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Complete Genome Sequence of Escherichia coli Myophage

Mangalitsa
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ABSTRACT Enteropathogenic Escherichia coli is a prevalent Gram-negative bacte-
rium that can lead to fatal complications from infection in humans. Here, we present
the isolation and complete annotation of the 52,329-bp genome of enteropatho-
genic E. coli ATCC 23545 myophage Mangalitsa. Predicted terminal repeats and tem-
perature sensitivity for plaque formation place Mangalitsa with similar unclassified
myoviruses.

nteropathogenic Escherichia coli (EPEC) strains are Gram-negative human patho-

gens that are prevalent in both communal and clinical settings (1). They have been
identified as one of the leading causes of persistent diarrhea, which is the second
largest contributor to childhood mortality, accounting for 1.3 million deaths per year (2,
3). Here, we present the complete genome sequence of enteropathogenic E. coli
myophage Mangalitsa.

Bacteriophage Mangalitsa was isolated from a chloroform-sterilized and en-
riched swine fecal sample collected in College Station, TX, based on its ability to
grow on the enteropathogenic E. coli strain ATCC 23545. While the host was
typically grown aerobically at 37°C in Luria broth (BD) and standard soft agar
overlay methods were used (4), Mangalitsa only produced plaques at 30°C or 22°C.
Phage genomic DNA was isolated using the shotgun library prep modification of
the Promega Wizard DNA clean-up system (5). A genomic library prepared with the
TruSeq Nano low-throughput kit was sequenced by an lllumina MiSeq platform with
paired-end 250-bp reads. A total of 480,501 reads were in the phage index. Quality
control was performed with FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Sequence reads were then trimmed using the FASTX-Toolkit v0.0.14
(http://hannonlab.cshl.edu/fastx_toolkit/). The genome was assembled with 1,333-fold
coverage using SPAdes v3.5.0 and closed by PCR (forward primer, 5'-AGTGCACGGTAT
TCTTCGTTAG-3'; reverse primer, 5'-CTAACGCATCGAATCTCTTCTCA-3’) and Sanger se-
quencing (6). Structural annotations were made with GLIMMER v3.0 and MetaGene-
Annotator v1.0, and ARAGORN v2.36 did not reveal any tRNAs (7-9). Protein-coding
gene function was predicted with InterProScan v5.33-72 and BLAST v2.2.31 (10, 11). The
BLAST analysis queried the NCBI nonredundant and UniProtKB Swiss-Prot and TrEMBL
databases with a 0.001 maximum expectation value cutoff (12). Rho-independent
termination sites were analyzed using TransTermHP v2.09 (13). Whole-genome similar-
ity was calculated by the progressiveMauve v2.4.0 algorithm (14). The annotation tools
used are in the Galaxy and Web Apollo instances hosted by the Center for Phage
Technology (https://cpt.tamu.edu/galaxy-pub). The morphology of the phage sample
was determined by negative staining with 2% uranyl acetate and visualized with
transmission electron microscopy at the Texas A&M University Microscopy and Imaging
Center (15).
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Mangalitsa is a myophage with a 52,329-bp genome consisting of 44.01% GC
content, 1 terminator, 0 tRNAs, and 82 predicted protein-coding genes. Of the
protein-coding genes, 31 have a predicted function, while 51 are hypothetical
proteins, totaling an overall 89.66% coding density. Additionally, Mangalitsa has
3,234-bp terminal repeats detected by PhageTerm (16). The terminal repeat pat-
tern is consistent with its most closely related phages, which include enterobacte-
rial phage phiEcoM-GJ1 (79.61% nucleotide similarity; GenBank accession no.
EF460875), Pectobacterium phage PP101 (47.01% nucleotide similarity; KY087898),
Pectobacterium phage PM1 (46.24% nucleotide similarity; KF534715), and Erwinia phage
vB_EamM-Y2 (37.28% nucleotide similarity; HQ728264) (17-19). As such, the Mangalitsa
genome was reopened with the RNA polymerase gene as the first feature following the
terminal repeat to follow the convention for this group of phages. Interestingly,
temperature sensitivity was also reported for the related Escherichia myophage ST32
(MF044458) (20).
Data availability. The genome sequence and associated data for phage Mangalitsa
were deposited under GenBank accession no. MN045229, BioProject no. PRINA222858, SRA
no. SRR8869233, and BioSample no. SAMN11360419.
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