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Purpose: Stanford Type B Aortic Dissection (TBAD), a critical aortic disease, has exhibited stable mortality rates over the past 
decade. However, diagnostic approaches for TBAD during routine health check-ups are currently lacking. This study focused on 
developing a model to improve the diagnosis in a population.
Patients and Methods: Serum biomarkers were investigated in 88 participants using proteomic profiling combined with machine 
learning. The findings were validated using ELISA in other 80 participants. Subsequently, a diagnostic model for TBAD integrating 
biomarkers with clinical indicators was developed and assessed using machine learning.
Results: Six differentially expressed proteins (DEPs) were identified through proteomic profiling and machine learning in discovery 
and derivation cohorts. Five of these (GDF-15, IL6, CD58, LY9, and Siglec-7) were further verified through ELISA validation within 
the validation cohort. In addition, ten blood-related indicators were selected as clinical indicators. Combining biomarkers and clinical 
indicators, the machine learning-based models performed well (AUC of the biomarker model = 0.865, AUC of the clinical model = 
0.904, and AUC of the combined model = 0.909) using relative quantitation. The performance of the three models was verified (AUC 
of biomarker model = 0.866, AUC of clinical model = 0.868, and AUC of combined model = 0.886) using absolute quantitation. 
Crucially, the combined models outperformed individual biomarkers and clinical models, demonstrating superior efficacy.
Conclusion: Using proteomic profiling, we identified serum IL-6, GDF-15, CD58, LY9, and Siglec-7 as TBAD biomarkers. The 
machine-learning-based diagnostic model exhibited significant potential for TBAD diagnosis using only blood samples within the 
population.
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Introduction
Stanford type B aortic dissection (TBAD) is a common, life-threatening condition originating distal to the left subclavian 
artery, accounting for 25%–40% of all aortic dissections.1,2 Characterized by rapid onset, progression, and a high risk of 
rupture, TBAD often leads to organ failure.3 The global incidence is 1.6 per 100,000 persons/year.4 Despite advances in 
diagnosis and management, TBAD mortality remains stable, in contrast to the decline in type A aortic dissection 
(TAAD).5 Aorta-related adverse events during the chronic phase of TBAD worsen the long-term outcomes and create 
a significant societal burdens.6 Therefore, early and effective diagnosis within a population is crucial.

TBAD diagnosis primarily relies on imaging techniques such as transesophageal echocardiography (TEE), CT 
angiography (CTA), and magnetic resonance imaging (MRI).7–9 However, these methods are not suitable for diagnosis 
of TBAD during routine health checkups due to their high cost, invasiveness, and radiation exposure risks.10,11 Changes 
in plasma protein expression offer a noninvasive, cost-effective alternative that reflects human physiology and 
pathology.12–14 Although several serum biomarkers for aortic dissection have been identified (soluble ST2, etc).,15–17 

their diagnostic efficiency in TBAD remains unproven.18,19 Moreover, multi-biomarker integration is considered as 
a promising diagnostic enhancement for cardiovascular diseases recently.18

Traditional techniques, such as electrophoresis, ELISA, and mass spectrometry, have limitations including complex 
experimental stages and low sample throughput.20 Less than 15 proteins accounted for over 90% of the serum protein 
content.21 High-throughput antibody microarray excels in detecting low-abundance proteins,22 making it ideal for serum 
biomarker screening.23,24 Machine learning offers a robust approach to proteomic data analysis, enabling the develop-
ment of reliable diagnostic models.25–27 Multiple previous studies have applied machine learning to identify specific 
biomarkers of several diseases and achieved ideal effect, such as alcohol-related liver disease,28 Parkinson’s disease,29 

coronary artery disease30 and progressive fibrosing interstitial lung disease.31 Integrating proteomic profiling using 
antibody microarrays with machine learning offers a promising strategy for disease diagnosis,32 facilitating to the 
identification of biomarkers for TBAD.

In this study, we attempted to develop a diagnostic model for TBAD based on serum biomarkers and clinical 
indicators that could be applied to routine health checkups and improve the early detection of TBAD. We investigated 
potential biomarkers among 1000 serum proteins using high-throughput proteomics and machine learning and verified 
our findings with ELISA in an independent cohort. We then used machine learning methods to develop a TBAD 
diagnostic model integrating these biomarkers with clinical indicators, and validated its performance in an independent 
cohort.

Material and Methods
Study Design
The study design, depicted in Figure 1, aimed to identify TBAD biomarkers and to develop a diagnostic model. Three 
Chinese cohorts diagnosed with TBAD were enrolled for biomarker discovery and validation. Initially, 1000 serum 
proteins (including interleukins, chemokines, tumor necrosis factor superfamily, growth factors, and colony-stimulating 
factors) were evaluated using commercial antibody arrays from RayBiotech. Differentially expressed proteins (DEPs) 
were identified in an 8-participant cohort and were later confirmed in an 80-participant cohort. A high-performance 
machine learning algorithm was employed to enhance biomarker identification and predictive accuracy. Subsequently, the 
selected biomarkers were validated by ELISA in an independent cohort. Stable biomarkers that demonstrated significant 
differences between the patients and controls were confirmed to be TBAD-specific. The final phase involved establishing 
a comprehensive diagnostic model for TBAD by integrating both biomarkers and clinical indicators.

Study Population
A summary of the clinical cohort is shown in Figure 1. We aimed to identify potential serum biomarkers on a large scale 
by collecting samples and clinical data from a discovery cohort of eight individuals (five patients with TBAD and three 
healthy controls) between May and July 2022. The derivation cohort included 80 participants (50 patients with TBAD 
and 30 healthy controls) from September 2022 to February 2023. The baseline patient characteristics are presented in 
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Table 1. An independent validation cohort comprised of 50 patients with TBAD and 30 healthy controls recruited 
between April and November 2023 (Table 2).

TBAD diagnosis followed the criteria of the European Society of Cardiology (ESC) and standards of the Society for 
Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS).3,7 The inclusion criteria for patients with TBAD were 
age > 18 years, onset within two weeks, and radiological diagnosis. The exclusion criteria were severe infectious 

Figure 1 Study design. 
Abbreviations: TBAD, type B aortic dissection; HC, healthy control; DEPs, differentially expressed proteins; PPI network, protein-protein interaction network; RF, random 
forest; XGBoost, eXtreme Gradient Boost; SVM, support vector machine.

Table 1 Baseline Characteristics of Participants in Discovery and Derivation 
Cohorts

Characteristics Patients with  
TBAD (n=55)

Healthy  
Control (n=33)

P Value

Age (mean [SD]) 53.9 (9.0) 50.1 (9.8) 0.0665

Sex (%) 0.6464
Male 51 (92.7) 32 (96.9)

Female 4 (7.3) 1 (3.1)

Hypertension (%) 45 (81.8) 23 (69.7) 0.2013
Diabetes (%) 2 (3.6) 2 (6.1) 0.6287

Hyperlipidemia (%) 5 (9.1) 2 (6.1) 0.7069

Atherosclerosis (%) 2 (3.6) 1 (3.0) >0.9999
History of stroke (%) 3 (5.5) 0 (0) 0.2888

CAD (%) 2 (3.6) 0 (0) >0.9999

COPD (%) 1 (1.8) 0 (0) >0.9999
Renal insufficiency (%) 2 (3.6) 1 (3.0) >0.9999

Smoking (%) 16 (29.1) 11 (33.3) 0.8118

Notes: Data are presented as mean [SD] for continuous variables and number (%) for categorical 
variables. 
Abbreviations: CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease.
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diseases, other aortic diseases, Marfan syndrome, rheumatoid autoimmune diseases, cancer, mental illnesses, prior 
surgical interventions, or medical therapy. Healthy controls met the following criteria: no aortic diseases, age eighteen 
or older, no prior surgeries, and absence of cardiovascular or cerebrovascular diseases, with exclusion based on current 
infectious diseases, rheumatoid autoimmune diseases, cancer, mental illnesses, pregnancy or lactation, or no prior use of 
anti–infection or anti-inflammatory medications before admission.

Serum Sample and Clinical Indicators Collection
The participants fasted for eight hours prior to blood collection. Blood samples were collected within 12 h of admission 
and divided into tubes for common tests and proteomic profiling. The serum was centrifuged at 2500 rpm for ten minutes 
at 4°C within 12 h and stored at −80°C to prevent thaw-refreeze cycles. Post-centrifugation haemolyzed samples were 
excluded to avoid any detection bias. Blood tests, including sex, age, and comprehensive parameters such as cell counts, 
hemoglobin concentrations, and lipid levels, were completed within two days (Table S1). All data were documented for 
further analysis.

Antibody Microarray Assay
To screen DEPs among 1000 serum proteins, we used RayBio® G-Series Antibody Microarrays for relative quantifica-
tion. Serum samples from patients with TBAD (n = 5) and healthy controls (n = 3) were used for the initial discovery 
study. Then, we employed RayBio® Custom Human Antibody Arrays for the derivation study and identified potential 
serum biomarkers, using samples from patients with TBAD (n = 50) and healthy controls (n = 30). These experiments 
were conducted following the manufacturer’s protocol. The array slides were treated with 100 μL of 1X Blocking Buffer 
and incubated at room temperature (RT) for 30 min. We then added 50–100 μL of each two-fold diluted sample to each 
sub-array for a two-hour incubation at RT, followed by sequential washing with wash buffers I and II. Biotin-conjugated 
anti-cytokine and streptavidin-Fluor were applied for two hours each at RT. The slides were scanned in the cy3 or 
“green” channel using an InnoScan 300 Microarray Scanner. Raw data, including spot intensities, were exported and 
analyzed using RayBio Analysis Tool software for comprehensive protein expression evaluation.

Proteomic Profiling and Function Analysis
Data processing was performed using the open-source R and RStudio software. We utilized ggplot2 and ggfortify for 
scatter and volcano plots and principal component analysis (PCA) with prcomp and autoplot to identify data patterns. 

Table 2 Baseline Characteristics of Participants in Validation Cohort

Characteristics Patients with  
TBAD (n=50)

Healthy  
Control (n=30)

P Value

Age (mean [SD]) 53.5 (12.1) 49.5 (10.2) 0.1395

Sex (%) >0.9999

Male 45 (90.0) 27 (90.0)
Female 5 (10.0) 3 (10.0)

Hypertension (%) 41 (82.0) 24 (80.0) >0.9999

Diabetes (%) 5 (10.0) 2 (6.7) 0.7057
Hyperlipidemia (%) 3 (6.0) 1 (4.8) >0.9999

Atherosclerosis (%) 1 (2.0) 0 (0) >0.9999
History of stroke (%) 6 (6.0) 0 (0) 0.0786

CAD (%) 0 (0) 0 (0) >0.9999

COPD (%) 0 (0) 0 (0) >0.9999
Renal insufficiency (%) 6 (8.0) 1 (3.3) 0.2464

Smoking (%) 16 (32.0) 9 (30.0) >0.9999

Notes: Data are presented as mean [SD] for continuous variables and number (%) for categorical 
variables. 
Abbreviations: CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease.
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Cluster heatmaps were generated using heatmap.2 in the gplots package. DEPs screening employed the limma package to 
evaluate the adjusted p-values and log2 fold changes (logFC).

Raw data were subjected to log2 transformation for normalization. DEPs were identified using a moderated t-statistic 
and adjusted using the Benjamini-Hochberg method to control false discovery rates (P < 0.05, fold change > 1.2, and 
average fluorescence signal value per group > 150). Gene Ontology (GO) and KEGG pathways were analyzed using 
Fisher’s exact test with clusterProfiler. The DEPs for the Protein-Protein Interaction (PPI) were mapped to the STRING 
database (version 12.0). Finally, hub gene analysis was performed using the Maximal Clique Centrality (MCC) ranking 
from Cytoscape software (version 3.9.1).

Machine Learning Methods
Machine-learning models were developed using Python (version 3.8.10). The samples from the discovery and derivation 
cohorts were divided into a 70% training set (62 samples) and 30% test set (26 samples). The test set was exclusively 
used to evaluate the model performance and remained hidden during training. We utilized Random Forest (RF), Support 
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) algorithms to ensure a balanced patient-to-control 
ratio and to avoid data imbalance affecting model generalization.

To prevent overfitting, we employed random dataset shuffling and performed 100 iterations with the receiver 
operating characteristic area under the curve (ROC-AUC) scores calculated for each. The average area under the 
curve (AUC) served as the performance metric, and accuracy and recall were computed. Learning curves were used to 
detect overfitting, and a 95% confidence interval (CI) was calculated using five-fold cross validation. If the testing set 
AUCs fell within the 95% CI of the training set AUCs, the model was not considered overfitted.33 The best performing 
model among RF, SVM, and XGBoost was selected as the final diagnostic model.

Correlation Analysis Between Biomarkers and Clinical Data
To further demonstrate the relationship between these biomarkers and existing clinical indicators, we performed the 
correlation analysis between them in our cohorts. The pairwise Pearson correlation test was used, and the Circos plot was 
drawn according to the correlation coefficient and P-value using the circular package (version 0.4.10) in R.

ELISA Assay
Seven DEPs were identified as candidate biomarkers and tested by ELISA using 80 serum samples from the validation 
cohort. All ELISA kits were purchased from RayBiotech Life. Experiments were performed in accordance with the 
manufacturer’s instructions. The signal from each well was read at 450 nm immediately after the ELISA. The absolute 
quantitation levels of the biomarkers were determined using the standard curves for each ELISA plate. The final 
concentrations of biomarkers were calculated based on the dilution ratio.

Statistics Analysis
SPSS (version 22.0), GraphPad Prism (version 8.0.0), and R software were used for data analysis. The baseline 
characteristics were collected for all participants without missing data. Categorical variables are presented as numbers 
(n) and percentages (%). Continuous variables with normal distributions are presented as means and standard deviations 
(SD), and those with abnormal distributions are presented as medians and interquartile ranges (IQR). The Shapiro–Wilk 
test was used to check for normal distribution. Data passing the normality test were subjected to unpaired t-tests for 
statistical analysis and Fisher’s test to compare variances. Non-normal data were analyzed using the Mann–Whitney 
U-test. Statistical significance was set at P value < 0.05. Binary multivariable logistic regression was used to select 
clinical indicators with a significant difference (P < 0.0001) between patients with TBAD and healthy controls. The 
accuracy, recall, precision, F1 score, and AUC of the machine-learning models were assessed using ROC analysis.
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Results
Screening Out Thirty-One DEPs Among 1000 Serum Proteins in Discovery Cohort
The workflow for screening serum DEPs in the discovery cohort is shown in Figure 2a. Proteomic analysis examined 
eight serum samples from five patients with TBAD and three healthy controls, and identified 67 DEPs out of 1000 serum 
proteins (Figure 2b, Supplemental Figure 1a and b). The heatmap (Figure 2c) showed 12 upregulated and 55 down-
regulated proteins. Using the KEGG database, we found significant enrichment of these DEPs in 11 pathways (adjusted 
P-value < 0.05), including cytokine-cytokine receptor interactions, cell adhesion molecules (CAMs), and natural killer 
cell-mediated cytotoxicity, suggesting their importance in TBAD pathogenesis.

Functional and regulatory interactions among the 67 DEPs were analyzed using a PPI network based on the STRING 
database (Figure 2d). The top 50% altered proteins were selected for verification, excluding 2B4 (CD244) and TRAIL 
from the analysis because of their co-expression with CD229 (Lymphocyte Antigen 9, LY9) and TRAILR4. Finally, 31 
DEPs were identified for verification.

Figure 2 Screening serum DEPs through proteomics profiling in discovery cohort. (a) The workflow of screening DEPs between patients with TBAD and healthy controls in 
discovery cohort. (b) Volcano plot shows 67 DEPs are screened out from 1000 serum proteins in discovery cohort and depicted in blue. (c) Heatmap of the 1000 protein 
arrays screening 67 DEPs (fold change > 1.2 and P < 0.05) using serum samples from patients with TBAD (n = 5) and healthy controls (n = 3). DEPs were identified through 
a moderated t-statistic and were adjusted using the Benjamini-Hochberg method to control for false discovery rates. (d) Protein-protein interaction (PPI) network among 
the 67 DEPs was established using the STRING database. Each node is a DEP containing a 3D protein structure inside. The node color represents the predicted functional 
associations: black, co-expression evidence; yellow, text-mining evidence; blue, sequence similarity evidence; purple, experimental evidence.
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Verifying Eleven DEPs Using Customized Antibody Microarray in Derivation Cohort
In a derivation cohort of 50 patients with TBAD and 30 healthy controls, 31 serum proteins were analyzed using RayBio® 
Custom Human Antibody Arrays in 80 serum samples. The workflow used to verify the selected DEPs is shown in Figure 3a. 
Comparative analysis identified 11 DEPs with significant differences in expression: four were upregulated (IL6, IL10, GDF-15, 
CCL23) and seven were downregulated (LY9, Siglec-7, CD58, KLK14, CDH4, CDH6, and SFTPD) in patients with TBAD 

Figure 3 Further verifying selected serum DEPs using customized antibody microarray in derivation cohort. (a) The workflow of verifying selected DEPs through 
customized antibody microarray in derivation cohort. (b) Heatmap of the customized arrays verifying 11 DEPs from 31 DEPs in the derivation cohort comprising 50 patients 
with TBAD and 30 healthy controls. MPIF-1: CCL23, SP-D: SFTPD, Cadherin-4: CDH4, Cadherin-6: CDH6, CD229: LY9. (c) Biological process analysis of 11 DEPs based on 
GO annotations. The enrichment score is -log10 (P value) of each GO term. The dot size represents the number of DEPs, while colors correspond to the P value range. (d) 
Cellular component analysis of 11 DEPs based on GO annotations. The enrichment score is -log10 (P value) of each GO term. The dot size represents the number of DEPs, 
while colors correspond to the P value range. (e) Molecular function analysis of 11 DEPs based on GO annotations. The enrichment score is -log10 (P value) of each GO 
term. The dot size represents the number of DEPs, while colors correspond to the P value range. (f) KEGG pathway analysis of 11 DEPs in TBAD. The enrichment score is - 
log10 (P value) of each pathway. The dot size represents the number of DEPs, while colors correspond to the P value range. (g) Hub gene analysis of 11 DEPs. IL-6 is 
recognized as the hub gene according to MCC scores from Cyto-Hubba.
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(Figure 3b, Supplemental Figure 1c and d). Enrichment analysis using the GO database (Figure 3c–3e) highlighted processes, 
such as leukocyte chemotaxis and cytokine-cytokine receptor interaction, suggesting that the potential pathological mechanisms 
of TBAD involve immune cell chemotaxis and cytokine-mediated processes. The KEGG pathway analysis further supported 
these findings. Additionally, PPI analysis using STRING identified IL6 and IL10 as the top hub genes, indicating their central 
roles in TBAD pathology (Figure 3g).

Discovering Six Candidate Biomarkers Through Optimal Machine Learning Algorithms
We employed three machine learning algorithms, (RF), XGBoost, and Support Vector Machine (SVM), to develop 
TBAD diagnostic models and identify serum biomarkers (Figure 4a). The RF model with an AUC of 0.904±0.06, based 
on 11 DEPs, outperformed XGBoost and SVM in distinguishing patients with TBAD from healthy controls (Figure 4b 
and Table S2). The learning curves confirmed the robustness of the RF model without overfitting (Supplementary 
Figure 2a). Thus, RF was selected as a definitive diagnostic model for TBAD.

To analyze the feature importance of RF for TBAD biomarker identification, we ranked the Gini values of the 11 
DEPs. Those with Gini values above 0.1 were considered as potential TBAD serum biomarkers. This led to the selection 
of 6 DEPs (IL-6, IL-10, Siglec-7, GDF-15, LY9, and CD58), excluding the other 5 (Figure 4c, Supplemental Figure 2b). 
A refined RF model with these six DEPs exhibited efficacy (AUC=0.875±0.06) comparable to that of the original 11- 
DEP model (Figure 4d). Both models showed similar accuracy metrics (Figure 4e), indicating that these six DEPs are 
crucial for RF model prediction and effective for TBAD diagnosis.

Figure 4 Optimal machine learning algorithm was confirmed to further screen biomarkers. (a and b) Comparing performances of three algorithms (Random Forest (RF), 
Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost)) through ROC analysis. 88 participants from discovery and derivation cohort were randomly 
allocated into training set (62 participants, accounting for 70%) and testing set (26 participants, accounting for 30%). (c) Gini value rank of all eleven DEPs in the RF model. 
MPIF-1: CCL23, SP-D: SFTPD, Cadherin-4: CDH4, Cadherin-6: CDH6, CD229: LY9. (d and e) Comparing the performance of two RF models (eleven DEPs versus six DEPs). 
Eleven DEPs include IL6, IL10, GDF-15, CCL23, LY9, Siglec-7, CD58, KLK14, CDH4, CDH6 and SFTPD; Six DEPs include IL-6, IL-10, Siglec-7, GDF-15, LY9 and CD58.
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External Validation of Candidate Biomarkers Using ELISA in an Independent Cohort
To validate the six candidate TBAD biomarkers, we used an independent cohort of 50 patients with TBAD and 30 healthy 
controls. Absolute-quantitation ELISA revealed significant increases in GDF-15 and IL-6 levels in patients with TBAD 
(P < 0.05). Conversely, CD58, LY9, and Siglec-7 levels were decreased in patients with TBAD (P < 0.05), consistent 
with the initial proteomic profiling (Figure 5a–5e). IL-10 showed no significant classification capability in TBAD 
(Figure 5f). We developed two RF models: one with all six biomarkers, and the other excluding IL-10. The 5-biomarker 
model’s accuracy was comparable to the 6-biomarker model in both proteomics and ELISA (AUC = 0.865±0.06 and 
AUC = 0.866±0.06, respectively) (Figure 5g–5h). These results validate GDF-15, IL-6, CD58, LY9, and Siglec-7 as 
effective TBAD serum biomarkers suitable for both relative and absolute quantitative analyses.

Figure 5 Validation of candidate biomarkers using ELISA in an independent cohort. (a–f) Expression levels of candidate biomarkers in serum samples from the validation 
cohort by ELISA assays. (g) Comparing the performance of two RF models (5 DEPs versus 6 DEPs) using proteomics profiling with relative quantitation in discovery and 
derivation cohort. (h) Comparing the performance of two RF models (5 DEPs versus 6 DEPs) using ELISA with absolute quantitation in validation cohort. Data are 
presented as mean ± SD. **P < 0.01, ***P < 0.001, and ****P < 0.0001 by unpaired Student’s t-test.
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Establishment of Combined Model Incorporating TBAD Biomarkers and Selected 
Clinical Indicators
To enhance TBAD diagnosis, we integrated the clinical data with the identified biomarkers using the RF algorithm 
(Figure 6a). We gathered comprehensive blood indicators from 168 participants, including various blood cell counts, 
hemoglobin concentrations, and cholesterol levels, as detailed in Table S1. Binary multivariable logistic regression 
revealed significant differences in the blood indicators between patients with TBAD and healthy controls (p < 0.0001) 
(Figure 6b). Correlation analysis was used to examine the interactions between these biomarkers and blood indicators in 
TBAD, visualized in circus plots (Figure 6c–6f).

Proteomic profiling and ELISA assays across three Chinese cohorts identified five serum biomarkers and recorded ten 
blood-related blood indicators for 168 participants. Using the RF algorithm, we developed diagnostic models that 
integrate these biomarkers and blood indicators for TBAD classification. The models showed substantial effectiveness, 
with AUC values of 0.865, 0.904, and 0.909, respectively (Figure 6g and Table S3). The absolute quantitation ELISA 
also performed well (AUC values of 0.866, 0.868, and 0.886, as shown in Figure 6h and Table S4). Notably, the 
combined models outperformed individual biomarkers and clinical models, confirming the diagnostic efficacy of TBAD. 
The learning curves indicated no overfitting (Supplemental Figure 3), thus validating these models as effective diagnostic 
tools for TBAD. Hypertension is a strong risk factor of TBAD. Identifying potential patients in the hypertensive 
population is crucial for the early warning of TBAD. We also evaluated the performance of our models in hypertensive 
participants. The AUC values of the biomarkers, clinical, and combined models were 0.853, 0.894, and 0.925, 
respectively, in the discovery and derivation cohorts (Supplemental Figure 4 and Table S5). These results were verified 
in the validation cohort (AUC values of 0.857, 0.838, and 0.904, respectively, as shown in Supplemental Figure 5 and 
Table S6). The results demonstrated that diagnostic models could also be applied to the hypertensive population to 
diagnose TBAD.

Discussion
To address the diagnostic challenges of TBAD during routine health checkups, this study used circulating protein 
profiling arrays and machine learning to identify TBAD biomarkers. Our extensive serum protein screening via 
proteomics has identified GDF-15, IL-6, CD58, LY9, and Siglec-7 as potential TBAD biomarkers. A machine learning 
model integrating these biomarkers with blood indicators demonstrated superior accuracy in diagnosing TBAD. This 
study is the first investigation of serum TBAD biomarkers in Chinese cohorts. In addition, this is an inaugural study to 
develop an effective diagnostic model for TBAD based on blood samples.

Biomarkers exhibit a powerful ability in the screening, diagnosis and monitoring of cardiovascular diseases. With the 
development of detective techniques, such as nanoparticle biosensors and spectroscopy,34,35 the availability and acces-
sibility of biomarker detection have been facilitated currently. Serum is ideal for biomarker discovery due to its 
accessibility and biological content.12 Previous studies have identified serum biomarkers of aortic dissection, including 
smooth muscle markers, and others.13 Discovered serum biomarkers of aortic dissection include serum succinate, soluble 
ST2, and ceruloplasmin.15,16,36 Some studies have suggested the diagnostic potential of serum tenascin-C, VE-cadherin, 
and vinculin levels, nevertheless requiring further validation.37,38 Profiling a wide range of serum proteins offers 
unbiased marker discovery, enhances diagnostic accuracy, and provides insights into pathophysiology and therapeutic 
targets.20 Advances in proteomics, particularly high-throughput techniques such as mass spectrometry and antibody 
microarrays, have revolutionized biomarker identification.39,40 Antibody microarrays are cost-effective and efficient, 
excel at screening lower-abundance serum proteins.40,41 In our study, we used antibody microarrays to screen TBAD 
biomarkers among 1000 serum proteins, bringing new insights into TBAD pathogenesis.

Machine learning has transformed disease understanding through omics data analysis.26,42 Proteomics-driven machine 
learning has effectively assisted biomarker discovery, risk stratification, and prognosis evaluation in various fields.43–48 

Our study uniquely combined antibody microarrays with machine learning to identify TBAD biomarkers and to develop 
diagnostic models. We assessed several algorithms such as RF, SVM, and XGBoost, with RF proving superior in terms of 
its robustness and data resilience.49,50 The RF models in our study exhibited high accuracy with minimal tuning. By 
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Figure 6 Establishment of combined model incorporating biomarkers and clinical indicators. (a) The strategy on combined model establishment. (b) Testing for difference of age and 
19 blood indicators. Binary multivariable logistic regression was used for selecting indicators with vital statistical difference (P value < 0.0001) between patients with TBAD and healthy 
controls. (c and d) Correlation network of biomarkers (using relative quantitative detection) and clinical indicators in discovery cohort and derivation cohort. Positive correlation with 
statistical significance (P value <0.05) is indicated in red. Negative correlation with statistical significance (P value <0.05) is indicated in blue. Correlation without statistical significance (P 
value ≥0.05) is indicated in gray. (e and f) Correlation network of biomarkers (using absolute quantitative detection) and clinical indicators in validation cohort. MPIF-1: CCL23, SP-D: 
SFTPD, Cadherin-4: CDH4, Cadherin-6: CDH6, CD229: LY9. (g) Combined model performance with biomarkers (using relative quantitative detection) and 10 clinical indicators. (h) 
Combined model performance with biomarkers (using absolute quantitative detection) and 10 clinical indicators.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S494191                                                                                                                                                                                                                                                                                                                                                                                                    543

Zhao et al

Powered by TCPDF (www.tcpdf.org)



integrating clinical blood indicators with biomarkers, our model surpassed those based on clinical blood indicators or 
biomarkers alone, thereby enhancing the TBAD diagnosis and the understanding of pathogenesis.45,47,48

The general pathological mechanisms of aortic dissection include smooth muscle cell injury, elastic fiber degradation, 
and inflammatory cell infiltration, which lead to a weakened aortic wall and the formation of dissection.51 Multiple 
cytokines contribute to the pathogenesis of aortic dissection, including interleukins, chemokines, tumor necrosis factor 
superfamily, growth factors, and so on.52 Our study identified five serum proteins among cytokines as biomarkers linked 
to TBAD: IL-6, GDF-15, CD58, LY9, and Siglec-7. IL-6 induces inflammatory, oxidative, and fibrotic responses53–55 and 
is associated with aortic dissection.56 As a crucial inflammatory cytokine, IL-6 affects recruitment, functional activation, 
differentiation, and infiltration of immune cells.57 Elevated IL-6 levels lead to increased inflammation and mediates aortic 
dissection,58,59 implicating it in TBAD pathogenesis. GDF-15 is a member of the TGF-β superfamily that exerts anti- 
inflammatory effects in many metabolic diseases.60 GDF-15 is associated with abdominal aortic aneurysms and 
stenosis.61,62 Increased levels of GDF-15 have been observed in patients with TBAD; however, the underlying mechan-
isms are not fully understood. CD58, also known as lymphocyte function antigen 3 (LFA-3), is broadly expressed in 
tissue cells. CD58 plays a crucial role in NK cell activation and proliferation by interacting with CD2.63 Siglec-7, which 
belongs to the Siglec receptors family, is an MHC class I-independent inhibitory receptor of T/NK cells.64–66 Both CD58 
and Siglec-7 are associated with T/NK cells, which are cytotoxic immune cells in the peripheral blood, suggesting a vital 
role of immune-mediated cytotoxicity in TBAD progression. Lymphocyte Antigen 9 (LY9), also known as CD229, is 
expressed on B and T lymphocytes, and influences their development and function.67,68 However, the relationship 
between LY9 expression and aortic dissection remains unclear. Our findings revealed decreased levels of CD58, LY9, and 
Siglec-7 in the TBAD cohort, indicating significant involvement of immune responses, particularly T/NK cells, in TBAD 
pathogenesis.

Our model provides a noninvasive, radiation-free tool for diagnosing TBAD during routine health checkups. The RF 
model, which integrates biomarkers and clinical blood indicators, offers a convenient method that uses only blood 
samples to avoid the risks of radiation and contrast agents. In particular, our models are applicable to a hypertensive 
population, contributing to the precise diagnosis of TBAD. This method improves early stage TBAD detection and 
treatment decision-making.

Our study has several limitations. First, the sample size was limited due to the low incidence of TBAD. Further study, 
including an expanded and larger sample size, should be conducted. Secondly, the specificity of the identified biomarkers 
requires further validation to distinguish TBAD from other diseases. Third, we did not analyze biomarker expression in 
the aortic tissue as almost all TBAD patients undergo endovascular rather than open surgery, limiting tissue sample 
availability. Fourth, limitations in detection accuracy may have missed some biomarkers. Finally, as the study focused on 
a Chinese population, a broader ethnic validation is needed. Future research should include larger, multicenter studies to 
enhance the generalizability of our findings.

Conclusion
Serum IL-6, GDF-15, CD58, LY9, and Siglec-7 levels have been identified and validated as TBAD biomarkers. Our RF 
model, integrating these five biomarkers with 10 clinical indicators, demonstrated high accuracy in TBAD prediction. 
The proteomic profiling-enabled machine learning model exhibited a significant potential for TBAD diagnosis within 
a population.
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