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   ABSTRACT  
  Objective   The preservation of nutritional status and 

growth is an important aim in critically ill infants, but 

diffi cult to achieve due to the metabolic stress response 

and inadequate nutritional intake, leading to negative 

protein balance. This study investigated whether 

increasing protein and energy intakes can promote 

anabolism. The primary outcome was whole body 

protein balance, and the secondary outcome was fi rst 

pass splanchnic phenylalanine extraction (SPE 
Phe

 ).  

  Design   This was a double-blind randomised controlled 

trial. Infants (n=18) admitted to the paediatric 

intensive care unit with respiratory failure due to 

viral bronchiolitis were randomised to continuous 

enteral feeding with protein and energy enriched 

formula (PE-formula) (n=8; 3.1±0.3 g protein/kg/24 h, 

119±25 kcal/kg/24 h) or standard formula (S-formula) 

(n=10; 1.7±0.2 g protein/kg/24 h, 84±15 kcal/

kg/24 h; equivalent to recommended intakes for healthy 

infants <6 months). A combined intravenous-enteral 

phenylalanine stable isotope protocol was used on day 

5 after admission to determine whole body protein 

metabolism and SPE 
Phe

 .  

  Results   Protein balance was signifi cantly higher with 

PE-formula than with S-formula (PE-formula: 0.73±0.5 

vs S-formula: 0.02±0.6 g/kg/24 h) resulting from 

signifi cantly increased protein synthesis (PE-formula: 

9.6±4.4, S-formula: 5.2±2.3 g/kg/24 h), despite 

signifi cantly increased protein breakdown (PE-formula: 

8.9±4.3, S-formula: 5.2±2.6 g/kg/24 h). SPE 
Phe

  was 

not statistically different between the two groups 

(PE-formula: 39.8±18.3%, S-formula: 52.4±13.6%).  

  Conclusions   Increasing protein and energy intakes 

promotes protein anabolism in critically ill infants in the 

fi rst days after admission. Since this is an important 

target of nutritional support, increased protein and 

energy intakes should be preferred above standard 

intakes in these infants.  

Dutch Trial Register number: NTR 515.      

  INTRODUCTION 
 The preservation of nutritional status and growth 
is a specifi c aim in critically ill children, but dif-
fi cult to achieve. This is due to a metabolic stress 
response with profound changes in protein metab-
olism leading to a negative protein balance and loss 
of lean body mass. Inadequate nutritional intake 
in the paediatric intensive care unit (PICU), often 
due to fl uid restriction, further leads to protein 
and energy defi cits, especially early after admis-
sion. 1  Other factors that hinder adequate nutrition 

are impaired intracellular insulin signalling, 2  
impaired glucose uptake 3  and reduced mitochon-
drial capacity during critical illness. 4  These fac-
tors are probably the reason why protein-energy 
malnutrition is observed in 16–24% of critically ill 
children 5   6  and is associated with adverse clinical 
outcome. 7  –  9  

 A common but threatening disease in infants is 
viral bronchiolitis, which in severe cases leads to 
respiratory failure with need for ventilatory sup-
port and PICU admission. Adequate nutritional 
support in these critically ill infants is important, 
with protein anabolism as goal. However, up to 
now common practice has been to use standard 
infant formulas to provide approximately 1.5 g 
protein/kg/day and 100 kcal/kg/day. 

 Increased protein intake with adequate 
energy provision promotes anabolism in pre-
term infants, 10  –  12  in neonates undergoing sur-
gery 13  and in children with burns 14  and cystic 
fi brosis. 15  In relation to these observations, it 
is important to note that protein synthesis is a 
high-energy consuming process 16  and energy 
defi ciency worsens nitrogen balance. 17   18  Hence, 
to induce net protein anabolism, it is essential to 
provide an adequate energy intake. We therefore 
hypothesised that increasing protein  and  energy 
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    Critical illness in children is associated with  ▶

increased protein breakdown, negative protein 
balance and adverse clinical outcome. 
   Inadequate nutritional support further leads to  ▶

protein-energy malnutrition during admission 
to the paediatric intensive care unit.   

 What is already known on this topic 

    Protein anabolism in critically ill infants can be  ▶

achieved in the fi rst days after admission by 
increasing protein and energy intakes above 
reference levels. 
   The higher protein balance resulted from  ▶

 stimulated protein synthesis exceeding the rate 
of concomitant stimulated protein breakdown. 
   Increased protein and energy intakes are  ▶

recommended in critically ill infants with viral 
bronchiolitis.   

 What t   his study adds 
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intakes would induce net protein anabolism in critically ill 
infants. 

 Stable isotope amino acid methods are used to determine net 
protein balance. 19  During feeding, amino acids appearing in 
the circulation originate from protein breakdown and from the 
fraction of meal-derived amino acids that are not retained in the 
splanchnic area. Protein synthesis during feeding can be calcu-
lated from the disappearance of essential amino acids (EAAs) 
such as phenylalanine from the circulation, corrected for non-
protein synthesis related disposal (eg, oxidation, hydroxyla-
tion). Therefore, all these factors need to be considered if whole 
body net protein anabolism during feeding is to be calculated. 20  
 21  Splanchnic extraction (SPE) of meal-derived amino acids has 
not been reported before in critically ill children. 

 The present study was part of a larger study on the nutritional 
and metabolic effects of increased protein and energy intakes 
using a protein and energy enriched formula (PE-formula) 
compared with a standard infant formula (S-formula). 22  In the 
present study we studied the effi cacy of increased protein and 
energy intakes to promote protein anabolism and the underly-
ing mechanisms by using intravenous-enteral phenylalanine/
tyrosine stable isotope method protocol. The primary out-
come measure was whole body protein balance (WbPBal) at 
day 5 after admission. SPE of phenylalanine was a secondary 
outcome measure. The 24 h nitrogen balance was used as alter-
native method to assess protein balance. To gain more insight 
into the role of separate amino acids in protein kinetics, corre-
lations between plasma amino acid concentrations and protein 
metabolism were assessed.  

  DESIGN 
  Setting and patients 
 Infants admitted to the PICU of Maastricht University Medical 
Center (MUMC) or ErasmusMC-Sophia Children’s Hospital 
(ErasmusMC) meeting the following inclusion criteria were 
enrolled: (1) respiratory failure due to viral bronchiolitis; (2) 
age 4 weeks to 12 months; (3) >40 weeks postmenstrual age; 
(4) ability to start enteral feeding <24 h after admission; (5) 
expected length o f stay >96 h; and (6) venous and arterial 
catheters present. Exclusion criteria were as follows: (1) gastro-
intestinal, metabolic or chromosomal disorder; (2) parenteral 
nutrition other than intravenous dextrose; and (3) breast feed-
ing. The inclusion and exclusion criteria were chosen to create 
a homogenous population of infants. Inclusion criteria 4, 5 and 
6 were necessary for performance of the study protocol. 

 The Central Committee on Research Involving Human 
Subjects (CCMO, The Hague, The Netherlands) and local eth-
ics committees approved this study. Written informed consent 
was obtained from parents or caregivers. 

 Anthropometric characteristics a nd severity of illness 
(Paediatric Risk of Mortality II) 23  were assessed at inclusion. 
Duration of mechanical ventilation and length of PICU stay 
were noted. T o determine the metabolic state of the patients, 
plasma amino acid concentrations were determined in arterial 
blood collected in the fed state at the start of the stable isotope 
protocol on day 5 using fully automated high-performance liq-
uid chromatography as described before. 24  The roles of specifi c 
amino acids were identifi ed through correlation with whole 
body protein metabolism (WbPM).  

  Interventions 
 Patients were randomised (randomisation and blinding as 
described before 22 ) within 24 h after admission to receive 

continuous enteral feeding with PE-formula (Infatrini: 2.6 g 
protein/100 ml, 100 kcal/100 ml) or with S-formula (Nutrilon 1: 
1.4 g protein/100 ml, 67 kcal/100 ml) both from Nutricia 
Advanced Medical Nutrition, Zoetermeer, The Netherlands. 
Compositions are summarised in appendix 1. Formulas were 
administered as previously described, starting 25.3±5.6 versus 
23.4±5.4 h after PICU-admission in the PE-group and S-group, 
respectively. 22  The ranges of protein and energy intakes on 
day 5 in the S-group (1.7±0.2 g protein/kg/24 h, 84±15 kcal/
kg/24 h) covered recommended intakes for healthy infants 
<6 months (1.14–1.77 g protein/kg/24 h, 81–113 kcal/kg/24 h, 
depending on age in months). 16   25  The ranges were signifi cantly 
higher in the PE-group (3.1±0.3 g protein/kg/24 h, p<0.001; 
119±25 kcal/kg/24 h, p<0.001) and were 175–272% and 
105–147% of recommended intakes for protein and energy, 
respectively. Intake by volume was not signifi cantly different 
between groups; 120.6±13.4 ml/kg/24 h in the PE-group versus 
118.5±13.4 ml/kg/24 h in the S-group. As the target volume 
was 130 ml/kg/day, this was the maximum achievable intake 
for both groups for medical reasons (eg, fl uid restriction) as 
decided by the treating physician. Details of nutritional intake 
are summarised in appendix 2.  

  Main outcome measures 
  WbPM and splanchnic phenylalanine extraction 
 On day 5 WbPM and splanchnic phenylalanine extraction 
(SPE Phe ) were assessed by using a stable isotope protocol in 
the fed state. Several methods can be used to determine pro-
tein metabolism. We used the phenylalanine/tyrosine method 
because of the advantage that only blood samples are needed 
instead of both blood and breath samples as for methods based 
on leucine isotopes. 26  In order to attain steady state, the infu-
sion rate of enteral nutrition was not changed in the 6 h before 
the start of or during the stable isotope protocol. The stable 
isotope protocol was conducted by a research physician or 
research nurse. Intravenous amino acid tracers were adminis-
tered continuously for 2 h with calibrated syringe pumps after 
a priming dose, using the following tracers, priming doses 
(μmol/kg) and infusion rates (μmol/kg/h), respectively: L-[ring-
 2 H 5 ]phenylalanine, 4.4 μmol/kg, 4.5 μmol/kg/h; L-[ring- 2 H 2 ]
tyrosine, 1.9 μmol/kg, 1.5 μmol/kg/h; L-[ring- 2 H 4 ]tyrosine, 
0.63 μmol/ kg. F or assessment o f SPE Phe , L-[1- 13 C]-phenylalanine 
was administered as a primed-continuous enteral infusion (4.4 
μmol/kg, 9.0 μmol/kg/h, respectively). Stable isotope tracers 
(>98% enriched) were purchased from Cambridge Isotope 
Laboratories (Woburn, Massachusetts, USA). Infusates were 
prepared by the centres’ clinical pharmacists. Arterial blood 
was sampled (500 μl) before isotope infusion to determine 
background enrichment and at 60, 90 and 120 min of infu-
sion to determine isotopic enrichment. Samples were put on 
ice and centrifuged (3500×g) for 10 min at 4°C. Plasma was 
deproteinised with 5% sulfosalicylic acid, frozen in liquid 
nitrogen and stored at −80°C until analysis. Tracer-to-tracee 
ratios (TTRs) were analysed using a liquid chromatography–
mass spectrometry system as described before. 27  TTRs were 
corrected for background enrichment and contribution to 
the measured TTRs of isotopomers with lower masses as 
described before. 28  Isotopic enrichment reached a steady state 
after 1 h infusion, as shown by the lack of a statistically signifi -
cant slope of calculated TTRs at 60, 90 and 120 min (data not 
shown). The mean enrichment was used for further calcula-
tions as described before. 19  These calculations are explained in 
detail in appendix 3.  
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  Nitrogen balance 
 The 24 h nitrogen balance on day 5 was assessed as described 
before, with urinary urea being converted to total urinary 
nitrogen (TUN) excretion. 22    

  Statistical analysis 
 Power analysis was based on protein metabolism parameters 
in infants in earlier reports. 29  To detect a 20% difference in pro-
tein balance between groups with 0.05 two-sided signifi cance 
and 0.80 sensitivity, eight patients per group were required. 
 Data were analysed on an intention-to-treat basis with the 
SPSS statistical software package (v 12.0; SPSS, Chicago, 
Illinois, USA). Differences between groups were assessed with 
Mann–Whitney U analysis. Correlations among parameters 
were tested with Spearman correlation coeffi cients. Statistical 
signifi cance was defi ned as two-tailed p<0.05. Data are pre-
sented as mean±SD.   

  RESULTS 
  Patients 
 Twenty infants with respiratory failure due to viral bronchioli-
tis were enrolled (MUMC: n=10; Erasmus MC: n=10; December 
2003 to February 2006). Ten patients were randomised and 
allocated to receive PE-formula and 10 to receive S-formula. 
All patients received the allocated formula. Two patients in 
the PE-group were lost to follow-up because vascular catheters 
were removed after extubation before day 5, a nd hence WbPM 
could not be measured. Patient characteristics are shown in 
 table 1 . Gestational age was signifi cantly lower in PE-infants, 
but other parameters did not differ signifi cantly. There were 
no signifi cant differences in characteristics between patients 
enrolled in MUMC and in Erasmus MC (data not shown).    

  Main outcome measures 
  WbPM and SPE Phe  
 The rates of phenylalanine kinetics on day 5 are shown in 
 table 2 . These values are directly derived from the pheny-
lalanine and tyrosine stable isotope tracer results and sub-
sequently used to calculate whole body protein kinetics as 
shown in   fi gure 1 . Whole body phenylalanine kinetics were 
signifi cantly higher in the PE-group than in the S-group, apart 

from phenylalanine hydroxylation, which was higher in the 
PE-group but did not reach signifi cance. Al though SPE Phe  
(%) tended to be higher in the S-group than in the PE-group 
(p=0.08), absolute SPE was highest in the PE-group, but did not 
reach signifi cance in either group.      

Figure 1  depicts the rates of whole body protein synthesis 
(WbPS), whole body protein balance breakdown (WbPBal) and 
WbPBal in g/kg/24 h. It shows that WbPBal on day 5 was posi-
tive in the PE-group, while in the S-group it did not differ sig-
nifi cantly from zero (0.73±0.5 vs 0.02±0.6 g/kg/24 h, p=0.026). 
The higher WbPBal was achieved through higher WbPS in 
the PE-group (9.6±4.4 vs 5.2±2.3 g/kg/24 h, p=0.019), despite 
concomitant higher WbPB (8.9±4.3 vs 5.2±2.6 g/ kg/24 h, 
p=0.046). Negative WbPBal, refl ecting catabolism, was found 

  Table 1     Patient characteristics of the study population  
  PE-group (n=8)  S-group (n=10)  p Value 

Medical centre (MUMC/
Erasmus MC)

4/4 4/6  

Gender (M/F) 2/6 3/7  
Age (months) 2.7±1.4 2.9±1.8 NS
Weight at inclusion (g) 3 967±944 4 791±1114 NS
Birth weight (g) 2 299±903 2 841±192 NS
Gestational age (weeks) 35.0±3.3 37.3±1.0 <0.05
Postmenstrual age (weeks) 46.8±7.6 49.9±8.2 NS
Crown–heel length (cm) 56.3±5.9 56.6±3.6 NS
PRISM score 20.3±4.3 18.6±4.5 NS
CRP on admission (mg/l) 75±65 75±51 NS
Mechanical ventilation (days) 7.1±6.2 5.0±2.2 NS
Length of PICU stay (days) 9.0±7.6 6.7±2.2 NS

   Data are presented as number of subjects or mean±SD.  
  CRP, C-reactive protein; Erasmus MC, Erasmus Medical Center; 
MUMC, Maastricht University Medical Center; PE-group, protein and energy 
enriched formula fed group; PICU, paediatric intensive care unit; PRISM, 
Paediatric Risk of Mortality; S-group, standard infant formula fed group.   

 Table 2    Whole body and splanchnic phenylalanine kinetics on day 5  
  PE-group (n=8)  S-group (n=10)  p Value 

Whole body Phe kinetics
 WbRa Phe 124.5±50.0 67.9±29.9 <0.05
 WbRa Tyr 115.4±56.3 57.6±9.0 <0.05
 WbPhe utilised for PS 112.5±50.7 60.4±27.2 <0.05
 WbOH Phe→Tyr 13.5±9.0 7.7±4.4 NS
 WbPhe from PB 103.9±49.8 60.1±30.8 <0.05
 WbPhe balance 8.5±6.5 0.3±5.7 <0.05
Splanchnic Phe kinetics
 Dietary Phe intake 34.0±3.8 16.4±2.1 <0.01
 SPE Phe  (%) 39.8±18.3 52.4±13.6 NS
 ASPE Phe 13.4±6.6 8.7±2.8 NS
 PheI SPE 20.6±7.3 7.7±2.1 <0.01

   All data are in µmol/kg/h unless otherwise specifi ed and are presented as 
mean±SD.  
  ASPE Phe , absolute splanchnic phenylalanine extraction; PE-group, protein and 
energy enriched formula fed group; Phe, phenylalanine; PheI SPE , phenylalanine 
intake, corrected for SPE Phe , thus available for peripheral protein synthesis and 
oxidation; S-group, standard formula fed group; SPE Phe , splanchnic phenylalanine 
extraction; Tyr, tyrosine; WbOH Phe→Tyr , whole body hydroxylation of phenylalanine 
to tyrosine; WbPhe balance, whole body phenylalanine balance; WbPhe from PB, 
whole body phenylalanine originating from protein breakdown; WbPhe utilised for 
PS, whole body phenylalanine used for protein synthesis; WbRa, whole body rate 
of appearance.   

 Figure 1    Rates of protein kinetics (g/kg/24 h) in both study groups 
on day 5. Data are presented as mean±SD. *p<0.05. PE-group, 
protein and energy enriched formula fed group; S-group, standard 
formula fed group; WbPB, whole body protein breakdown; WbPBal, 
whole body protein balance; WbPS, whole body protein synthesis. 
WbPS and WbPB were signifi cantly higher in the PE-group than in 
the S-group. Consequently, a positive WbPBal was achieved in the 
PE-group, which was signifi cantly higher than in the S-group.    
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in one subject (13%) in the PE-group, but in four infants in the 
S-group (40%). 

 Whole body protein turnover in the PE-group was higher 
than in the S-group (10.7±4.3 vs 5.8±2.6 g/kg/24 h, p=0.012). 
Whole body protein oxidation, calculated from hydroxylation 
of phenylalanine to tyrosine, was higher with the PE-formula 
than with the S-formula, but not signifi cantly so (1.2±0.8 vs 
0.7±0.4 g/kg/24 h, p=0.25). 

 Plasma amino acid concentrations on day 5 are shown in 
appendix 4. The concentrations of fi ve EAAs (methionine, his-
tidine, phenylalanine, lysine and valine) and ornithine were 
signifi cantly higher in the PE-group. The sums of branched 
chain amino acids (BCAAs) and EAAs were also signifi cantly 
higher. WbPS was positively correlated with concentrations 
of the EAAs histidine (r=0.46, p<0.05), methionine (r=0.64, 
p<0.01), tryptophan (r=0.51, p<0.05), leucine (r=0.56, p<0.05) 
and isoleucine (r=0.47, p<0.05) and with sums of BCAAs 
(r=0.51, p<0.05) and EAAs (r=0.51, p<0.05). WbPBal was 
positively correlated with isoleucine (r=0.52, p<0.05), valine 
(r=0.46, p<0.05) and the sum of BCAA (r=0.53, p<0.05).  

  Nitrogen balance 
 The 24 h nitrogen balance on day 5 was signifi cantly higher 
in PE-infants (274±127 vs 137±53 mg/kg/24 h, p<0.05). 
Multiplication of the results by 6.25 (the average amount of 
nitrogen in protein) resulted in protein balances of 1.71 vs 
0.85 g/kg/24 h for the PE-group and S-group, respectively. 
TUN excretion on day 5, as a measure of amino acid oxidation, 
was higher in PE-infants, but not signifi cantly so (171±81 vs 
103±54 mg/kg/24 h, respectively, p=0.37).    

  CONCLUSIONS 
 The present study is the fi rst to show that protein anabo-
lism, an important target of nutritional support in critically ill 
infants, can be achieved within the fi rst days after admission 
to the PICU by increasing enteral protein and energy intakes 
above dietary reference levels using a protein-energy enriched 
formula. This target was not achieved with a standard infant 
formula. The higher protein balance resulted from stimulated 
protein synthesis exceeding the rate of concomitant stimu-
lated protein breakdown. Nitrogen balance data confi rmed our 
phenylalanine results. 

 Our fi ndings of increased protein synthesis and protein bal-
ance are in agreement with several studies in premature and 
term neonates evaluating the effects of amino acid supplemen-
tation. 10  –  13   29  –  33  This is also true for protein breakdown which 
was either increased 33  or not affected by amino acid supple-
mentation. 11   13   29   31  Although Poindexter 30  has also reported 
suppression of proteolysis, this was in healthy instead of 
critically ill infants, receiving short term supplementation. 
Our fi nding of both increased protein synthesis and protein 
breakdown with higher protein and energy intakes is probably 
due to overall stimulation of protein turnover, as shown by the 
increased whole body protein turnover rate in the PE-group. 34  

 Increased protein intake promotes protein anabolism, 
but may lead to increased amino acid oxidation with urea 
formation as seen in neonates with increasing amino acid 
supplementation, 11   13   31  when exceeding needs. However, 
in the present study, neither phenylalanine hydroxylation 
nor TUN excretion (both refl ecting amino acid oxidation), 
nor plasma urea concentrations (as described in our previous 
report) 22  differed signifi cantly between groups, suggesting 
that protein intake up to, and probably above, 3.1 g/kg/day 
does not exceed these infants’ needs. 

 We are aware that using a PE-formula makes it diffi cult 
to discern the infl uences of separate macronutrients on pro-
tein metabolism. However, studies in adults and children 
have shown that protein is the major dietary determinant of 
WbPM as long as energy intake is suffi cient. 35  Additionally, 
supporting this hypothesis, the fi nding of a positive relation-
ship between plasma EAAs and protein synthesis and balance 
suggests that EAA availability plays a crucial role in increas-
ing protein synthesis and protein balance. It also agrees 
with previous observations in healthy adults indicating that 
( essential) amino acids are the primary stimulus for (muscle) 
protein synthesis. 36  

 In these critically ill infants, receiving large amounts of intra-
venous fl uids and medications, 120 ml/kg/day was the maxi-
mum achievable nutritional volume intake. Despite these fl uid 
restrictions, an anabolic state was obtained within 5 days after 
admission using a protein-energy enriched formula, thereby 
limiting delay of growth and neurodevelopment during criti-
cal illness as much as possible. We have previously reported 
that the PE-formula is safe, well tolerated and improves nitro-
gen and energy balance at days 1–5 after admission. 22  This 
type of formula is thus preferable to standard formulas to 
achieve adequate nutrition in comparable clinical settings. 
Since the subjects were a typical sample of infants with respi-
ratory insuffi ciency due to viral bronchiolitis, we suggest that 
the results apply to the general population of these critically 
ill infants. 

 Our study is also the fi rst to report values of fi rst pass SPE Phe  
in continuously enterally fed critically ill infants. In this pop-
ulation, fi rst pass SPE Phe  did not differ between groups with 
an average of 46.8%. Comparable values have been described 
in healthy adults after a meal 21  and in enterally fed piglets. 37  
There is discussion about correcting protein intake for SPE in 
calculations of WbPBal, since these retained amino acids are 
used for constitutive or secreted (glyco-)proteins in the gut, 38   39  
which is then considered part of WbPS. We have therefore also 
calculated the data without correction for SPE (not shown) and 
found that protein breakdown was 15–19% lower and protein 
balance 2.7–3.9 times higher. Only the absolute values are 
affected by this calculation, and the main conclusion of the 
study is not affected. 

 There are several limitations to this study. Despite using 
a randomised design, gestational age was signifi cantly lower 
in the group receiving protein-energy enriched formula. This 
might have biased our results of protein metabolism as protein 
turnover decreases with increased (post-)conceptional age. 40  

 Furthermore, the proportion of female subjects was rela-
tively high. Protein deposition has been shown to be similar 
for healthy male and female children prior to adolescence and 
it is recommended that estimates of protein requirements for 
healthy children are calculated for both sexes combined. 25  
However, in children with burns (8 years of age on average), 
females had a less negative net muscle protein balance com-
pared to males, and females gained lean body mass whereas 
males lost lean body mass. These differences were possibly 
due to the observed attenuated hypermetabolic response in 
females. 41  Assuming that the same differences are true for 
critically ill infants, this would mean that the achievement of 
protein anabolism in the fi rst days after admission in our study 
population could have been biased by the high proportion of 
females. However, gender differences in protein kinetics have 
not been described for critically ill infants. Moreover, our study 
population of infants with a viral infection is distinctly differ-
ent from children with burns, who are subject to an extended 
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hypermetabolic stress response with high  infl ammation. 41  
Also, when comparing the female with the male subjects 
within the PE- and S-groups of our study, the only notable 
difference was a non-signifi cant trend towards higher protein 
turnover, synthesis and breakdown in the females compared 
to the males within the PE-group, but resulting in similar pro-
tein balances in both sexes. Therefore it seems unlikely that 
our results were affected by gender differences, despite the 
high proportion of females. Since the female subjects were 
equally distributed among both groups in our study, neither 
did it infl uence the comparison of groups. 

 Another limitation is that protein synthesis and protein 
breakdown were derived by extrapolating phenylalanine 
metabolism, which in fact only refl ects the effects on the 
kinetics of this particular EAA. Other amino acid tracers may 
have shown different patterns, although the phenylalanine/
tyrosine and leucine methods are considered to be reference 
methods to obtain reliable estimates of whole-body protein 
metabolism in most physiological conditions. 26  The present 
study was not designed to establish exact protein and energy 
needs in critically ill infants. Neither was it adequately pow-
ered to detect clinical effects. Dose–response studies and 
studies into the clinical effects of improved protein balance in 
larger groups of critically ill infants are therefore necessary. 

 In conclusion, protein anabolism in critically ill infants with 
viral bronchiolitis can be achieved in the fi rst days after admis-
sion by increasing protein and energy intakes above reference 
levels. Since protein anabolism is an important goal of nutri-
tional support in these infants, increased protein and energy 
intakes should be preferred over standard intakes. 
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