
and its non-linear combination in (15), showing that the usage of one of the two techniques
alone is less performant than the combined approach. The first test image is a simple one,
depicted in Figure 4: the background is set to grey at level 0.33, while each pixel of the
square is set to red (1, 0, 0)> in RGB coordinates. The pixel of the blue lines are set to
(0, 0, 1)>. The image is blurred with a 7× 7 Gaussian Point Spread Function (PSF) of zero
mean and unitary variance; each channel of the image is affected by Gaussian noise, using
the formula

Gn(:, :, i) = G(:, :, i) + σn
ηi
‖ηi‖F

‖G(:, :, i)‖F, i = 1, 2, 3 (18)

where η is the realisation of a multivalued random Gaussian variable of zero mean and
unitary variance; σn is the noise level and it is set to 0.1; ‖ · ‖F is the Frobenius norm, see [53]
for technical details. The second image consists in a red square at the centre, surrounded
by three frames: the colour coordinates of the red square are (1, 0, 0)>, while the colour
coordinates of the frames are (0.5, 0, 0)>, (1, 0, 0)>, (0.5, 0, 0)>, respectively.

(a) (b)

Figure 4. (a) a simple RGB image with a red square and a couple of blue lines. The red coordinates are (1, 0, 0)> in the RGB
space, while the lines’s coordinates are (0, 0, 1)>. The background value is constant and set to 1/3 on all channels. A 7× 7
Gaussian PSF with unitary variance blurs the whole image, and Gaussian noise at level 0.1 is added to each channel. (b) a
red square surrounded by frames; one of the frame has the same colour coordinates for the inner square, the other two
frames share the same colour.
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The first test shows that the sole diffusion process provides unreliable results on the
image of Figure 4a. The first column in Figure 5 depicts the marked regions for the labelling
process. The results in the second column of Figure 5 show that the diffusion process,
due to its local behaviour and to the influence of the noise, overestimates the red region
whilst the blue line is recognised only in its upper part together with a large part of the
background. Once the similarity comes into play, as shown in the 3rd column of the same
figure, the labelling process is correct, the influence of the blurring effect of the PSF and
of the noise is under control. Moreover, the introduction of the similarity index allows
to recognise also the diagonal line close to the red square: this type of lines are hardly
individuated by the diffusion process due the construction of the Laplacian, which is based
on the 4 nearest neighbours.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Comparison between simple labelling using the diffusion process and the proposed procedure. (a,d,g) refer to
marked red, blue, and background regions, respectively. (b,e,h) refer to the labelled regions by employing only the diffusion
process (α = 0, β = 1). (c,f,i) show the results of the proposed procedure (α = β = 1) for each region.
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In order to numerically evaluate the difference in performance, we compute the
confusion matrix of the labelling process: the (i, j)-th element of this matrix provides the
number of pixels belonging to the i-th class which are recognised as elements of the j-th
class. The diagonal contains the total of correctly labelled pixels. Figure 6 shows the
confusion matrices related to the two experiment with α = 0 and with α = 1. In the former
case, even if the red square is fully recognised a large area of the background is included in
this class: the 42.1% of the pixels labelled as “red” are actually belonging to the background,
whilst with α = 1 this percentage falls to 6.9%. Furthermore, the blue lines are poorly
recognised in the first case: indeed only the 29.3% of the pixels are recognised and more
than 70% of the pixels labelled as “blue” are actually background pixels. As soon as we
introduce the similarity index, the blue lines are recognised, even if in this case too some
pixels of the background are included in this class. Eventually, the similarity index induces
a small increment in the performance for recognising the background pixels. The RaWaCs
algorithm overcomes a simple random walk approach, even if the latter employs a suitable
colour distance.

Background Red Blue

Predicted Class

Background

Red

Blue

T
ru

e
 C

la
s
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139
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4376

58

56467
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10.0%
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100.0%
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1.3%99.8%

98.7%
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100.0% 93.1%

(b)

Figure 6. (a) confusion matrix with α = 0. (b) confusion matrix with α = 1, respectively. The influence of the similarity
index is evident: its presence allows to decrease the percentage of background pixels classified as red and blue pixels from
to 42.1% to 6.9% and from to 98.7% to 69.8%, respectively, while at the same time the performance of correctly labelled blue
pixels increases from 29.3% to 99.0% (the success rate for the red ones is 100% in both cases).

The second test is performed on the image in Figure 4b: if the interest lies in recognis-
ing all the objects in the image, the similarity index may fail in this task when several objects
share the same exact colour. Indeed, marking the 4 different region in Figure 4a, namely the
centred square and the three frames (see Figure 7, first column), and using only the index
S to label them provide with poor results: the regions with the same colour are completely
recognised, even if they belongs to different objects. For example, the two frames with
colour coordinates (0.5, 0, 0)> are labelled as they both belongs to the object marked in
Figure 7a, whilst the inner one actually belongs to the region marked in Figure 7g. Using
the RaWaCs algorithm with β 6= 0, on the other hand, let us achieve reliable results (see
Figure 7, last column): the diffusion indeed mediates the influence on the final result of the
similarity index, denying the propagation of the labelling process to regions of the same
colour but originally marked with a different label.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. (a–d) marked regions for the labelling of the four different objects. (e–h) results provided by the employment of
the sole similarity index. (i–l) results of the proposed procedure. In the last case, the objects are fully recognised.

2.4. Peppers

A further experiment carried on the classical pepper image shows that the simple
similarity index fails in recognising different objects with similar colours. This task is
more challenging than separating a single object from the background. In this experiment
the aim consists in separating vegetables with the same colour in different classes and to
distinguish them from the background. We have then 5 marked regions: background, red
peppers, yellow peppers, green peppers, ail and onion. The second column of Figure 8
refers to the result obtained via only S , which means that we considered only the distance
between each pixel of the image and the centroids of the marked region. This leads to
unsatisfactory results: indeed, this index forces the second label (namely, the “red pepper”
one) to include some parts of the violet blanket and some spots of green peppers, while the
third label (“yellow pepper” one) embraces also some regions belonging to red peppers
and to ail and onion. The fifth label, i.e., the label that enclose the white parts of the
image, includes also some bright spots that belong to yellow regions of the image. Once
Algorithm 1 with α = β = 1 is employed, the objects in the image are very well recognised:
the background now includes the entirety of the violet blanket, with some boundary parts
of the vegetables, the red regions include a lesser amount of green parts. The best results
are achieved in the case of the 3rd and 5th label, the yellow and the white regions, while
the green peppers still include some red ones. A visual inspection shows anyway that the
proposed formula yields better results than the mere application of the similarity index.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 8. (a,d,g,j,m) marked regions, which refers to background, red, yellow, green peppers, and ail
and onion, respectively. (b,e,h,k,n) labelled region obtained by employing the sole similarity index.
(c,f,i,l,o) results of the proposed procedure with α = β = 1.

3. Results

This section is devoted to show the performance of Algorithm 1. The first set of
experiments shows that the RaWaCs procedure is really robust with respect to the noise
level perturbing the image. The comparison is done with the classical k-means algorithm
and the random walk method [45], the latter using a classical Euclidean distance between
pixels without taking into account the neighbourhoods. A second experiment is carried on
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a database with 200 biological images, containing cells and their nuclei: since this database
includes the ground truth segmentation, we are able to check the performance of the
proposed algorithm. In order to prove the robustness of our approach, we apply it also to
the GrabCut database, which contains 49 images of different nature: in this case, the main
aim is to separate a single object from the background, while the proposed procedure
is particularly tailored for the segmentation of object with similar colours. The third set
of experiments shows how our algorithm behaves depending on different colourspaces.
We address also the learning of the weights to be used in the computation of the colour
distance. Eventually, the last section is devoted to asses the quality of the segmentation
carried on biological images.

All the experiments were carried on a laptop equipped with Linux 19.04, with an
Intel(R) Core(TM) i5–8250U CPU (1.60 GHz), 16 GiB RAM memory (Intel, Santa Clara, CA,
USA) and under MatLab R2020b environment (MathWorks, Natick, MA, USA).The code is
available at https://github.com/AleBenfe/RaWaCs (accessed on 1 September 2021).

3.1. Comparison with k-Means and Classical Random Walk in Presence of Additive Noise

When the interest lies in recognising different objects that share the same colour, clas-
sical algorithms solely based on single–pixel colour information may fail in this task. This
section is devoted to compare the performances of Algorithm 1 with two state-of-the-art
algorithms: k-means strategy and classical random walker method [45]. The test image in
Figure 4a is employed and Gaussian noise is added to the clean image, with different noise
levels. For this comparison, we use the same user-marked regions shown in Figure 5a,d,g
and we compare the results obtained via the k-means algorithm (given by the MatLab func-
tion kmeans, set with standard options and maximum number of iteration equal to 1000)
and the ones obtained via the random walker method, using the Matlab code available
in [54]. Two performance measures are employed to asses the quality of the segmentation
process for each label: the normalised volume difference (NVD) and the normalised object
overlap (NOO)

NVD =

|V|
∑
i=1

∣∣∣gk
i − sk

i

∣∣∣
|V|
∑
i=1

gk
i

, NOO =

|V|
∑
i=1

gk
i sk

i

|V|
∑
i=1

gk
i + sk

i − gk
i sk

i

(19)

where gk is the ground truth for the label k:

gk
i =

{
1 if vertex i belongs to label k
0 otherwise

(20)

and sk is the result of the segmentation:

sk
i =

{
1 if vertex i has been labeled with label k
0 otherwise

. (21)

A reliable segmentation technique should provide a low NVD and an high NOO: see [55]
for more details about these measures. The plots in Figure 9 depict the behaviour of such
measures wrt increasing noise level, when Gaussian noise is added to the image (see
Equation (18)). The RaWaCs procedure reveals to be very robust with respect to the noise
in both indexes: the random walk method and the k-means approaches suffer from the
presence of the noise starting from σn = 0.1.

https://github.com/AleBenfe/RaWaCs
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Figure 9. Performance comparison between the RaWaCs algorithm (orange), the k-means algorithm
(blue) and the random walk method (yellow) with respect to the noise level. (a–c) NVD for labels
referring to the background, the red square and the blue lines of Figure 4a. (d–f) OOD for labels
referring to the background, the red square and the blue lines of Figure 4a. The last label presents
high challenges in its segmentation due to its thinness and orientation.

3.2. WBC and GrabCut Datasets

We consider 200 images of the white blood cell (WBC) database [56], which contains
images of cells with their nuclei. This database contains also the ground truth, where the
nuclei, cytoplasm and background (that may contains also blood cells) were marked by
domain experts. The dimension of each image is 120× 120 pixels and the colour-depth is
24 bit. See [56] for the technical details on the image acquisition procedure. We compare
our method with the classic random walk (RW) [45], with the normalised random walker
(NRW) and with the normalised lazy random walker (NLRW) [27,57], using three further
performance measures: the Rand index (RI), the global consistency error (GCE), and the
error rate (ERR). The former measures how the segmentation and the ground truth agree,
by counting the pixels marked with the same labels: the higher this score is, the better the
performance is. The GCE index measures the refinement level between two segmentations:
in this case low values mean good performances. The error rate measures the percentage
of misclassified pixels. Eventually, we consider the computational time employed for the
segmentation of a single image: we used the tic-toc” MatLab function. For this experiment,
we selected the same manually marked regions for all the 4 procedures. Table 1 contains
the results of this experiment: it shows that Algorithm 1 has a remarkable performance in
comparison to the other method. Regarding the computational time, the classic random
walk method is faster, but on the other hand its RI index is slightly lower than the one of
the RaWaCs . Figure 10 (first row) provide a visual inspection of the performances of these
algorithms. All the results are obtained by setting β = 1 and α = 2 in Equation (16): these
parameter might be suboptimal for some images.
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Table 1. Performance measures for RaWaCs , the random walk, the normalised random walk and the
normalised lazy random walk methods. The former overcomes all the other methods. σg is set to 90
and to 50 for NRW and for NLRW, respectively, while α = 0.6 for NLRW (see [27] for the details).
The average computational time is measured in seconds.

Method RI GCE Err Time

RaWaCs 0.9557 0.0598 0.0349 0.0252
RW 0.9312 0.0827 0.0526 0.0131
NRW 0.8838 0.1134 0.2317 0.0494
NLRW 0.8921 0.0998 0.2212 0.0501

The second dataset employed to assess the performance of the proposed procedure
is the GrabCut dataset [19], which contains different images of different dimensions.
This dataset was created mainly to test algorithms whose main aim is separating the
foreground (e.g., an animal, a car, a person, a vase) from the background. Even if the
algorithm presented in this work is not really tailored for this task, Table 2 shows that the
performances are remarkable, in comparison with the other 3 algorithm considered for
this benchmark. The NLRW performs a little bit better, but it requires a larger amount of
computational time. Figure 10 (second row) shows a visual example of the obtained results.

Table 2. Performance measures for the proposed procedure, the random walk, the normalised
random walk and the normalised lazy random walk methods on the GrabCut dataset. σg is set to 90
for both NRW and NLRW, while α = 0.9 for NLRW. The computational time is measured in seconds.

Method RI GCE Err Time

RaWaCs 0.9542 0.0427 0.0236 0.4734
RW 0.9499 0.0419 0.0277 0.2860
NRW 0.9493 0.0410 0.2428 8.0130
NLRW 0.9575 0.0361 0.2375 8.7822

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Segmentation results: first row refers to an image of the WBC dataset, while the second
row refers to the llama image of the GrabCut dataset. (a,e) original image. (b,f) RaWaCs. (c,g) NRW.
(d,h) NLRW.

3.3. Different Colour Spaces

This subsection is devoted to evaluate the performance of Algorithm 1 on different
colourspaces. We apply the segmentation method to the Peppers image of Figure 1a using
the same marked regions of Figure 8 but when the colour coordinates are in 3 different
colourspaces: CIE LAB, HSV, and YCbCr. We test the RaWaCs algorithm also on the entire
WBC dataset. The procedure consisted in the following steps:

• Mark the regions of interest;
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• Consider the original image in a new colourspace;
• Apply the proposed procedure to the transformed image;
• Visualise the computed labels, obtained on the transformed image, on the original

RGB image.

Figure 11 presents the segmentation results for the 3 different colourspaces mentioned
before, obtained solving (16) with α = β = 1. The proposed procedure reveals to be very
robust with respect to the colourspaces: nonetheless, a visual inspection suggests that the
HSV space seems to be the better choice, even with respect to the classical RGB space.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 11. Performance comparison with respect to different colour spaces, Peppers image. (a–c) Pep-
pers image in the CIELAB, HSV, YCbCr colourspaces, respectively. (d,g,j,m,p) segmentation result for
CIELAB colourspace. (e,h,k,n,q) segmentation result for HSV colourspace. (f,i,l,o,r) segmentation result
for YCbCr colourspace.

A deeper analysis is carried on the WBC dataset described in Section 3.2: 4 different
colourspaces are considered and the RI, GCE, and ERR indexes are employed to assess
the performance of the proposed strategy with respect to the chosen colourspace. Table 3
presents the results, showing that RaWaCs well performs wrt each colourspace, but one
should note that the XYZ colourspace might be the most suitable choice for such images.
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Table 3. Performance measures for the proposed procedure with respect to the chosen colourspace.
The performance measurements are the same described in Section 3.2. The computational time is
measured in seconds.

Colour Space RI GCE Err Time

RGB 0.9557 0.0598 0.0349 0.0252
LAB 0.9524 0.0610 0.0363 0.0248
XYZ 0.9631 0.0598 0.0353 0.0260
YCbCr 0.9566 0.0580 0.0338 0.0256

3.4. Adapting the Distance’s Weights

In the previous experiments, the employed similarity index is based on the Euclidean
distance of the 8-neighbours of a pixel (see Figure 2) with respect to the centroids of
the different labels. We note that this distance amounts to consider each pixel in the
neighbourhood with the same weight. One possible strategy consists in weighting the
informations of the neighbours with learned non-linear functions, using the information
provided by the user-labelled regions. More precisely, a regression decision tree is fitted
on the 8-neighbours of the labelled pixel to predict each dimension of the corresponding
centroid. We use a regression tree, that searches for a greedy optimal binary recursive
partitioning. In particular, we find a model that minimises holdout cross-validation loss: we
employed the MatLab function fitrtree”, with hyperparameters automatically optimised.
The fitted model is then used on the entire picture as a preprocess.

We apply this approach to the GrabCut dataset presented in Section 3.2: the obtained
results are shown in Table 4. The performance on the GrabCut dataset is remarkable:
an improvement of the 30.57% on Rand index and of 29.03% on the GCE index. This
pre-processing procedure requires a large computational time, but on the other hand it
helps in achieving better results for segmentation tasks for which the RaWaCs method was
not designed for.

Table 4. Performance measures for the proposed procedure coupled with a pre-processing procedure
based on machine learning technique. The performance of the RawaCs algorithm improves wrt to
each evaluation index: the sole drawback is the high computational time required. The computational
time is measured in seconds.

Dataset RI GCE Err Time

GrabCut 0.9682 0.0303 0.0163 463.20

3.5. Biological Images

We apply Algorithm 1 to several biological images. Figure 12a depicts the image of
a tissue stained with hemotoxilyin and eosin and the relative segmentation results: the
main aim consists in separating the blue nuclei form the background, whose main colours
are white and pink. Figure 12b presents the same image affected by Poisson noise [58],
added to each RGB channel with the MatLab function imnoise”. This type of statistical
noise is common in electronic imaging, such as microscopy [2] and astronomy [59,60], due
to the physics beyond the image acquisition process [46]. Figure 13 refers to an image
of cells. In this case, the interest lies in separating the cell from the background and into
distinguish the different cells. Both images are part of the Matlab’s Image Processing Tool-
box, and they are both courtesy of Alan W. Partin, M.D., Ph.D., Johns Hopkins University
School of Medicine.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 12. Matlab’s hestain image. (a) original image. (b) image affected by Poisson noise. (c) marked
white background region, (d,e) segmentation of the white background on clean and noisy image,
respectively. (f) marked region of the nuclei, (g,h) segmentation of the blue nuclei on clean and noisy
image, respectively. (i) marked pink background region, (j,k) segmentation of the pink background
on clean and noisy image, respectively. The results are obtained with α = 1.2 for the clean image and
with α = 1.5 for the noisy image, while β is set to 1 in both cases.

The second column of Figure 12 shows the segmentation results obtained by setting
α = 1.2, β = 1: the nuclei are well separated from the background, some regions of the
pink tissue is included in the nuclei region due to the closeness with respect to the colour
distance. When the noise is present, the influence of the similarity index must be increased,
since the noise may alter the diffusion process. Suppose that two close but separated
regions in the image have similar colours: since the Poisson noise is signal-dependent, it
may alter the colour levels favouring, hence the diffusion between such regions, even in the
case they are separated. On the other hand, the similarity index should be more robust with
respect to the presence of the noise, since we are employing the centroids of the marked
region. See Figure 3 and Equations (12) and (13). Note that this reasoning is valid when
the noise level is low, i.e., when the pixels’ intensities are large. For a technical discussion
about the dependence of the Poisson noise on the pixels values, the interested reader may
see [46,61]. The third column in Figure 12 presents the segmentation results when this type
of noise affects the image and when α is set to 1.5, while β = 1 again. The performance
of the proposed algorithm is still remarkable, even if the nuclei region includes a slightly
larger amount of pink backgrounds.
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(a)

(b) (c)

(d) (e)

Figure 13. Matlab’s tissue image. (a) original image. (b) marked brown region, (c) segmentation
results of the label. (d) marked background region, which includes both white background and blue
cells. (e) segmentation of the background. The results are obtained with α = 1.2, β = 1.

Figure 13 presents more challenges with respect to Figure 12. The brown region is
clearly distinguishable to the human eye, but its interior contains anyway several blue cells:
this induces the procedure to include small regions with blue cells in the relative segmented
part. This is clearly observable in the small marked region on the left of the image: the
proposed procedure is able to explore the neighbourhoods and find other parts of interest
which were not included in the original marking, but it also gathers inside this label several
blue cells. This is due to the presence of this kind of corpuscles in the larger marked
region on the right. In addition to this small amount of mislabelling, the performance
is remarkable.

As previously observed, in some cases the colour distance plays a major role in
RaWaCs approach: indeed, the objects in both Figures 12 and 13 present very different
colour. Consider the marked regions in the first row of Figure 14, which refer again to
Figure 13a: these region refer to the brown part, the white background and the blue cells.
When the interest lies in recognising the small blue corpuscles, the influence of the colour
distance on the final result is evident: all the 3 different values for α provide reliable result,
however a large value provides a slightly better result.
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(a) (b) (c)

(d) (e) (f)

Figure 14. Comparison of the influence of the similarity index S in the final result. (a–c) marked
regions of the brown part, of white background and blue cells, respectively. (d) α = 1, (e) α = 2,
(f) α = 3. The higher the value for α, the more precise the segmentation.

4. Conclusions

In this work we proposed an improvement of the random walker approach for semi-
automatic segmentation. This is obtained by a new definition of similarity and distance
between pixel using a given colour space and involving pixels in a neighbourhood. Then,
a modified energy related to the random walker is considered coupling the probabilities of
the RW and a global index as in classical clustering approach. The experimental results
showed that the proposed approach is very robust with respect to the presence of noise and
it overcomes more classical approaches, such as the k-means algorithm and the random
walk method based on the pixel-wise Euclidean distance. Moreover, RaWaCs performs
well on each colourspace, even if for particular classes of images (e.g., biological ones) a
colourspace may be a more suitable choice than other ones. Furthermore, the proposed
procedure has a remarkable performance wrt classical RW and more modern approaches,
such as NRW and NLRW: indeed, RaWaCs is specially tailored for multi-labelling purposes
and not only for foreground and background extraction, even if it performs well also in
this latter task.

From the computational point of view, the most expensive steps concern the calcu-
lation of the new distance between pixels. However, we observe that these operations
can be performed efficiently in parallel, for example with an appropriate implementation
through the use of Graphics Processing Units (GPUs). Moreover, the computation of the
probabilities of RW requires the numerical solution of linear systems which may be large,
but sparse and well structured at the same time, consequently efficient algorithms can
be used.

In the new method some hyper-parameters are to be fixed, see parameters α and β in
Equation (16). In a future paper we will consider appropriate training and learning methods
for the optimal choice of these parameters for some classes of images. Section 3.4 shows
that an adaptive approach may help in learning suitable weights to be employed in the
colour distance, paving the way to more sophisticated learning approaches. Furthermore,
comparisons will be made with other semi-automatic methods, identifying suitable quality
measures of the segmentation obtained.
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