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ABSTRACT
Lung cancer mortality remains high even after successful resection. Adjuvant 

treatment benefits stage II and III patients, but not stage I patients, and most 
studies fail to predict recurrence in stage I patients. Our study included 211 lung 
adenocarcinoma patients (stages I–IIIA; 81% stage I) who received curative 
resections at Taipei Veterans General Hospital between January 2001 and December 
2012. We generated a prediction model using 153 samples, with validation using 
an additional 58 clinical outcome-blinded samples. Gene expression profiles were 
generated using formalin-fixed, paraffin-embedded tissue samples and microarrays. 
Data analysis was performed using a supervised clustering method. The prediction 
model generated from mixed stage samples successfully separated patients at high 
vs. low risk for recurrence. The validation tests hazard ratio (HR = 4.38) was similar 
to that of the training tests (HR = 4.53), indicating a robust training process. Our 
prediction model successfully distinguished high- from low-risk stage IA and IB 
patients, with a difference in 5-year disease-free survival between high- and low-risk 
patients of 42% for stage IA and 45% for stage IB (p < 0.05). We present a novel 
and effective model for identifying lung adenocarcinoma patients at high risk for 
recurrence who may benefit from adjuvant therapy. Our prediction performance of the 
difference in disease free survival between high risk and low risk groups demonstrates 
more than two fold improvement over earlier published results.

INTRODUCTION

Lung cancer patients experience high mortality 
even after tumor-negative resection, although adjuvant 
therapy can improve survival. Currently, disease stage is 
used to guide adjuvant treatment decisions [1]. Adjuvant 
treatment is recommended for stage II and IIIA patients, 
and provides measurable survival benefit. Among stage IA 

and IB patients, only high-risk IB patients are considered 
for adjuvant treatment, and may receive only marginal 
benefit [2].

Stage IA and IB non-small-cell lung cancer 
(NSCLC) patients have 5-year overall survival (OS) rates 
of only 73% and 54%, respectively [3]. However, studies 
suggest that adjuvant treatment to ALL stage I patients is 
detrimental for stage IA and provides no benefit for stage 
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IB [4–6]. Thus, there is a clear need for more accurate 
recurrence prediction models to identify high-risk stage I 
patients who could benefit from adjuvant treatment. 

The status of NCSL prognostic publications

Genomic information has been utilized in many 
studies for recurrence prediction, but is not considered 
sufficient for clinical consideration [4, 7–9]. In a review 
of 16 publications [10–25] concerning prognostic 
clinical factors (e.g. patient selection, tissue handling, 
etc.), Subramanian, et al. noted that most reports did not 
include patients with stage I disease. In the review’s study 
design guidelines, the first two study “objectives” should 
be successful stage IA and IB recurrence predictions. The 
prediction performance for stage I patients would indicate 
the quality of the prediction model.

Of these 16 reviewed studies, the Director’s 
Challenge Consortium (DCC) undertook the largest 
multicenter study [11]. However, the DCC failed to use 
genomic information to predict recurrence for stage I 
patients. Only 2/16 reviewed studies reported stage I 
results; Potti, et al. have since retracted their findings [26], 
while the study by Lu, et al. [23] was a meta-analysis of 
previously published gene data from different platforms. 
Subramanian, et al. noted that Lu’s prediction model 
performance was unreliable for stage IA patients; while 
it demonstrated a survival difference between high- and 
low-risk patients using training samples, it failed to show 
a difference in the validation samples. Subramanian, et al. 
attributed these studies’ failures to distinguish between 
high- and low-risk patients to mathematical errors and 
clinical design factors. Dupuy, et al. found that 50% of 
published genomic profiling reports had faulty statistical 
analyses [27]. In summary, all sixteen reviewed studies 
failed to validate differences in stage IA and IB recurrence 
predictions. More recently, two new stage I studies with 
limited performance were published from the University 
of California, San Francisco (UCSF) and the National 
Cancer Institute (NCI) [28, 29], against which we will 
compare our results.

Issues of meta-analysis studies based on 
aggregating published gene data

Another issue in interpreting genomic study results 
stems from the common practice of aggregating published 
data for re-analysis [12, 14, 18, 22, 23, 30–35]. Most 
of these studies combine data from different platforms, 
including different versions of arrays from every major 
array manufacturer [32], and from PCR analyses, 
commercial arrays, and custom arrays [12]. Combining 
gene profiling data is problematic due to the difficulty 
in reconciling data across different platforms. Such data 
conversion difficulties were demonstrated in studies 
comparing several versions of Affymetrix arrays [36–38], 

which concluded that only genes with similar/identical 
probes can be compared reliably, in part because arrays 
from different manufacturers have very different probe 
designs. This inter-platform issue was studied in a year-
long MicroArray Quality Control (MAQC) workshop 
sponsored by the FDA, which concluded that gene data 
from different platforms should not be aggregated or 
compared due to probe sequence and labeling technique 
differences [39]. A study that used three different platforms 
to analyze identical RNA samples produced three diverse 
sets of differentially expressed genes, with only four genes 
commonly identified across all three platforms [40]. The 
discovered biomarkers/genes were platform-dependent 
and not true markers. As a result of these data comparison 
complications, a data aggregation guideline was proposed 
[41] and discussed [42]. Not all probes can be converted, 
and this issue is still under study [43, 44].

Due to the numerous potential issues in an 
aggregated genomic profiling-based study, external blind 
validation is essential to confirm a prediction model 
design. A true validation blinds the clinical outcome of 
validation samples during model training to avoid possible 
bias [45]. The validation dataset should be used only 
once, forcing careful model design and rigorous testing 
before applying the model to the external, blind validation 
samples [27]. By this definition, data aggregation 
studies performed thus far have not undergone true blind 
validation tests, as all clinical outcomes were already 
known.

Finally, the data aggregation-based study is an 
exploratory approach; methods should be repeated in a 
follow-up study using a chosen platform to validate model 
performance prior to clinical consideration. So far, even 
the largest 17-dataset aggregation-based study had only 
limited performance [34]. We are not aware of any follow-
up validation studies based on data aggregation prediction 
models.

Considerations of study design

Following the Subramanian, et al. guidelines, the 
present study concentrated on recurrence prediction for 
stage IA and IB patients for the identification of early 
stage, high-risk patients to target for adjuvant treatment. 
Since there are serious potential difficulties in analyzing 
mixed data from different platforms, we did not use 
previously published data for validation, but instead 
generated new data to support both training and validation.

The vast majority of published studies used fresh 
frozen tissues. If the results were promising, a follow-up 
formalin-fixed paraffin-embedded (FFPE) based study 
was carried out for clinical implementation. However, 
performance and gene selection can vary greatly between 
fresh frozen and FFPE samples [16, 29]. To prepare for 
our current study, we ran a pilot study comparing FFPE 
and fresh-frozen samples. The study included only patients 
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who had paired FFPE and fresh-frozen samples, and the 
same microarray probes were used for both analyses. 
The identical patients and probes allowed a detailed 
comparison between these two results. We found the 
gene lists chosen for prediction to be vastly different 
between these two types of tissue preparations. However, 
prediction performance was similar for fresh-frozen and 
FFPE samples, and both predicted stage I recurrence 
successfully. We chose to use FFPE samples for this study.

Many studies use a small number of biomarkers 
for recurrence prediction, with PCR the most commonly 
chosen platform. However, due to lung cancer 
heterogeneity, a large number of genes may be required 
to provide accurate recurrence predictions. We chose 
a suitable microarray as the FFPE sample analysis 
platform, allowing a large number of genes to be screened 
simultaneously, and providing a stable base to calibrate 
the values of selected genes for recurrence prediction. By 
comparison, PCR-based platforms usually only utilize a 
few genes for calibration.

Many studies chose OS as the primary end point. 
However, OS was affected by two factors: recurrence and 
treatment of the recurrence. As the purpose of this study 
was to reduce recurrence via adjuvant treatment, this study 
chose disease-free survival (DFS) as the primary endpoint. 
We also used binary training to force the decision. This 
encouraged a faster prediction-score transition between 
high- and low-risk predictions. A prediction-score curve 
typically transitions smoothly between high- and low-risk 
ranges, but an “intermediate risk” transitional group is less 
useful in clinical decision making. Finally, to ensure the 
accuracy of our prediction model, external blind validation 
was implemented. This forced a careful training process to 
ensure that no bias was introduced in the model design.

RESULTS

Of the 211 patient samples included in this study, 
153 were used for training, and the remaining 58 for blind 
testing. During training, a leave-5-out method was used 
to randomly assign five samples to be self-testing with 
the remaining 148 used for training. This training process 
was repeated 500 times to form an averaged prediction 
performance with 102 selected genes (Supplementary 
File: Gene List). The hazard ratio (HR) of recurrence for 
high- vs low-risk groups from the training set was very 
good at 4.53 (95% confidence interval (CI): 2.77–6.35, 
P < 0.0001). DFS rates were well separated between 
high- and low-risk patients five years after surgery (51% 
difference) (Figure 1A).

An additional 58 clinical outcome-blinded samples 
were used for external validation. A small p-value 
(< 0.05) for separation of the predicted high- and low-
risk validation samples confirmed the performance of 
the prediction model. However, this did not necessarily 
indicate a similar performance between training and 

validation. Only a careful and unbiased training procedure 
allowed validation samples to achieve a performance 
similar to that of the training samples. This study achieved 
similar training and validation performances. The HR of 
recurrence for high- vs low-risk groups from the validation 
samples was 4.38 (95% CI: 1.34–8.63, P = 0.0101; 
Figure 1B), which was very close to the HR of recurrence 
(4.53) from the training set. Both training and validation 
had excellent 5-year DFS separation between high- and 
low-risk patients (Figure 1A–1B).

The validation sample set confirmed the recurrence 
prediction model’s excellent overall performance. While 
there were not enough validation samples to test stage 
IA and IB patients separately, the validation and training 
performances were very similar and therefore a close 
indication for the separate performances for stage IA and 
IB patients. The HR of high- vs low-risk recurrence of 
stage I-only training samples was 4.78 (95% CI: 2.78–
7.48, P < 0.0001), similar to the training result for patients 
of all stages (HR = 4.53; Figures 1A and 2B). Additionally, 
the prediction model separated high- and low-risk patients 
for stage IA or IB cases. The HR of recurrence for high- vs 
low-risk stage IA patients was 6.39 (95% CI: 2.61–23.8, 
P = 0.0003), and the 5-year DFS difference between high- 
and low-risk patients was 42% (Figure 2B). The HR of 
recurrence for high- vs low-risk stage IB patients was 3.46 
(95% CI: 1.74–5.28, P < 0.0001), while the 5-year DFS 
difference between high- and low-risk patients was 45% 
(Figure 2C). While both groups were difficult to predict, the 
prediction model performed well for both sets of patients.

Our model was trained by weighing recurrence 
and non-recurrence errors equally. This led to a balanced 
performance between sensitivity and specificity. Using 
a default cutoff value of zero, the prediction model had 
a sensitivity = 0.77 and a specificity = 0.74. If higher 
sensitivity was preferred, one could retrain using larger 
error weights for recurrent samples. As the area under 
the curve (AUC) of the receiver operator characteristic 
(ROC) of this prediction model was good at 0.78 (95% 
CI: 0.71–0.85, P < 0.0001; Figure 2D), one could trade an 
excellent sensitivity and still have a reasonable specificity 
using different cutoffs without retraining (e.g. sensitivity 
at 0.90 and specificity at 0.51).

Identification of high-risk stage I patients

The sensitivity and specificity of our predictive 
model allowed for the clear separation of high- and 
low-risk patients from the average recurrence rate. For 
example, low-risk IA patients had a 5-year DFS rate of 
about 90%, while high-risk IA patients had a rate of about 
50% (Figure 2B). A large survey reported a 73% 5-year 
OS for stage IA patients [3], which was about the middle 
of the high- and low-risk values. Similarly, the low-risk IB 
patients had a DFS rate of about 70% while high-risk IB 
patients had a rate of about 30% (Figure 2C). The reported 
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5-year OS for stage 1B patients was 58% [3], which 
was also in the middle of our high- and low-risk rates. 
Therefore, our prediction model successfully identified 
high-risk stage 1A and 1B patients for adjuvant treatment.

DISCUSSION

Marker gene discovery vs. phenotypic 
classification 

Many recent studies have aggregated published 
genomic data from different platforms to train or validate 
their prediction models. Since the data were not fully 
compatible among different platforms, the act of data 
aggregation implied an assumption that the identified 
biomarkers were true marker genes that could overcome 
platform differences. It thus became common practice 
to validate discovered gene lists via several published 
datasets. In short, the marker gene concept was implicitly 
included in data aggregation studies even when the 
concept was not stated. Some data aggregation studies 
explicitly included the concept of marker genes, as 
pathway information was used to select potential genes 
[22]. One study used prostate cancer patients to identify 
recurrence-related genes, then extrapolated to predict 
recurrence in lung cancer patients [46]. Thus, marker gene 
concepts were implicitly or explicitly included for all data 
aggregation studies.

The marker gene concept has also lead to many 
studies using only one gene to predict recurrence [8]. 
As NSCLC is known for its heterogeneity, with different 
survival rates associated with different subtypes [10, 47], 
it is not surprising that a large number of single gene 
studies have failed to predict recurrence [8].

Marker gene discovery is often a search for 
one or two important genes. This requires accurate 

expression values for all genes to avoid missing the 
target gene(s), thus necessitating the use of fresh-frozen 
tissues for analysis. As fresh frozen tissue collection is 
not a standardized procedure, sample quality can vary 
greatly among different clinics. Conversely, FFPE tissue 
collection is standardized, with similar quality across 
different institutions, and therefore excellent translational 
potential.

Marker gene discovery and phenotypic classification 
are two different tasks with different requirements: gene 
expression accuracy vs. consistency. For gene discovery, 
data accuracy from every gene is key. For recurrence 
prediction, gene data consistency is integral for prediction 
accuracy from multiple genes. For this reason, FFPE tissue 
could be a better choice for the current task. The present 
study demonstrates the potential for using FFPE tissue in 
clinical practice.

There is inherent risk in using a large number of 
genes for recurrence prediction without careful design. 
Bias could easily be introduced due to the large number 
of screened candidate genes compared to the much 
smaller number of patient samples. A true validation set 
forces a careful training system design to ensure no bias 
is introduced from using a larger number of genes. Our 
careful training procedure allowed the validation set to 
achieve a similar performance as the training set.

Comparison to other stage I studies

Most recent studies have re-analyzed already-
published data sets. Only two groups, the NCI [28, 33] 
and UCSF [16, 29], that predicted stage I recurrence 
used newly processed samples.  Both studies used fresh-
frozen tissues and analyzed gene expression using PCR. 
In the UCSF study, FFPE samples were used in a follow-
up study. In fresh-frozen vs. FFPE samples, the genes 

Figure 1: Prediction performance by DFS for training (A), and validation (B) samples.
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selected for prediction increased from 4 to 11; however, 
model performance was negatively affected. The HR for 
the training sets was reduced from 6.72 for stage I–III 
patients [16] to 2.43 (stage I), 2.68 (stage II), and 1.93 
(stage III) [29].

A direct comparison of our study with that of the 
UCSF group was difficult due to OS (UCSF) vs DFS 
(this study) endpoint differences. Additionally, UCSF 
had three prediction classifications (high-, intermediate-, 
and low-risk) with equal population distribution. The 
removal of intermediate-risk patients improves the HR of 
distinguishing high- vs low-risk. As an intermediate-risk 
classification limits its use in clinical decision-making, 
we used binary prediction classifications (high- vs low-
risk). Still, a qualitative comparison between the UCSF 
model and this study was possible; the Kaiser testing 
set from UCSF had a high- vs low-risk OS HR of 2.16. 
The validation result was close to training result, with 
HR=2.43. The 5-year OS difference between high- vs. 
low-risk patients was 18.4%.

The NCI study also differed from our study, using 
PCR to analyze gene expression in fresh frozen tissue. 
NCI did not follow up with an FFPE study, thus preventing 
a direct comparison with our FFPE-based results. The 
NCI trained their model using DFS, but the validation was 

done using OS from nine published datasets generated 
from different platforms [33]. NCI also used a 3-class 
prediction vs. our 2-class prediction. However, we were 
still able to qualitatively compare our study with theirs. 
The HR for high- vs low-risk DFS from the stage I NCI 
training set was 2.19. The HR for high- vs low-risk OS 
from nine different validation datasets was 1.73. The 
5-year OS difference between high- and low-risk patients 
was estimated at 25% [33]. A follow-up FFPE study is 
necessary for translation to clinical implementation; tissue 
preparation type changes can greatly affect performance as 
shown by the UCSF study results.

Instead of three class predictions, our study used 
binary classifications, i.e. all patients were included in 
the HR calculation. The 5-year DFS difference between 
low-risk and high- stage I patients was 49.5% (79.9% vs. 
30.4%) with HR = 4.87. Within the recognized limitations 
of study design differences, comparing these values to the 
UCSF and NCI results, our 5-year DFS difference between 
high- and low-risk patients is estimated to be about twice 
as large as previously reported.

In addition, we observed excellent separation and 
HR between high- and low-risk stage IA and IB patients. 
The difference was 42.1% (89.7% vs. 47.6%) and HR was 
6.40 for stage IA patients, while the difference was 44.7% 

Figure 2: DFS in the training set for all stage IA + IB (A), stage IA alone (B), stage IB alone (C), and ROC (D).
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(69.3% vs. 24.6 %) and HR was 3.46 for stage IB patients. 
As it is the most difficult to predict recurrence for stage IA 
patients, the excellent HR for stage IA is a good indicator 
of the robustness of this prediction model.

We compared the gene list identified by the NCI (4 
genes) and UCSF (11 genes) to our list (102 genes). None 
of the NCI and UCSF target genes were on our list. If the 
small number of genes discovered by the NCI and UCSF 
are true marker genes, our study shows that one does 
not need marker genes for good recurrence prediction. 
This further supports the observation that gene lists are 
platform dependent. 

MATERIALS AND METHODS

Patients

Medical charts of patients who had undergone lung 
adenocarcinoma curative resections between January 2001 
and December 2012 were reviewed and selected by a 1:1 
ratio based on recurrence or non-recurrence status. This 
ratio allowed the prediction model to have a balanced 
performance for recurrence and non-recurrence patients. A 
total of 101 non-recurrent and 110 recurrent patients with 
sufficient FFPE samples from the Taipei Veterans General 
Hospital tissue bank were enrolled in this study. During the 
last five decades the hospital has evolved into a medical 
center that caters to the general public as well as to veterans. 
This patient population provided a roughly balanced male 
to female ratio for this study. The study was approved by 
the Institutional Review Board of Taipei Veterans General 
Hospital (IRB Number: 2013-06-005AC). Written informed 
consent was obtained from all patients.

Median follow-up time was 53.2 months. Non-
recurrent patients had a minimum follow-up of 48 
months. A majority of these (81%, 171/211) were stage 
I patients (Table 1, Table 2A, Table 2B). By including a 
smaller number of stage II and III samples, the training 
procedure selected more robust genes across different 
stages to form the prediction model. None of the 101 
non-recurrent patients received adjuvant treatment, while 
29/110 recurrent patients did.

Complete tumor resection combined with mediastinal 
lymph node dissection or sampling was performed in all 
patients as previously described [48, 49]. Disease stages 
were determined based on TNM classification (7th ed.) 
of the American Joint Committee on Cancer and the 
International Union Against Cancer. All patients were 
followed up at the outpatient department in 3-month 
intervals for the first two years after resection and in 
6-month intervals thereafter. Patient OS rate was calculated 
from the date of operation to the date of event (death). DFS 
was defined as the time between surgery and the occurrence 
of an event (death or recurrence). Censored data are 
that when an event did not occur, and survival time was 
calculated from surgery to the date of last follow up.

Platform

Affymetrix GeneChip® Human ST 2.0 microarray 
was used for this study. ST 2.0 is a whole-transcript 
array that includes probes to measure 40,716 RefSeq 
transcripts and 11,086 long intergenic non-coding RNA 
transcripts (lincRNA). The array contained more than 
1.35 million probes distributed across the full length of 
genes, providing an excellent measurement of overall gene 
expression for FFPE samples.

Data generation

For each sample, a 10-μm FFPE section was used 
to extract total RNA using Qiasymphony automation 
with the Qiasymphony RNA Kit from Qiagen. Samples 
were fragmented and labeled using the NuGEN Encore 
Biotin kit according to the manufacturer’s specifications. 
Hybridization cocktails containing 3.75 ug of the 
fragmented, end-labeled cDNA were applied to GeneChip® 
Human Gene 2.0 ST arrays. Hybridization was performed 
for 17 h, and arrays were washed and stained with the 
GeneChip Fluidics Station 450 using FS450_0007 script. 
Arrays were scanned using the Affymetrix GCS 3000 7G 
and GeneChip Operating Software v. 1.4 to produce CEL 
intensity files. The complete dataset GSE90623 can be 
accessed at NCBI’s Gene Expression Omnibus (GEO) .

Data analysis

Gene data and quality control metrics were extracted 
from Cell Intensity File (CEL) using Affymetrix software 
Affymetrix Power Tools (APT). Robust Multi-array 
Average method was used for normalization. Hybridization 
process quality was monitored using Affymetrix bacterial 
spikes, and labeling process quality was monitored with 
poly-A-control RNAs. The metrics of each sample had to 
be within the vender’s quality specifications; otherwise the 
entire process was repeated.

To ensure the stability of our chosen platform, 
samples were extracted over 20 batches to test gene 
expression variation between batches; a reference sample 
was added to each sample-processing batch. Reference 
samples from different batches were compared to ensure 
data consistency across different batches.

A k-Nearest Neighbors (KNN) algorithm was used 
to build a prediction model to differentiate recurrence 
from non-recurrence samples. An unknown sample was 
classified as recurrent or non-recurrent, based on the 
classification of its nearest neighbor. The distance metric 
was the correlation of gene expression between samples. 
A t-test was used to select the best genes to calculate 
correlation.

The prediction model was trained to have a 
maximum distinction between two classifications: 
recurrent/high-risk or non-recurrent/low-risk samples. 
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Table 1: Characteristics of all patients with or without recurrence
Variables Non-Recurrence (N = 101) Recurrence (N = 110)

Age, years (median ± SD) 63.4 ± 11.8 68.0 ± 11.7
Follow-up, months (median ± SD) 56.8 ± 12.7 41.7 ± 19.0
Sex, number (%)

Male 51 (50.5) 60 (54.5)
Female 50 (49.5) 50 (45.5)

Stage, number (%)
IA 50 (49.5) 18 (16.4)
IB 48 (47.5) 55 (50.0)
IIA 1 (1.0) 10 (9.1)
IIB 1 (1.0) 4 (3.6)
IIIA 1 (1.0) 23 (20.9)

SD, standard deviation.

Table 2A: Comparison of training and validation patients without recurrence
Non-Recurrence (N = 101) Training (N = 73) Validation (N = 28)

Age, years (median ± SD) 62.0 ± 10.6 68.5 ± 15.5
Follow-up, months (median ± SD) 56.8 ± 12.1 55.9 ± 12.2
Sex, number (%)

Male 36 (49.3) 15 (53.6)
Female 37 (50.7) 13 (46.4)

Stage, number (%)
IA 41 (56.2) 9 (32.1)
IB 30 (41.1) 18 (64.3)
IIA 1 (1.4) 0 (0.0)
IIB 1 (1.4) 0 (0.0)
IIIA 0 (0.0) 1 (3.6)

SD, standard deviation.

Table 2B: Comparison of training and validation patients with recurrence
Recurrence (N = 110) Training (N = 80) Validation (N = 30)

Age, years (median ± SD) 68.5 ± 11.9 66.0 ± 11.4
Follow-up, months (median ± SD) 47.2 ± 20.0 34.1 ± 13.9
Sex, number (%)

Male 44 (55.0) 16 (53.3)
Female 36 (45.0) 14 (46.7)

Stage, number (%)
IA 10 (12.5) 8 (26.7)
IB 44 (55.0) 11 (36.7)
IIA 8 (10.0) 2 (6.7)
IIB 4 (5.0) 0 (0.0)
IIIA 14 (17.5) 9 (30.0)

SD, standard deviation.
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After training, the prediction model output a score for 
each test sample. The model had a default cutoff value 
of zero to separate recurrent (> 0) and non-recurrent 
(< 0) patient predictions. A negative score indicated a 
low-risk prediction; a positive score indicated a high-risk 
prediction. A larger absolute score signified a prediction 
with high confidence; low confidence prediction scores 
(–0.5 < score < 0.5) were considered non-decision/
medium-risk cases. The score allowed a tradeoff between 
sensitivity and selectivity using different cutoffs.

Training and external validation

During training, 153 training samples were 
randomly separated into two groups; 148 samples were 
used to generate the prediction model, while five were 
reserved to test model performance. These two sample 
groups were well separated in the computer programming 
to simulate the final external validation test with an 
additional 58 samples. Careful repetitions of this simulated 
test ensured the subsequent success of the validation test.

To implement a blind validation process, the clinical 
outcomes of the 58 test samples were unknown during the 
training procedure to avoid bias. Only after the model 
had generated the 58 test sample predictions were clinical 
outcomes compared to predictions. This procedure ensured 
that the 58 samples provided true external validation.

Performance indicators

The recurrence prediction model performance was 
indicated by the HR of recurrence between predicted 
high- vs. low-risk patients. AUC under the ROC curve, 
sensitivity, and specificity were also reported. GraphPad 
PRISM was used to generate the results.

CONCLUSIONS

As the prediction results of most published studies 
using marker genes have been limited, we discarded the 
idea of identifying marker gene lists and used phenotypic 
classification instead. To build a successful classification-
based predictive model, we generated a new high quality 
gene expression dataset from FFPE samples using an 
automated process, thus avoiding the hazards of utilizing 
published data from different platforms for validation 
purposes. During analysis, the integrity of the prediction 
model was rigorously tested and the performance 
validated using a blind data set. The use of consistent 
and high quality data combined with rigorous iterative 
training resulted in successful recurrence predictions 
for both stage IA and IB patients, and suggested the 
possibility of excellent clinical performance using this 
new approach. The prediction performance of our model 
was improved more than two-fold compared to previously 
published results.

Stage I patients are currently a small percentage of 
all lung cancer patients. With the recent recommendation 
of using low dose CT for lung cancer screening, stage I 
patient detection will increase. We present a novel and 
efficacious model that identifies high-risk stage I lung 
cancer patients who may benefit from adjuvant treatment, 
and therefore may improve patient survival.
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