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Mean‑field model of melting 
in superheated crystals based 
on a single experimentally 
measurable order parameter
Nikita P. Kryuchkov1, Nikita A. Dmitryuk1, Wei Li2, Pavel V. Ovcharov1, Yilong Han2, 
Andrei V. Sapelkin1,3 & Stanislav O. Yurchenko1*

Melting is one of the most studied phase transitions important for atomic, molecular, colloidal, and 
protein systems. However, there is currently no microscopic experimentally accessible criteria that can 
be used to reliably track a system evolution across the transition, while providing insights into melting 
nucleation and melting front evolution. To address this, we developed a theoretical mean-field 
framework with the normalised mean-square displacement between particles in neighbouring Voronoi 
cells serving as the local order parameter, measurable experimentally. We tested the framework in 
a number of colloidal and in silico particle-resolved experiments against systems with significantly 
different (Brownian and Newtonian) dynamic regimes and found that it provides excellent description 
of system evolution across melting point. This new approach suggests a broad scope for application 
in diverse areas of science from materials through to biology and beyond. Consequently, the results 
of this work provide a new guidance for nucleation theory of melting and are of broad interest in 
condensed matter, chemical physics, physical chemistry, materials science, and soft matter.

The phenomenon of melting is ubiquitous all around us, from atomic and molecular to protein and colloidal 
systems, and extends well beyond materials science. Hence formulation of microscopic-scale melting criteria 
has received significant attention for at least last 100 years. One of the most widely used microscopic approaches 
is due to Frederic Lindemann1 and, in particular, its reinterpretation by Gilvarry2. What is now known as Lin-
demann criterion states that melting takes place when the mean-square displacements (MSD) of atoms from 
their position reaches a certain proportion (typically 0.1–0.15) of the interatomic distance. The popularity of 
the criterion is due its simplicity and intuitive appeal, but there are also significant shortcomings including poor 
precision in predicting melting point and not including explicitly the liquid state3. Consequently, a number of 
criteria that can be traced back to Gilvarry’s work have been introduced4, particularly with the development of 
modern experimental and computational methods that provide access to the atomic displacements. Further-
more, the original Lindemann approach is unsuitable for 2D systems where MSDs of particles are diverging 
logarithmically. To resolve this problem, modified Lindemann criterion for the relative MSDs between the nearest 
neighbours in crystalline lattice was proposed in Ref.5,6.

Melting as a dynamic instability if crystalline lattice was also considered by Max Born7. According to the 
Born’s dynamic criterion, the melting point corresponds to the zero value of shear modulus. Thus, the Linde-
mann and Born criteria (and their various modifications) approach description of melting from two different 
sides – microscopic and macroscopic behaviour respectively. Typically, these two approaches are considered 
separately, despite well-known coupling of structure, dynamics, and thermodynamics in fluids and crystals 
near melting line. Furthermore, in the framework of the two approaches the details of structural changes and 
collective dynamics remain elusive for number of key phenomena, including details of nucleation mechanism, 
melting front kinetics, and system behaviour near melting point.

At the same time, particle-resolved experiments with model systems, accompanied by molecular dynamic 
(MD) simulations, allow to observe in unprecedented details phase transitions in different regimes, from weakly 
to strongly non-equilibrium ones8. Single particle-resolved studies with colloids have allowed to investigate a wide 
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range of phenomena9,10, including melting and crystallisation11–21, solid-solid phase transitions21–23, condensa-
tion and critical phenomena24, gelation and glassy state25–27, supercooled fluids28. In particular, important studies 
were performed with thermally-sensitive N-isopropylacrylamide microgel (NIPAm) colloidal spheres (whose 
diameters drop with increase in temperature), including premelting at defects11, grain-boundary roughening29, 
polycrystalline structures30, two-step nucleation during solid-solid phase transitions31, and melting in super-
heated crystals32. Similarly to colloids, particle-resolved studies with complex plasmas (charged microparticles in 
ionised gas33) have successfully allowed to investigate melting and crystallization34–36, spinodal decomposition37,38, 
glassy state39,40, evolution of crystalline domains41, excitations in fluids42,43, thermal activation and propagation of 
nonequilibrium melting fronts44–46 (closely related to dissipative phase transitions between thermally-activated 
and nonactivated states47,48). Thus, significant insights into generic mechanisms of crystal melting can be obtained 
with model systems8,33. The particle-resolved studies with colloidal systems can also be applied to globular protein 
solutions10,49 extending the capabilities even further.

In this context, a general theoretical framework that can link model systems and real materials with particle-
resolved (e.g. MD) simulations would be of significant practical interest. However, several questions that arise 
from the particle-resolved studies must be addressed: Could such a model be based on microscopic parameters 
experimentally accessible in real (i.e. atomic and molecular) systems? Could these phenomena be described in 
the same manner in systems with different dynamic regimes (e.g. Brownian in globular proteins and colloids 
and Newtonian in dusty plasma and atomic systems)? How far (if at all) the physical analogy between nonequi-
librium phenomena in weakly damped (complex plasmas) and overdamped (colloids, proteins) systems extends 
to melting in real atomic systems?

Motivated by these open questions, we developed a new mean-field theoretical framework to describe melt-
ing on a microscopic scale and tested it by studying fronts propagating in superheated crystals during nuclei 
growth, as well as with numerical analysis of nucleation process. Our model is based on a local order parameter 
we introduced—mean-square displacement reformulated to include particles in neighboring Voronoi cells, thus 
introducing local correlations into the mean-field model. The collective dynamics is taken into account through 
kinetic constants (damping), with a stochastic source providing thermal fluctuations to obey the fluctuation-
dissipation theorem. We found that our approach provides accurate description of melting of superheated col-
loidal (NIPAm) systems and model crystals in atomistic MD simulations, despite significant differences in their 
dynamics (Brownian vs Newtonian). We established that the proposed model exhibits rich behaviour including 
bifurcation (attributed to the homogeneous nucleation process) at the initial stages of melting and is also dem-
onstrates analogy with the model44,48 describing thermal evolution in chemically-reactive media and in complex 
(dusty) plasma crystals, suggesting broad scope for the model applications, from atomic and molecular to colloid 
and globular protein systems.

Results and discussion
Self‑consistent mean‑field model of �2‑field evolution.  Examples of crystalline and fluid structures 
are illustrated in Fig. 1a, b. Here, the white points are particles, the Voronoi cells are shown with solid grey lines, 
the cells are coloured in accordance to �2-value—the normalised mean-square displacement between particles in 
neighboring Voronoi cells50. In Ref.50, to characterise the local disorder and to differentiate between condensed 
(liquid or solid) phases, we proposed an approach based on the analysis of Voronoi cells. Within the approach, 
the system is split into Voronoi cells to calculate the following parameter

where ri is the radius-vector of the i-th particle, Nni is the number of the neighbouring cells, ai =
√
Si/π  is the 

characteristic radius, Si is the area of Voronoi cell. Then, in order to suppress strong local thermal fluctuations, 
the averaging with between neighbouring Voronoi is performed as follows50,

As a result, we obtain the standard deviation �2i  of the distances between the neighbouring particles in a 
physically-small volume in the vicinity of the i-th particle. Crucially, this new �2i  metric, while retaining the 
information about the local particle displacements, works equally well for characterisation of both solid and 
liquid phases of a system since it characterises the local disorder in a physically small local volume50. In crys-
tals, �2 is related to the Lindemann parameter for the neighbouring particles5 because �2 ∝ σ 2

�  , where σ 2
‖  is 

the longitudinal component of the mean-squared displacement of the nearest particles. Moreover, σ 2
‖  plays an 

important role in the calculation of the first correlation peak in crystals51–55. After melting, the crystalline lattice 
is broken, but the Voronoi decomposition is still applicable in liquid despite particle diffusion. Thus, in the case 
of systems with repulsion, the growth in �2 is provided by (i) an increase in temperature or (ii) a decrease in 
density. Whereas the former mechanism plays the central role in systems with soft repulsion between particles 
(e.g., in soft crystals at low temperatures �2 ∝ T ), the latter one is decisive in hard-sphere-like systems (such as 
NIPAm colloids), whose collective dynamics is driven by the particle volume fraction. Importanly, as we show 
below, in both cases, �2 plays the role of order parameter, and, in these terms, the melting is the transition from 
low-�2 (crystalline) to high-�2 (liquid) state.
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Consider a weakly inhomogeneous spatial field �2 . The �2-parameter is nonconcervative and, therefore, its 
evolution is then determined by the following time-dependent Langevin equation56:

where Ŵ is  the generalised viscosity,  F  is  the free energy functional of the system, 
�ξ(t, r)ξ(t′, r′)� = δ(t − t ′)δ(r − r

′) , and ε = 2kBTŴ . The last term in Eq. (2) describes thermal fluctuations of 
the �2-field related to the fluctuation-dissipation theorem. One should note here that Eq. (3) is related also to 
Ref.57, a seminal work, where it was shown that under certain assumptions, the microscopic master equation for 
cluster formation can be coarse-grained into a diffusive-type dynamics in the cluster size space.

The free energy functional is F[�2] =
∫

dr F[�2] , while in the second order approximation

where F(0)1,2 is the energy of homogeneous state (1 or 2), A and α are the positive coefficients of the expansion56, and 
the indices 1 and 2 correspond to the crystalline or fluid state, at �2 ≶ �

2
∗ , respectively. Here, �2∗ is the threshold 

value and we assume that F(0)1 > F
(0)
2  for the case we consider.

Using Eqs. (3) and (4) we readily obtain

where χ1,2 = α1,2Ŵ is the generalised �2-diffusivity, and Q(�2) is the generalized source of �2-field,
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Figure 1.   Sketches toward the proposed self-consistent �2-model: (a) and (b) the examples—the crosses of the 
system in crystalline and fluid state (taken from our MD simulations). Voronoi cells are coloured in accordance 
with corresponding values of �2-parameter. (c) and (d) Schematically illustrate free energy dependence F(�2) (in 
homogeneous system) and the generalised power Q(�2) conjugated to the �2-field, shown with blue solid lines. 
The dashed red lines illustrate the stepwise approximations (4) and (6).
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where γ1,2 = ŴA1,2 . Equation (5) exhibits a remarkable analogy with temperature evolution in chemically-reactive 
media58 and coincides with that for kinetic temperature studied in Refs.44,45,48 during analysis of propagating of 
nonequilibrium melting fronts in monolayer dusty plasma crystals. Note, the proposed model can be generalised 
to account for the energy release at the interface during melting front propagation by adding a coupled equation 
for temperature evolution, similar to that reported in Ref.59. However, the temperature in our experiment was 
constant, since it is determined by the solvent temperature (Brownian thermostat). Due to this, the heat release 
is assumed to be negligible in hard-sphere-like systems, the temperature was approximately constant, and the 
processes were determined only by the configurational change in free energy (described by �2-parameter). 
Therefore, the model (5) is sufficient for the scope of the present work. At the same time, the combination of 
equations for order parameter and temperature change due to the release of latent heat could be the next step, 
and we leave it for future studies.

The energy (4) for the homogeneous case and the corresponding generalised power Q(�2) are illustrated in 
Fig. 1c,d. We see in Fig. 1d that the system can exist for a long time in the vicinity of stable states with �2 = �

2
1,2 , 

whereas the threshold value �2 = �
2
∗ corresponds to the unstable point. Below we show that solutions of Eq. (5) 

explain two important phenomena studied in the present paper: (i) propagating self-similar fronts of melting 
in superheated crystals of particles moving in Brownian or Newtonian dynamic regimes and (ii) bifurcation 
behaviour of �2-fluctuations (melting nuclei), and (iii) homogeneous nucleation in a superheated crystal.

Consider propagating melting fronts in a system, neglecting the effects of thermal noise and assuming that 
the curvature of the front is negligible: i.e. we assume ǫ ≃ 0 and write ∇2 = ∂2/∂r2 in Eq. (5). The self-similar 
profile (running wave of melting) is then described by the function �2(t − r/vfr) ≡ �

2(τ ) (here, vfr is the melting 
front velocity), which obeys the equation

considering �2(τ ) and its derivative d�2/dτ should be continuous at the point τ = 0 , where �2 = �
2
∗ . This equa-

tion is identical to that arising in the problem of nonequilibrium melting in complex plasma crystals, hence the 
solution of Eq. (7) is also the same44,48:

where p1,2 =
(
√

1+ 4γ1,2χ1,2/v
2
fr ± 1

)

v2fr/2χ1,2 are the rates of the exponential branches before and after the 
melting front. At τ ≫ 1 , �2(τ ) → �

2
2 , hence we obtain the condition 
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/
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)

= (1+ p1/p2) . The 
velocity of melting front and the rates p1,2 (unknown a priory) are determined in a complicated manner by �2
-diffusion, governed by the collective dynamics of particles in crystal and fluid, as well as by specificity of inter-
particle interactions and the difference of chemical potentials at the fluid-solid interface13. In the following 
sections, we test the model introduced above against bulk NIPAm colloidal crystal and atomistic MD simulations 
to demonstrate that it describes well evolution of the �2 field and propagation of the meting fronts in superheated 
crystals.

Direct observation of self‑similar profile of steady melting fronts in superheated colloids.  The 
first observation following from Eq. (5) (with ε = 0 ) is that the self-similar profile �2(τ ) is a combination of two 
exponential branches in Eq. (8). To test this, we analysed the experiment with bulk NIPAm colloids explained 
in "Materials and methods". This colloidal system is a good model for hard-sphere-like system13,32. The hard-
sphere interaction represents the simplest interaction between two particles with the only restriction is that two 
particles can not penetrate into each other. All possible configurations have zero potential energy, implying that 
the free energy is entirely governed by entropy. That means, the only control parameter to govern phase state 
(and other properties of the system) is the particle volume fraction φ = NVp/V  , representing the dimensionless 
analogue of particle number density (here, N is the number of particles, Vp is the single particle volume, and V is 
the total system volume). At the same time, the volume fraction can be tuned with laser heating of NIPA colloids 
in the experiment.

The results of evolution of �2-field and of self-similar melting fronts in the NIPAm crystal are shown in 
Fig. 2. To study propagating melting fronts, the NIPAm colloidal fcc crystal was heated and a layer normal to 
[111]-direction was visualised. In this plane, the particles in fcc crystal are arranged in hexagonal ordered struc-
ture, that breaks on melting, as illustrated in Fig. 2a–c (see also Supplemental Movie 1). Here, the particles are 
coloured according to �2-values calculated as explained in Eq. (2). Note that, contrary to Lindemann parameter, 
�
2 determined for a given structure has a finite value both in crystal and fluid, and is insensitive to the loss of 

particles moving in and out of the layer under analysis.
We analysed the evolution of �2-parameter at different distances along the direction (1) in Fig. 2a, in the same 

manner as reported in Refs.44,48. Evolution of �2 in the direction of interest 1 is shown in Fig. 2d. Here, one can see 
formation of the liquid nuclei with radius ≃ 15µm and its growth, as indicated by transition from the blue- to the 
red-coloured region in �2 . The large size of the nucleus in the experiment is explained by the almost simultane-
ous occurrence of several closely located small nuclei illustrated in Fig. 2a with their subsequent merging. After 
this, the evolution of the nucleus is determined by Eq. (5). The crystal is assumed to be overheated uniformly 
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over the volume, and the size of the system is much larger than the scale of the nuclei. This means that at large 
radii of the nuclei, the melting front is planar, whereas its constant velocity is supported by permanent “release 
of disorder” during melting front propagation (due to the gap in the Helmholtz energy), similar to reported in 
Refs.44,48,58. The solid white line corresponds to the melting front velocity vfr ≃ 0.05µm/s.

The melting regime we just observed was reported in Ref.13 as the intermediate superheating. In this regime, 
a liquid nucleus grows in a manner similar to that at weak superheating (melting front propagates consistently, 
with rare “jumps” caused by nucleation before the front), but the front velocity already nonlinearly depends 
on the value of the volume fraction “superheating” �φ = φm − φ , where φm = 54.5% is the melting volume 
fraction. To test this, we used the particles with diameter of ∼ 1.33 larger than those in Ref.13 ( 1.04µm versus 
0.78µm at 25◦C ), since vfr is proportional to the particle size. Taking into account correspondence between 
experiments with particles of different sizes, we obtain �φ = φm − φ ≃ 3.5% in our case (this corresponds to 
vfr ≃ 0.05/1.33 = 0.037µm/s for smaller particles, see Fig. 3c in Ref.13). Besides, the �2-field evolution in Fig. 2 
clearly illustrates a set of features inherent to intermediate superheating, including spontaneous formation and 
disappearance of small (unviable) nuclei, as well as strong oscillations of the front in Fig. 2d induced by thermal 
fluctuations, whose contribution becomes significant for the system in vicinity of phase transition, in accordance 
with the results reported in Refs.60,61.

To obtain the self-similar �2-profile from the data for subsequent comparison with our model, we averaged 
the time dependencies of �2(τ ) ≡ �

2(t − r/vfr) at different distances from the center marked with the cross in 
Fig. 2a (10 points, uniformly distributed along the line 1, from 20 to 30µm , results for the line 2 are shown in 
Fig. S2). The experimentally obtained profile for �2(τ ) is shown in Fig. 2e with red symbols. The blue symbols 
represent the number of 6-fold cells in the plane of analysis. The red solid line here is the self-similar profile 
obtained using Eq. (8), whose parameters p1,2 , and �2∗ were found with least squares fitting ( �21 was obtained with 
analysis of the crystal before melting). The �2-values corresponding to the crystalline, fluid, and threshold states 
are �21 ≃ 0.015 , �22 ≃ 0.07 , and �2∗ ≃ 0.025 , respectively.

One can see that the theoretical self-similar profile (red line in Fig. 2e) agrees very well with the experimental 
data, strongly supporting the self-consistent �2-model we proposed. The transition point (vertical dashed line in 
Fig. 2e) between the exponential branches of the �2-profile shows excellent correlation with the onset of intensive 
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Figure 2.   Experimental reveal of the self-similar �2-profile in the propagating melting front in bulk colloidal 
crystal at intermediate superheating: (a)–(c) consequent snapshots of the system, where the symbols are 
particles coloured in accordance to the �2-value (see Supplemental Movie 1). (d) Evolution of the field �2(r, t) 
in the radial direction (1) shown in (a). (e) �2(τ )-profile in the propagating melting front during the nuclei 
growth. The red symbols are experimental points, the red solid line is the theoretical fit (8). The blue symbols 
are the fraction of 6-fold Voronoi cells in the plane of analysis, with the sudden drop indicating the structure is 
breaking.
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drop in the fraction of 6-fold Voronoi cells in the plane of analysis, indicating the crystalline structure is breaking 
up and evolving from low- to high-�2 states, as was explained in Fig. 1.

Direct observation of self‑similar profile of steady melting fronts in MD simulations.  The prop-
agation of melting fronts is a slow process compared to the characteristic time of individual particle motions. 
That means that the description in terms of slowly-fluctuating �2-field should be suitable both in colloids, exhib-
iting Brownian regime of individual particle motions, and in systems with Langevin dynamics of particles. To 
test whether the same picture, as we observed in colloids, can be found in atomic crystals, we used MD simula-
tions with Langevin thermostat and weak damping. Under the conditions of our MD simulations (see "Materials 
and methods"), the system density at the melting and crystallisation (in dimensionless units) points is nm = 0.93 
and nf = 0.88 , respectively62. Therefore, the stepwise-like change in particle diameter in our simulations can 
be estimated as (nf /n)1/3 − 1 ≃ 0.5% ( n = 0.867 ), from where one can estimate the drop in effective volume 
fraction from its melting value as �φ ≃ (nm/n)

1/3 − 1 ≃ 2.4% . This value is close to the intermediate regime of 
superheating discussed in Ref.13. Note that the relationship between the superheating regimes in hard-sphere-
like colloids and systems of particles interacting with more soft potentials stands beyond the scope of the present 
paper and should be studied in future.

The results of our MD simulations of the self-similar melting fronts in superheated bulk crystal of IPL18 
particles are presented in Fig. 3 (the results for line 2 are provided in Fig. S3). We see that the parameters of 
the �2-profile in Fig. 3e have slightly changed, compared to Fig. 2e. Here, the obtained �2-values in the crystal-
line, fluid, and threshold states are �21 ≃ 0.01 , �22 ≃ 0.07 , and �2∗ ≃ 0.035 , respectively. We see that, despite the 
fundamentally different dynamic regimes, spatial and time scales, inherent to colloids and atomic systems, the 
results of our MD simulations demonstrate striking similarity to the colloidal experiment. Even fluctuations of 
the melting front in simulations are very similar to those in experiments and agree with previous studies13 in the 
framework of the �2-approach we proposed.

Despite significant fluctuations of �2-field near the melting front, the mean-field description still holds. This is 
clear from a comparison of the mean interparticle distance and the characteristic space-scale of �2-field fluctua-
tion. In our experiment, r0 ≃ dH ≃ 1.04µm and is determined by the colloidal particle diameter, whereas the 
correlation length during the propagation of the melting front is rc ≃ vfr/pc (here, pc ≃ min{p1, p2} is the mini-
mal exponential rate in Eq. (8)). Note that in the limit of small vfr , taking Eq. (8), we have rc = vfr/pc ≃

√
χ/γ  : 

this characteristic (“diffusive”) length also follows from Eqs. (5) and (6). In the experiment, we have vfr ≃ 0.05µ
m/s, 1/pc ≃ 80 s, from where rc = vfr/pc ≃ 4µm . Note that rc is related to the characteristic spatial scale of the 
melting front fluctuations. Thus, considering that r0 ≃ 1µm , we have rc/r0 ≃ 4 for our experiment. For MD 
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simulations, we have (in dimensionless units) vfr ≃ 0.37 , 1/pc ≃ 10 , and r0 = a1/18 ≃ 1.05 (here, a = 2.365 , see 
"Materials and methods"), from where rc = vfr/pc ≃ 3.7 and rc/r0 ≃ 3.52 . Therefore, it is clear that the relation 
rc/r0 is moderately large, allowing us to use the mean-field description for both colloidal experiments and the 
MD simulations we performed.

Nucleation behaviour and bifurcation of �2‑field.  The nucleation process of melting is known to con-
sist of three stages13: (i) incubation of superheated crystal in a metastable state before formation of critical nuclei 
(e.g., defects63 or particle self-diffusion loops64), (ii) formation of critical nuclei32,65,66 and (iii) the growth of 
post-critical nuclei (this can be seen in Figs. 2 and 3). During a phase transition, formation of a critical nuclei 
is known to be realised through intermediate states (or activated clusters)57. After the clusters are formed, the 
system evolves between two states with the structure fluctuations playing a crucial role. The proposed �2-model 
(5) predicts propagation of self-similar fronts corresponding to the third stage of nucleation process with the 
�
2-profile (8) consisting of two exponential branches. Formation of propagating melting fronts in overheated 

crystals and the double-exponent �2-profile are observed in colloidal experiments (with Brownian dynamics of 
particles) and in MD simulations (with Langevin dynamics of particles). Here, we provide detailed numerical 
analysis of the first two stages: evolution of different initial �2-fluctuations (nuclei), as well as spontaneous for-
mation of critical nuclei (homogeneous nucleation), as described by the �2-model. Hereby, the developed model 
will be shown to describe self-consistently all stages of the nucleation process, including essentially nonlinear 
first two stages.

We have seen that �2-fluctuations, provided in Eq. (5) by thermal noise source ξ(t, r) , affect the melting front 
propagation. This is caused by high susceptibility of the system to the fluctuations in the vicinity of phase transi-
tion. The transition occurs at �2cr = �

2
∗ , and some of the fluctuations in the vicinity of the melting fronts affect 

the front propagation, as highlighted in Figs. 2d and 3d. However, the �2-fluctuations become more important 
at the initial stages of nucleation: Weakly or strongly spatially localised (subcritical) fluctuations vanish, whereas 
sufficiently strong �2-fluctuations (activated clusters) can transform to the nucleus of fluid state. The generation 
of the activated nuclei, their development and collapse during their evolution demonstrates bifurcation behav-
iour, since even weak change in parameters of the nuclei near corresponding critical values results in drastic and 
qualitative difference in the dynamics of their evolution.

To illustrate and study nontrivial bifurcation behaviour of the model (5), sensitive to the effects of thermal 
noise and structure of initial �2-distribution (nuclei), we considered the stochastic differential equation (SDE). 
Following from Eqs. (5) and (6) we write:

where we have normalised �2 to �2∗ , �2/�2∗ → �
2 , time tγ → t , and distances r

√
γ /χ → r , assuming for 

simplicity that χ1,2 = χ , γ1,2 = γ  ; η(s) = (1+ exp(−100s))−1 is a smoothed Heaviside step function, and 
〈

ξ(t, r)ξ(t′, r′)
〉

= δ(t − t ′)δ(r − r
′) . One can see that the free parameters in Eq. (9) are the (normalised) ther-

mal noise magnitude ε and the normalised parameters �21,2 . For modeling, we used experimentally obtained 
�
2
1 = 0.6 and �22 = 3.0.

The proposed model takes into account several physical effects described by different terms in Eq. (9). The 
first term is the diffusion of the �2-field, facilitating its relaxation into a homogeneous �2-distribution – crystalline 
or fluid, depending on the domains to which the system belongs. From the physical point of view, this gradient 
term is related to the creation of a new surface during nucleation. The diffusive term tends to homogenise the 
system, preventing the creation of new surfaces requiring excess positive energy. The second term in Eq. (9) is 
related with the barrier in the free energy during the phase transition, as illustrated in Fig. 1c: while a fluctuation 
is weak and insufficient to overcome the energy barrier, Q(�2) favours the same state, whereas a strong �2-fluctua-
tion can induce the transition from crystal to fluid. Thus, the Q(�2)-term takes into account the activation nature 
of nucleation. The last, noise term in Eq. (9) describes generation and annihilation of fluctuations—thermal 
“breathing” of the system due to collective excitations. As it has been pointed out above, thermal fluctuations 
play an exceptionally important role in vicinity of phase transitions. At the same time, the resulting dynamics 
of melting is governed by different factors related with creation of new solid-fluid surface, free energy release, 
and thermal collective fluctuations. A complicated interplay between these factors leads to essentially nonlinear 
evolution of fluid nuclei in overheated crystals, characterised by bifurcation in their dynamics that depends on 
initial conditions.

To illustrate bifurcation behaviour resulting in nucleation and formation of steady melting fronts, we solved 
Eq. (9) and considered evolution of �2-field with the Gaussian initial distribution:

where the magnitude δ�2 was varying in the range from 0 to 1.5, and we considered distribution (10) with l2 = 0.4 
in 1D and l2 = 1 in 2D case. At the boundaries of the systems �2 = �

2
1 was kept fixed, while the system size was 

chosen to be much larger compared to l (20 and 31.62× 31.62 in 1D and 2D case, respectively). Equation (9) 
with initial distribution (10) was solved with exponential Euler scheme67, using the timestep of �t = 10−3 
( �t = 5× 10−4 ) and 2048 ( 512× 512 ) eigenfunctions in 1D (2D) case. In 3D case, we considered the system 
with the sizes 31.62× 31.62× 31.62 , using the timestep �t = 5× 10−4 and 128× 128× 128 eigenfunctions.

(9)
∂t�

2 = ∇2
�
2 + Q(�2)+ ε1/2ξ(t, r),

Q(�2) = −(�2 − �
2
1)+ (�22 − �

2
1)η(�

2 − 1),

(10)�
2(0, r) = �

2
1 + δ�2 exp

(

−
r
2

l2

)

,
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One should note that, speaking about the dimensions of the problem, we refer to the symmetry of the nuclei. 
As such, the equations are written in the same form for planar or bulk melting systems and the difference is 
related to the form of operators ∇2 in each case in Eq. (9). Thus fluctuation (10) in 1D case is a plane, and we can 
speak about melting initiated by a heated grain. The 2D case means the nuclei is of cylindrical form, whereas 3D 
case corresponds to the spherical nuclei.

The results at ε = 0 in the case of 1D, 2D, and 3D Gaussian nuclei (10) are presented in Fig. 4. The time 
dependencies �2(t, 0) are shown for different initial magnitudes of δ�2 of the �2-distributions (clusters) that char-
acterise their initial activation. One can see that, depending on the magnitude δ�2 (or �20 ≡ �

2(0, 0) = �
2
1 + δ�2 ), 

the solution exhibits bifurcation behaviour, with critical values �20,cr ≃ 1.09 in 1D case, �20,cr ≃ 1.29 in 2D, and 
�
2
cr ≃ 2.2 for 3D nuclei. As clearly seen in Fig. 4, the fluctuations with �20 < �

2
0,cr vanish, the system tends to the 

low-�2 (crystalline) state, whereas the ones with �20 > �
2
0,cr evolve to high-�2 (fluid) state. Note, that for �20 > �

2
0,cr 

the bifurcation behaviour also depends on the initial value of �20 and this is most obvious for the upper curves 
in Fig. 4a–c where one can clearly see initially a decrease in the value of �20 followed by a steep rise as the system 
enters the fluid state. This initial drop reflects energy transfer to the neighbours from the central particles in initial 
�
2(0, 0) site. We see that the largest initial �2-fluctuation, capable of inducing phase transition, corresponds to 
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Figure 4.   Bifurcation behaviour of different initial fluctuation (10) given with self-consistent model of �2
-evolution: Dependencies of �2(t, 0) at different initial value �2(0, 0) ≡ �

2
0 ≷ �

2
0,cr are shown for (a) 1D, (b) 2D, 

and (c) 3D Gaussian nuclei. Bifurcation behaviour is clearly justified with qualitative different �2(t, 0)-behaviour 
at small change in the initial state in vicinity of �20,cr.
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the 3D nuclei. This is expected, since the nucleus formation is governed by interplay between surface formation 
processes (related to (∇�

2)2 term in Eq. (4)) and free-energy release (described by the source Q(�2) during the 
evolution of the system).

Weak thermal noise affects slightly behaviour of the near-critical initial states (see Fig. S4 in Supplementary 
Materials). The critical values �20,cr depend on the particular choice of the fluctuation profile (related to �2-gradi-
ents) and (slightly) on the dimension, because of the bifurcation problem is essentially nonlinear: The resulting 
scenario of �2-evolution is governed by interplay of �2-generation and dissipation in Eq. (9) and, in general case 
�
2
cr > �

2
∗ due to the curvature of the spatially-inhomogeneous �2-fluctuation (nuclei).

The effects of the thermal noise are illustrated in Fig. 5 with the results obtained for different initial fluctua-
tions (nuclei), as well as for the case of spontaneous (thermally-induced) nucleation in homogeneous system. 
Here, Fig. 5a, b demonstrate snapshots of the nuclei with �20 ≶ �

2
0,cr (see also Supplemental Movies 3 and 4). These 

results correspond to the cases �20 = 1.28 and 1.3 in Fig. 4b at ε = 10−4 . The initial conditions of the simulation 
are shown in Fig. 5(a1, b1), while the evolution of the systems is illustrated with Fig. 5(a2–a5, b2–b5) (see also 
Supplemental Movies 3 and 4). One can see that the thermal noise can affect the shape of the near-critical nucleus 
and the form of a melting front, as highlighted in Fig. 5(b4). However, as the nucleus evolves it becomes sym-
metric as seen in Fig. 5(b5) and in Supplemental Movie 4. The same behaviour was observed in experiments on 
liquid nucleus growth in homogeneous melting of colloidal crystals13.

The spontaneous nucleation process in initially-homogeneous system is illustrated in Fig. 5c and Supplemental 
Movie 5. Note that these results illustrate numerical solution of Eq. (9), and we considered a homogeneous state 
with �20 = 0.6 and ε = 5.8× 10−4 . We see that under sufficiently strong thermal noise, fluctuation mechanism 
provides spontaneous formation of critical nucleus, as illustrated in Fig. 5(c3). The growth of a nucleus is accom-
panied by formation of a liquid nuclei before the melting front, in the same manner as we have seen in experiment 
and MD simulations (see Supplemental Movies 1 and 2).

We processed the �2-evolution of the data shown in Fig. 5b, c, in the directions of interest (indicated in Fig. 5 
with white arrows), in the same manner as we have done with the experimental and MD data shown in Figs. 2 and 
3. The results illustrated in Fig. 6a, b correspond to the growth of the critical nucleus shown in Fig. 5b. One can 
see in Fig. 6a formation of the melting front from the initial nucleus. Note that the same behaviour was observed 
experimentally in complex plasmas, as reported in Ref.45, supporting the analogy we found here.

After the melting front is formed, the �2-profile is described by two exponential branches (solid red line in 
Fig. 6b) as we now expect. In the same manner, the results for homogeneous nucleation (Fig. 5c and Supplemental 
Movie 5) are shown Fig. 6c,d. In this case, the �2-field strongly fluctuates due to the enhanced thermal noise 
and the melting front is slightly more smeared spatially (as highlighted with green color band in Fig. 6c), but 
the general behaviour is the same as in Fig. 6a, b. This is where self-consistency of the proposed model becomes 
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particularly evident: experimental results shown in Figs. 2 and 3 and described by Eq. (5) are recovered in Figs. 5 
and 6 using Eq. (9).

The trends we just observed for evolution of 2D nuclei are qualitatively the same in 3D case where we consider 
spherical nuclei, as illustrated in Figs. 7 and 8. Here, the cross-sections of the system are shown in Fig. 7a, b, to 
illustrate the nucleation of sub- and supercritical nuclei at �20 = 2.21 and �20 = 2.23 , respectively. The general 
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Figure 6.   Self-similar fronts during the growth of supercritical and spontaneously-formed nucleus: Evolution 
of �2-field in radial directions shown with white arrows in Fig. 5(b2, c2) for (a,b) supercritical and (c,d) 
spontaneously-formed nucleus. (a,c) and (b,d) are obtained in the same manner as (d,e) in Figs. 2 and 3.
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picture of the cluster evolution is completely the same as in 2D case. The case of homogeneous nucleation is 
shown in Fig. 7c (see also Supplemental Movie 6), where one can see that strong thermal fluctuations can form 
an activated cluster, capable of inducing a phase transition through propagating melting fronts. The latter is 
illustrated in Fig. 8 in the same manner as in Fig. 6a, b. One can see in Fig. 8a that after the nucleus is formed, it 
grows linearly. The �2-profile at large distances from the center of nucleation was calculated in the same manner 
as those in Figs. 2, 3, and 6, and the result is shown in Fig. 8b: again, the �2-profile consists of two-exponent 
branches (shown by solid red line), in complete agreement with our experimental and MD results discussed 
previously. Thus, the proposed mean-field model consistently describes nucleation and bifurcation behaviour 
of �2-field in 1D, 2D and 3D systems.

Conclusions
In this work, we proposed a mean-field model of melting based on the new order parameter we developed: �2
—mean-square displacement reformulated to include particles in neighbouring Voronoi cells. The key element 
of reformulation is use of Voronoi cell construction around a particle and folding in the contributions from the 
neighbouring cells. Behaviour of �2-field was analyzed using a time-dependent Langevin equation with thermal 
noise and source terms. We show that the model we developed exhibits essentially nonlinear behaviour, while the 
terms have a clear physical meaning when applied to the analysis of crystal melting. This has been demonstrated 
by analysis of the experimental data using systems with significantly different dynamic regimes—Brownian in 
colloids and Newtonian in MD—with the model demonstrating excellent description of propagation of melting 
fronts and their structure. Furthermore, being intrinsically microscopic, the proposed model allows to study in 
details nucleation in different regimes (depending on the magnitude of thermal noise) of superheating, as well 
as evolution of realistic liquid nuclei that can assume a variety of complicated shapes.

With experimental study of melting of NIPAm colloidal crystals and MD simulations of superheated hard-
sphere-like crystals of IPL18 particles, we proved that the �2-profile of the steady fronts consist of two exponential 
branches. Moreover, we demonstrated that the proposed model exhibits bifurcations and behaviour inherent to 
the initial stages of nucleation process and allows to recover completely the process of nucleation in a homoge-
neous system and the melting front kinetics. To prove this, in addition to comparison with experiment and MD 
simulations, we studied the evolution of sub- and supercritical planar (1D), cylindrical (2D), and spherical nuclei 
(3D), as well as homogeneous nucleation in 2D and 3D systems. Remarkably, we found that our model provides 
a clear analogy between the melting fronts in superheated colloidal and atomic crystals and non-equilibrium 
melting in complex (dusty) plasmas as well as with the reaction (activation) fronts in exothermic chemically-
reactive media, suggesting that the proposed theoretical framework is suitable for a wide range of phenomena, 
from atomic and molecular to colloidal and globular protein systems.

Nucleation process in superheated crystals, kinetics of formation and growth of liquid nuclei, and structure of 
steady melting fronts represent central problems for understanding crystal melting. The proposed model provides 
the first approximation for description melting in overheated crystals. As the next steps, anisotropic character 
of parameters used in the model should be taken into account. Fundamentally, this is related to anisotropy of 
properties (e.g., surface energy, elastic modulus), susceptibilities, and relaxation kinetics in crystals. However, 
already in our simple isotropic approximation, we see that the �2-based model describes nucleation, formation, 
and propagation of melting fronts, thus, opening a way for detailed future studies of these phenomena. We believe 
that the presented results make an essential advance providing a simple and effective tool for study of nucleation 
process and melting in superheated crystals of different nature, that should be of interest to the broad community 
in condensed matter, materials science, chemical physics, and soft matter.

From the experimental point, �2 is directly related to the second cumulant of the first peak in a pair correlation 
function, representing an important advantage for future experiments with typical atomic systems where �2 can 
be obtained from, for example, X-ray or neutron scattering data. The corresponding field of second cumulants 
could also be extracted experimentally using, for example, extended X-ray absorption fine structure (EXAFS)68–73. 
This presents an exciting opportunity to measure �2 evolution experimentally in real materials providing a route 
to study microscopic picture of melting, including under challenging environmental (e.g. extreme) conditions.
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Here, we considered self-similar profiles of propagating melting fronts. However, the �2-model we developed 
can be applied to analyse the fractal dimensions of the clusters of “hot” particles (with relatively large �2 ) during 
nucleation in different regimes of overheating. In this case, the power exponent could be identified with analysis 
of the cluster sizes distributions, similar to those reported in Ref.17. Besides, there is a number of other interesting 
problems, related to melting that stand beyond the scope of our present paper, but deserving separate studies. 
The first one is the problem of local inversion-symmetry breaking during melting. Since the �2-parameter oper-
ates with MSDs between the nearest neighbours, the �2-approach does not distinguish centerosymmentric and 
noncentrocymmetric clusters if they are regular. However, �2(T) behaviour is determined by the local structure 
and can have different values at melting point, depending on the crystal symmetry and structure. The relation 
between �2(Tm) , particular crystalline structure, and melting conditions should be studied in future. Another 
problem is related to the Lindemann and Born criteria of melting, formulated for MSDs of particles and shear 
modulus (at zero-frequency), respectively. We note that contrary to the Lindemann parameter formulated for 
MSDs of individual particles, �2 is related to the relative MSDs between the nearest neighbours, i.e. it is closely 
related to the modified Lindemann criterion of melting introduced for 2D systems in Ref.5. As an order param-
eter, �2 is not completely free parameter: in equilibrium, �2 is determined by thermodynamic parameters (pres-
sure, temperature, and density) of the system that minimise the free energy. Similarly, the zero-frequency shear 
modulus G is also determined unambiguously under given thermodynamic conditions. However, the temperature 
dependencies �2(T) and G(T) at a given density of a crystal are determined by the crystal structure. Therefore, 
the parametric dependencies in the plane {�2,G} could shed light onto the possibility of unification between 
Lindemann melting, Born melting, and the symmetry analysis.

Even more broadly, the proposed model opens rich prospectives for studies of melting as well as solidification, 
statistical analysis of nucleation process, nucleation at different regimes of superheating, from weak to strong ones 
and, in particular, of fluctuation mechanisms responsible for acceleration of melting fronts in strongly super-
heated regime13. The proposed approach can be generalised to various cases, including the systems of anisotropic 
and active particles. Furthermore, due to its formulation, the proposed model is equally suitable for analysis of 
melting in glassy systems as well as of the glass formation mechanism — one of the long standing issues in the 
condensed and soft matter science. Corresponding theoretical and experimental investigations are important 
for understanding the role of diffusion and of thermal noise in transition from slow to fast propagating melting 
fronts and for nucleation process. We leave these interesting problems for future works.

In conclusion, we note about possible application of the �2-based framework for shear-induced melting and 
crystallisation. This could be done in a manner, similar to Ref.74: one should use free-energy functional taking 
into account the shear-induced term, instead of Eq. (4). However, the problem of crystallisation is essentially 
more complicated compared to melting, due to multiple possible pathways of crystallisation and capability of 
multidomain structure formation. After a polycrystalline structure is formed, the evolution is governed by slow 
processes, interaction of defects, dislocations, and grain boundaries. To account for these phenomena, the pro-
posed �2-based approach should be developed further.

Materials and methods
Details of NIPAm experiment.  To study melting in superheated crystals, we performed the experiments 
in the same manner as those in Ref.32. To create 3D stable colloidal crystals, we used thermal-sensitive NIPAm 
colloidal spheres suspended in an aqueous buffer solution with 1mM acetic acid. A small amount of non-fluo-
rescent red dye, 0.2% by volume, was added to the sample for absorbing heat. The effective particle diameters 
linearly changes from 1.04µm at 25◦C to 0.89µm at 30◦C in water. The temperature dependence of the hard-
sphere diameter dH (T) obtained with dynamic light scattering is provided in Fig. S1 in Supplementary Materials.

The colloidal sample was placed in a glass capillary channel of sizes ∼ 18× 3× 0.1mm3 and annealed to 
form a polycrystal with only a few domains. The refractive index of the particles and solvent were matching so 
that we could have visualised a layer in the middle of the system using bright-field microscopy. With increase 
in temperature, induced by laser heating of the system, the volume fraction was dropped to melt the sample11. 
More details about the experiments are provided in Ref.32.

Details of MD simulations.  To compliment the experiments with colloids, wherein the particles move in 
Brownian (overdamped) regime, we performed MD simulations of crystals for systems with Langevin dynam-
ics. NIPAm particles interact by hard-sphere like potential13,32. Therefore, we considered the system of particles 
interacting via the inverse-power-law (IPL18) potential as a simple model:

where ǫ and σ are the strength and the characteristic range of the repulsion, respectively, and parameter a = 2.365 
was introduced for convenience to simulate the stepwise change in the particle diameter. Note, usage of the 
Yukawa or penetrable sphere interactions model is also possible, but it should result in the same results since near 
the hard-sphere limit is modelled. We used the normalised temperature T/ǫ → T , distance r/σ → r , particle 
density ρσ 3/m → n , and time t

√

ǫ/mσ 2 → t (here, m is the mass of the particle).
To analyse melting of the superheated crystal, we performed MD simulations of a system containing 

N = 7.2× 104 particles in NVT ensemble at n = 0.867 and T = 1 . In the initial state, the particles were arranged 
in fcc lattice with horizontal (111)-plane. The sizes of the simulation regions in x, y, and z-directions were chosen 
so, that Lx/Lz ≈ 20.4 and Ly/Lz ≈ 21.3 . The time step of �t = 7.4× 10−4

√

mσ 2/ǫ was used for simulations 
with LAMMPS. To equilibrate the system, we simulated the system for 105 time steps with a = 7.224 ; then, a was 
stepwise reduced to a = 2.365 and the following 4× 105 steps were used for analysis of melting in the crystal.

(11)ϕ(r) = ǫa
(σ

r

)18
,
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