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Purpose: To evaluate isocitrate dehydrogenase (IDH) status in clinically diagnosed grade
II~IV glioma patients using the 2016World Health Organization (WHO) classification based
on MRI parameters.

Materials and Methods: One hundred and seventy-six patients with confirmed WHO
grade II~IV glioma were retrospectively investigated as the study set, including lower-
grade glioma (WHO grade II, n = 64; WHO grade III, n = 38) and glioblastoma (WHO grade
IV, n = 74). The minimum apparent diffusion coefficient (ADCmin) in the tumor and the
contralateral normal-appearing white matter (ADCn) and the rADC (ADCmin to ADCn ratio)
were defined and calculated. Intraclass correlation coefficient (ICC) analysis was carried
out to evaluate interobserver and intraobserver agreement for the ADC measurements.
Interobserver agreement for the morphologic categories was evaluated by Cohen’s kappa
analysis. The nonparametric Kruskal-Wallis test was used to determine whether the ADC
measurements and glioma subtypes were related. By univariable analysis, if the
differences in a variable were significant (P<0.05) or an image feature had high
consistency (ICC >0.8; k >0.6), then it was chosen as a predictor variable. The
performance of the area under the receiver operating characteristic curve (AUC) was
evaluated using several machine learning models, including logistic regression, support
vector machine, Naive Bayes and Ensemble. Five evaluation indicators were adopted to
compare the models. The optimal model was developed as the final model to predict IDH
status in 40 patients with glioma as the subsequent test set. DeLong analysis was used to
compare significant differences in the AUCs.

Results: In the study set, six measured variables (rADC, age, enhancement, calcification,
hemorrhage, and cystic change) were selected for the machine learning model. Logistic
regression had better performance than other models. Two predictive models, model 1
(including all predictor variables) and model 2 (excluding calcification), correctly classified
May 2021 | Volume 11 | Article 6407381

https://www.frontiersin.org/articles/10.3389/fonc.2021.640738/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640738/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640738/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640738/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640738/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:cjr.malin@vip.163.com
https://doi.org/10.3389/fonc.2021.640738
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.640738
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.640738&domain=pdf&date_stamp=2021-05-13


Zhang et al. MRI Prediction on IDH Status

Frontiers in Oncology | www.frontiersin.org
IDH status with an AUC of 0.897 and 0.890, respectively. The test set performed equally
well in prediction, indicating the effectiveness of the trained classifier. The subgroup
analysis revealed that the model predicted IDH status of LGG and GBM with accuracy of
84.3% (AUC = 0.873) and 85.1% (AUC = 0.862) in the study set, and with the accuracy of
70.0% (AUC = 0.762) and 70.0% (AUC = 0.833) in the test set, respectively.

Conclusion: Through the use of machine-learning algorithms, the accurate prediction of
IDH-mutant versus IDH-wildtype was achieved for adult diffuse gliomas via noninvasive
MR imaging characteristics, including ADC values and tumor morphologic features, which
are considered widely available in most clinical workstations.
Keywords: diffuse glioma, apparent diffusion coefficient, MRI, isocitrate dehydrogenase status, machine
learning, prediction
INTRODUCTION

Cerebral diffuse infiltrating gliomas are the second most
common type of primary central nervous system (CNS) tumor,
second only to meningiomas. According to the 2016 World
Health Organization (WHO) classification of CNS tumors, adult
diffuse gliomas include astrocytic tumors, oligodendrogliomas,
and glioblastomas (WHO grade II~IV) (1). These tumors
account for approximately 22% of all CNS tumors. In the
United States, more than 16,000 cases of adult diffuse glioma
are reported each year, with an incidence of approximately 5.13
per 100,000 people. In addition, glioblastoma (GBM) is the most
common malignant tumor in the CNS, accounting for
approximately 14.6% of all CNS tumors and 48.3% of all
malignant CNS tumors, with 11,833 cases reported annually
within the U.S (2, 3). However, due to the heterogeneity of these
neuroepithelial tumors, they have different clinical
characteristics, biological behaviors, and histopathological
characteristics, and substantial differences in treatment
and prognosis.

Recently, the isocitrate dehydrogenase (IDH) status and other
molecular subtypes have been reported as major prognostic
factors and molecular diagnostic criteria for glioma tumor
behavior. Thus, noninvasively detecting molecular subtypes
before surgery is important for predicting the outcome and
choosing the best therapy. Previous studies have shown that
lower-grade glioma (LGG) IDH-wildtype and glioblastoma
(GBM) have similar molecular structures and prognoses, while
IDH-mutant status confers longer overall survival than IDH-
wildtype status (4). In addition, compared with glioblastomas in
patients with IDH-mutations (grade IV), anaplastic gliomas
(grade III) in patients with wild-type IDH have a worse
prognosis (5). It should be noted that IDH mutation status has
been integrated into the 2016 WHO Classification of Tumors of
theCentralNervous System, Revised 4th edition (1). Furthermore,
it has been reported that due to different molecular subtypes, the
choice of surgical resection range has different survival effects on
patients with lower-grade glioma (grades II and III) (6). Based on
the above research (5–7), it is necessary to predict the IDH status
accurately before surgery and to guide the clinical development of
appropriate tumor treatment plans.
2

Diffusion-weighted imaging (DWI) is a practical imaging
technique that is widely employed in the clinic and is mainly
used to detect the diffusion of water molecules (8). A meta-analysis
showed that the quantitative measurement of the apparent
diffusion coefficient (ADC) value can be used to grade gliomas
with high accuracy (9). Our previous study demonstrated that the
minimum ADC (ADCmin) can be used to predict the grading of
neuroepithelial tumors (10). Prior studies (11, 12) have shown that
the characteristics of lesions, such as location, internal structure,
and enhancement pattern, are different among the genetic subtypes
of glioma. In addition, machine learning has been applied in
different medical fields, including medical image interpretation,
prediction of disease development, and treatment response (13,
14). The advantage of machine learning is that it does not require
any assumptions about the input variables and their relationships
with the output; in addition, it is a fully data-driven learning
method that does not rely on rules-based programming. Therefore,
our study focused on the WHO 2016 classification criteria,
applying machine learning methods to evaluate the value of
clinically obtainable MRI features in predicting the IDH status of
adult patients with diffuse grade II~IV glioma.
MATERIALS AND METHODS

Patient Cohort
This retrospective study was approved by the Institutional Ethics
Committee of the Chinese PLA General Hospital, which waived
the requirement for written informed consent. From August
2015 to July 2020, through the hospital’s local picture archiving
and communication system (PACS), two radiologists (Z.J. and
P.H., with 10 and 13 years of experience, respectively),
continuously collated patients with WHO grade II~IV glioma
who underwent brain MRI. The original study cohort was
collected from August 2015 to December 2019 as the study set,
and another 40 cases from January 2020 to June 2020 were
collected as the test set. The inclusion criteria included (a) a
confirmed histologic diagnosis in accordance with WHO
grade II-IV glioma; (b) conclusive histopathological and
immunohistochemical staining results; and (c) brain MRI
examinations performed within 6 months of WHO II/III and
May 2021 | Volume 11 | Article 640738
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within 5 weeks of WHO IV prior to neurosurgical treatment. The
exclusion criteria included (a) an MRI scan with substandard
quality, including an incomplete MRI protocol, the inability to
compute the ADC map and obvious artifacts; (b) tumors other
than WHO grade II~IV adult glioma; (c) incomplete or
ambiguous histologic results; and d) previous treatment for
glioma, such as radiotherapy, chemotherapy or immunotherapy.
The flow chart of the enrolled patients (including the study set and
test set) is provided in Figure 1.

MRI Examination
All enrolled patients underwent 3.0 T MRI. The MRI protocols
included axial T2-weighted, axial or coronal T2 FLAIR, axial T1-
weighted, fat-suppressed contrast-enhanced T1-weighted
(including axial, coronal and sagittal) imaging, susceptibility-
weighted imaging (SWI) and diffusion-weighted imaging. DWI
was performed with b values of 0 s/mm2 and 1000 s/mm2 and
was used to derive the ADC maps. Our institution is a general
hospital, and although the MRI scans came from several
examination rooms, they were performed with the same
system (GE Healthcare, Milwaukee, USA). The MRI machines
and protocols used are provided in Supplementary Table 1.

Histopathologic Analysis
All tumors were surgically resected, and the lesion specimens
were fixed with paraffin blocks during the operation. Then, the
neurologic pathology group adopted the 2016 WHO glioma
Frontiers in Oncology | www.frontiersin.org 3
classification for gross pathology and immunohistochemical
staining to analyze and provide the final results.
ADC Quantification
The interobserver and intraobserver levels of agreement for ADC
were assessed from the measurements made by two blinded
radiologists (JZ and HP, with 10 and 13 years of experience,
respectively, both with professional qualification certificates). To
assess intraobserver reproducibility, the first observer performed
region of interest (ROI) delineation twice within one week
following the same procedure each time. At the same time, the
second observer independently delineated the ROI once, and the
interobserver agreement was assessed by comparing the results
with the ADC outcomes extracted from the first ROI delineation
made by the first observer.

Three different ROIs (30-40 mm2) were placed into the
visually perceived lowest portions inside the tumors on the
ADC maps, excluding hemorrhagic, cystic, and necrotic
portions and calcifications that might influence the measured
results without overlapping the ROIs. Then, the minimum ADC
was defined as the average value of the ROIs with the lowest ADC
values, as in Maynard et al. (11) and Xing et al. (12).
Subsequently, following the same method, an ROI was
delineated by selecting the contralateral centrum semiovale
region (8, 11), and defining the ADC value within it as ADCn.
Thus, there were four ROIs per patient. Finally, the rADC
FIGURE 1 | Patient selection flowchart. ADC, apparent diffusion coefficient; WHO, World Health Organization.
May 2021 | Volume 11 | Article 640738
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(ADCmin to ADCn ratio) was calculated, resulting in three total
ADC parameters (ADCmin, ADCn, rADC) per patient.

In the test set (n = 40), all ADC values were obtained by two
certificated radiologists (Y-YC and Y-LW, with 3 and 18 years of
experience, respectively) according to the method described
above. Examples of ROI delineations are shown in Figure 2.

Morphologic Assessment
Two board-certified radiologists (JZ and HP with 10-13 years of
experience) independently evaluated 176 MRI datasets in this
study for 1 month while being blinded to the pathologic results.

The selection and evaluation of the tumor morphology were
performed according to previous publications (11, 12). (a) Tumor
location, which was specified by the center of the lesion, was
divided into 4 groups: frontal lobe, other lobes (including
parietal lobe, temporal lobe and occipital lobe), thalamus or
brainstem, and cerebellum. (b) The maximum tumor diameter
was measured by reference to the T2-weighted images, FLAIR
images and contrast-enhanced T1-weighted images. (c) Contrast
enhancement was categorized into 3 groups: nonenhancement,
patchy enhancement, and rim enhancement. (d) Calcification and
hemorrhage were observed and evaluated on T1-weighted
imaging, susceptibility-weighted imaging, and CT, as available.
(e) Cystic changes and central necrosis were defined as a free-
liquid intensity with a nonenhanced portion. (f) T2-FLAIR
Frontiers in Oncology | www.frontiersin.org 4
mismatch signs, which previous studies considered to be
specific (15, 16), were defined as tumors showing nearly
homogeneous hyperintensity on T2-weighted images and
relatively low intensity and peripheral hyperintensity on FLAIR
sequences. Figures 3 and 4 show examples of different
morphologic characteristics of gliomas on MRI in the study set.

Statistical Analysis
Statistical analyses were performed using SPSS (version 26.0) and
Python (version 3.8). Intraclass correlation coefficient analysis
was used to evaluate the interobserver and intraobserver levels of
agreement for ADCmeasurements, applying a two-way random-
effects model. The interobserver agreement for morphologic
categories was evaluated by Cohen’s kappa analysis. For the
agreement analysis, the outcomes were interpreted as follows: 0.2
or less, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60,
moderate agreement; 0.61–0.80, substantial agreement; and
0.81–1.00, almost perfect agreement.

The differences in ADC values among IDH subtype glioma
groups were tested using nonparametric Kruskal-Wallis test. The
relationship between morphologic features and glioma subtypes
was analyzed using the chi-squared test. P<0.05 was considered
to indicate a statistically significant difference.

In the univariable analysis, if the differences in a variable were
significant (P<0.05) or an image feature had high consistency
FIGURE 2 | Examples of apparent diffusion coefficient (ADC) measurements. (A–D) Axial T2-weighted imaging shows an isocitrate dehydrogenase (IDH)-mutant
oligodendroglioma in the right temporal lobe. ADC maps show the regions of interest used to determine ADCmin (perceived lowest ADC regions, blue) and ADCn
(contralateral, normal-appearing white matter, yellow). (E–H) Axial T2-weighted imaging of a right temporal IDH-wildtype glioblastoma. ADCmin and ADCn were
calculated using the same method as above.
May 2021 | Volume 11 | Article 640738
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FIGURE 3 | Glioma morphologic characteristics. Enhancement pattern: (A, B) T2-weighted imaging shows a left frontal isocitrate dehydrogenase (IDH)-mutant
oligodendroglioma without contrast agent uptake; (C, D) T2-weighted imaging shows a right frontal IDH-wildtype glioblastoma, and contrast-enhanced T1-weighted
imaging shows patchy contrast uptake; (E, F) T2-weighted imaging and contrast-enhanced T1-weighted imaging show rim enhancement surrounding a central
necrosis in a IDH-wildtype astrocytoma, while another patient (G, H) presents with a frontal IDH-mutant glioblastoma.
FIGURE 4 | Glioma morphologic characteristics. (A, B) Calcification: T2-weighted imaging and phase image on SWI show calcification in a left frontal isocitrate
dehydrogenase (IDH)-mutant oligodendroglioma; (C, D) Hemorrhage: T2-weighted imaging and SWI show hemorrhage in a left frontal IDH-wildtype glioma;
(E, F) Cystic change: T2-weighted and FLAIR imaging show small cysts in a mutant-IDH oligodendroglioma; (G, H) T2-FLAIR mismatch sign: T2-weighted and
FLAIR images show a T2-FLAIR mismatch sign in a mutant-IDH diffuse astrocytoma.
Frontiers in Oncology | www.frontiersin.org May 2021 | Volume 11 | Article 6407385
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(ICC >0.8; k >0.6), then it was chosen as a predictor variable for
multivariable logistic regression to predict IDH subtypes
of glioma.

Model Construction
For machine learning, we attempted to implement the following
machine learning methods, which are currently the most popular
machine learning methods used to classify glioma tumors (17–
20), to develop prediction models: logistic regression, support
vector machine (SVM), Naive Bayes (NB) and Ensemble
(random forest + eXtreme Gradient Boosting). The logistic
regression model uses the maximum likelihood method to
estimate and determine the regression coefficient and
accurately predict the probability of dichotomy. SVM is a
supervised learning algorithm that can clearly identify high-
dimensional boundaries and solve dichotomy problems (21).
Ensemble algorithms include random forest and eXtreme
Gradient Boosting. Random forest is an integrated algorithm
that combines multiple decision trees together by voting to
discriminate and classify data (22). eXtreme Gradient Boosting
integrates many weak classifiers into a strong classifier, which is
an optimized extreme gradient promotion to improve the
predictive power (21, 23). We also attempted NB, an efficient
algorithm based on the Bayesian principle that uses the
knowledge of probability in statistics to classify data sets (24).
The construction process for each model is provided in
Supplementary Data.

To evaluate the predictive accuracy of these machine learning
models and select the most suitable model, we calculated and
compared sensitivity, specificity, accuracy, the areas under the
receiver operating characteristic curve (AUC) and F1 score (25).
Then, the best machine learning model was chosen as the final
model to evaluate the IDH subtype probability in the test set. In
clinical practice, SWI and CT, which help to observe calcification,
may be unavailable in some circumstances, an alternative model
(model 2) was developed in which calcification status was
excluded from the multivariable logistic regression model.
Subgroup analysis was also performed to validate the final
model on LGG and GBM. DeLong analysis was used to
compare significant differences in the AUCs (26).
RESULTS

Patients Demographic Characteristics
The flow chart of the enrolled patients (including the study and
test sets) is provided in Figure 1. After excluding patients
because of non-adult patients (age<18 y, n=11), insufficient
MRI scan quality (n=54), the presence of tumors other than
WHO grade II-IV glioma (n=19, including 8 WHO grade I and
11 diffuse midline gliomas), ambiguous histology results (n=28),
a duration from MRI to surgery longer than 6 months in WHO
II/III or 5 weeks in WHO IV (n=30), or a previous treatment for
glioma (n=7). A total of 176 patients (109 male and 67 female
patients; mean age, 46.5 years; age range, 21-74 years) with
lower-grade glioma (n=102) and glioblastoma (n=74) were
Frontiers in Oncology | www.frontiersin.org 6
ultimately enrolled in the analysis of the study set. There was
no relationship found between glioma IDH subtype and sex, but
patients with the IDH-wildtype status were more likely to be
older than those with the IDH-mutant status, especially in cases
of GBM. An overview of patient information, morphologic
features and IDH subgroups is listed in Table 1 and
Supplemental Table 2.

Morphologic Assessment Results
Regarding tumor location, the measured values demonstrated
almost perfect interobserver agreement (k=0.835, P<0.01). For
the longest tumor diameter (<6 cm or ≥6 cm), the measurement
reached almost perfect agreement (k=0.848, P<0.01). The
determination of calcification showed substantial agreement
(k=0.719, P<0.01). Determination of the presence of a cyst or
necrosis reached almost perfect agreement (k=0.862, P<0.01).
For the enhancement patterns, the results demonstrated
substantial agreement (k=0.786, P<0.01). The determination of
hemorrhage reached almost perfect agreement (k=0.852,
TABLE 1 | Patient demographics and MRI morphological characteristics in the
study set.

Parameter All Gliomas IDH
Mutation

IDH
Wild-Type

P
value

Number of Patients 176 89 87
Age 46.5

[35.0,54.0]
41.0

[33.0,49.0]
50.0

[40.0,59.0]
<0.001

Sex
Female 67 (38.1) 31 (34.8) 36 (41.4) 0.460
Male 109 (61.9) 58 (65.2) 51 (58.6)
Tumor Location
Frontal lobe 89 (50.6) 56 (62.9) 33 (37.9) 0.010
Other lobes 74 (42.0) 29 (32.6) 45 (51.7)
Thalamus or
brainstem

9 (5.1) 3 (3.4) 6 (6.9)

Cerebellum 4 (2.3) 1 (1.1) 3 (3.4)
Diameter
<6 cm 132 (75.0) 62 (69.7) 70 (80.5) 0.139
≥6 cm 44 (25.0) 27 (30.3) 17 (19.5)
Enhancement
Nonenhancement 63 (35.8) 53 (59.6) 10 (11.5) <0.001
Patchy
enhancement

42 (23.9) 25 (28.1) 17 (19.5)

Ring enhancement 71 (40.3) 11 (12.4) 60 (69.0)
Calcification
No 152 (86.4) 68 (76.4) 84 (96.6) <0.001
Yes 24 (13.6) 21 (23.6) 3 (3.4)
Cystic Change
No 73 (41.5) 48 (53.9) 25 (28.7) 0.001
Yes 103 (58.5) 41 (46.1) 62 (71.3)
Hemorrhage
No 91 (51.7) 63 (70.8) 28 (32.2) <0.001
Yes 85 (48.3) 26 (29.2) 59 (67.8)
T2 FLAIR Mismatch
No 136 (77.3) 62 (69.7) 74 (85.1) 0.024
Yes 40 (22.7) 27 (30.3) 13 (14.9)
WHO 2016 Grade
Lower-grade Glioma 102 (58.0) 78 (88.7) 23 (26.4) <0.001
Glioblastoma 74 (42.0) 10 (11.2) 64 (73.6)
M
ay 2021 | Volu
me 11 | Article
Data in parentheses are ranges, and data in brackets are interquartile ranges.
IDH, isocitrate dehydrogenase; FLAIR, fluid-attenuated inversion recovery.
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P<0.01). In assessing the T2-weighted FLAIR mismatch sign,
fair interobserver agreement was found (k=0.396, P<0.01).
Cohen’s kappa results for the morphology categories are
provided in Supplementary Table 3.

ADC Quantification
The interobserver and intraobserver levels of reproducibility
were almost perfect for all ADC parameters (ICC=0.80-0.95),
which indicated that there was no systematic difference between
the observers. The rADC correctly classified IDH-mutant and
IDH-wildtype in WHO grade II~IV gliomas and LGG subgroup
(P<0.05), but not in GBM subgroup (P=0.126). The results are
shown in Figure 5. Nonparametric testing (Kruskal-Wallis
analysis of variance) revealed an association between ADC
value and IDH status (P<0.001). The ICCs for different ADC
values are provided in Supplementary Tables 4 and 5.

Predictor Selection (Univariable Analysis
and Machine Learning Model)
The chi-squared tests revealed associations between
morphological features, including enhancement, calcification,
cysts, hemorrhage, cystic change and T2-FLAIR mismatch, and
IDH status (P<0.05). The univariable analysis results are shown
in Table 2.

After univariable analysis selection, combined with features
with substantial agreement (k >0.6), six measured variables were
selected for incorporation into the machine learning model,
including rADC, age, enhancement, calcification, hemorrhage,
and cystic change. In terms of the prediction accuracy of the
single model, logistic regression, SVM, NB and ensemble showed
similar model performance to the study set (AUC=0.866-0.897).
Among them, logistic regression exhibited the largest area under
the curve (AUC= 0.897) and the model achieved better
performance than others. Then, we chose multivariable logistic
regression as the final model. Models 1 and 2 (not including
calcification) performed almost equivalently, with an AUC of
Frontiers in Oncology | www.frontiersin.org 7
0.890 for model 2. DeLong analysis showed no statistically
significant difference between the two models (P=0.361). In the
lower-grade glioma and GBM, the models also achieved better
performance, with the accuracy of 84.3% (AUC = 0.873) and
85.1% (AUC = 0.862), respectively. The AUCs of the different
machine learning models are presented in Figure 6 .
FIGURE 5 | The violin plot shows differences in the apparent diffusion
coefficient (ADC) values (ADCmin to ADCn ratio, rADC) between the isocitrate
dehydrogenase (IDH) statuses (mut = IDH-mutant, wt = IDH-wildtype) in the
study set, including lower-grade glioma (LGG) and glioblastoma (GBM).
TABLE 2 | Crude association between IDH status and ADC value and
morphologic features for the study set.

Values OR P 95% CI

rADC 1.39 ± 0.39 0.05 <0.001 (0.01, 0.15)
ADCmin 1.02 ± 0.27 0.01 <0.001 (0.00, 0.07)
Age 45.30 ± 12.53 1.05 0.001 (1.02, 1.08)
Sex
Female 67 (38.07%) Reference
Male 109 (61.93%) 0.76 0.372 (0.41, 1.39)
Tumor Location
Frontal lobe 89 (50.57%) Reference
Other lobes 74 (42.05%) 2.63 0.003 (1.40, 4.97)
Thalamus or brainstem 9 (5.11%) 3.39 0.100 (0.80, 14.49)
Cerebellum 4 (2.27%) 5.09 0.166 (0.51, 50.97)
Diameter
<6 cm 132 (75.00%) Reference
≥6 cm 44 (25.00%) 0.56 0.100 (0.28, 1.12)
Enhancement
Nonenhancement 63 (35.80%) Reference
Patchy enhancement 42 (23.86%) 3.6 0.006 (1.44, 8.99)
Ring enhancement 71 (40.34%) 28.91 <0.001 (11.38,73.47)
Calcification
No 152 (86.36%) Reference
Yes 24 (13.64%) 0.12 0.007 (0.03, 0.40)
Cystic Change
No 73 (41.48%) Reference
Yes 103 (58.52%) 2.9 0.008 (1.56, 5.42)
Hemorrhage
No 91 (51.70%) Reference
Yes 85 (48.30%) 5.11 <0.001 (2.69, 9.69)
T2-FLAIR Mismatch
No 136 (77.27%) Reference
Yes 40 (22.73%) 0.4 0.017 (0.19, 0.85)
May
 2021 | Volu
me 11 | A
FIGURE 6 | Comparison of AUCs among machine learning models. Receiver
operating characteristic curves are shown for logistic regression (Log Reg),
support vector machine (SVM), Naive Bayes (NB) and Ensemble (random
forest + eXtreme Gradient Boosting) in predicting the IDH status of glioma.
rticle 640738
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The comparison of machine learning models is provided in
Supplementary Table 6. The results of models 1 and 2, LGG
and GBM are shown in Table 3 and Figure 7.

Test Set Results
To predict the probability of the IDH status of patients in the
subsequent test set, the study set results were transcribed into
Python for further calculation. From January 2020 to June 2020,
40 diagnosed glioma patients (20 with IDH-mutant and 20 with
IDH-wildtype) were included in the test set according to the
same inclusion criteria. Two blinded observers (Y-YC and Y-
LW) replicated the ADC measurements used in the study
set. The ICCs for different ADC values are provided in
Supplementary Table 4. The AUCs of models 1 and 2, LGG
and GBM in the test set are presented in Table 3 and Figure 7.
Model 1 correctly classified the IDH status in the test set
(AUC=0.860), with sensitivity of 80% and specificity of 80%.
Model 2 performed well in predicting the IDH status of glioma
(AUC=0.893), demonstrating a greater specificity of 95% but a
lower sensitivity of 70% than model 1. Subgroup analysis
revealed that the model predicted IDH status of LGG and
GBM with the accuracy of 70.0% (AUC = 0.762) and 70.0%
(AUC = 0.833), respectively.
DISCUSSION

In this study, machine learning methods were developed and
validated, combining rADCs with tumor morphologic
characteristics to predict the IDH status of adult WHO grade
II-IV gliomas. In the predictive models, the logistic regression
model exhibited the greatest AUC (0.897). Two models, model 1
(including age, rADC, enhancement pattern, calcification, cystic
change and hemorrhage) and model 2 (excluding calcification),
were developed and correctly classified the IDH status with
similar model performance for the study set (n=176,
AUC=0.890-0.897) and a previously unseen test set (n = 40,
AUC=0.860-0.893).

Previous studies have analyzed the association between MRI
features and the IDH status of lower-grade gliomas (WHO grade
Frontiers in Oncology | www.frontiersin.org 8
II-III) and glioblastomas (WHO grade IV) [specifically, Thust
et al. and Xing et al. evaluated the features of grade II/III gliomas
(8, 12), while Zhang et al. identified MRI features associated with
grade III and IV gliomas (7)]. To our knowledge, no previous
attempts have been made to use different machine learning
methods to build a suitable model combining clinical and
magnetic resonance imaging features to predict the IDH
molecular subtype for WHO grade II to IV gliomas.
Furthermore, previous studies have used region-derived
minimum ADC measurements to estimate glioma grade or
molecular status (8, 11, 12, 27, 28). Not surprisingly, according
to receiver operating characteristic curve analysis, the ADC value
was shown to be a useful tool for detecting the IDH status in
diffuse gliomas, and we found that there was a significant
difference between IDH-mutant and IDH-wildtype gliomas
(P<0.001). Our study revealed excellent interobserver and
intra-observer reproducibility (ICC=0.80-0.95) for ROI
measurements, similar to the repeatability results for ADC
measurements described in other studies (8). The rADC
TABLE 3 | Multivariable logistic regression results for predicting the IDH status in
the study set and the test set.

Number Se Sp PPV NPV YI Accuracy AUC

Study set
Model 1 176 0.805 0.888 0.856 0.816 0.693 0.824 0.897
Model 2 176 0.839 0.820 0.823 0.836 0.659 0.812 0.890
LGG 102 0.870 0.759 0.783 0.854 0.629 0.843 0.873
GBM 74 0.734 0.900 0.880 0.772 0.634 0.851 0.862
Test set
Model 1 40 0.800 0.800 0.800 0.800 0.600 0.750 0.860
Model 2 40 0.700 0.950 0.933 0.760 0.650 0.750 0.893
LGG 20 0.833 0.643 0.700 0.794 0.476 0.700 0.762
GBM 20 0.857 0.833 0.837 0.853 0.690 0.700 0.833
Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive
value; YI, Youden Index; AUC, area under the curve; LGG, lower-grade glioma;
GBM, glioblastoma.
A

B

FIGURE 7 | Multivariable logistic regression analysis was used to predict
isocitrate dehydrogenase (IDH) status in the study set and test set.
(A) Receiver operating characteristic (ROC) curves of the multivariable
probabilities for models 1 and 2, lower-grade glioma (LGG) and glioblastoma
(GBM) in the study set. (B) ROC curves of the multivariable probabilities for
model 1, model 2, LGG and GBM in the test set.
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(ADCmin to nADC ratio) was used as a fixed parameter to
ensure vendor neutrality and to reduce the potential bias. When
drawing the ROI, this study only included the solid part,
avoiding cystic or necrotic portions and hemorrhagic areas as
much as possible, which is considered feasible on most clinical
workstations. This method is partially consistent with the results
reported by G.Z (29) who suggested that when drawing ROIs on
ADC maps, selection of the solid part is necessary and is an
optimal choice for differentiating GBM from metastasis.

When testing the rADC for predicting IDH status, our study
found that the ADCmin and rADC of IDH-mutant glioma were
higher than those of IDH-wildtype glioma in WHO grade II~IV
gliomas and LGG subgroup, but not in GBM subgroup. ADCmin
has been confirmed to represent the area with the highest
cellularity in heterogeneous tumors. In general, the lower the
ADC value is, the denser the glioma cells, and the worse the
prognosis, which is supported by several studies comparing
diffusivity, histological specimens and clinical data (8, 30).
Hong et al. reported that ADC was significantly lower in IDH-
wildtype GBM than in IDH-mutant GBM (31). However, our
study failed to find this result. One reason may be attributed to
the difference in sample size, with only 10 IDH mutants in our
GBM subgroup. The other reason may be due to the
heterogeneity in GBM and different ROI biases. Glioblastomas
have different subsets of genetic abnormalities that take part in
tumorigenesis and transformation, especially IDH mutants,
which may contain lower-grade tumor components (32). In
our study, the lowest value of ADC was selected for analysis,
which greatly avoided the measurement bias caused by
measuring the whole tumor.

Although quantitative, computerized methods hold substantial
promise for the noninvasive prediction of the molecular
characteristics of glioma, we aimed to establish a model by
combining several morphologic features that can be easily
evaluated on conventional, standard MRI daily in the clinic.
Considering the age and morphological characteristics of our
population, consistent with previous research, younger age and
forehead positions were more likely to be associated with mutation
status (33, 34). Arita et al. (35) found that IDH-wildtype gliomas
were mainly distributed in the parietal lobe and, to some extent,
the temporal lobe but were rarely involved the frontal lobe. In our
study, IDH-wildtype status was similarly associated with a greater
likelihood of distribution in cerebral lobes other than the frontal
lobe. Moreover, thalamic or brainstem locations and cerebellar
locations showed IDH-wildtype predominance, which concurs
with a study by Maynard et al. (11).

Our study showed a significant difference in postcontrast
enhancement patterns between glioma subtypes in WHO grade
II-IV glioma. Indeed, tumor ring-enhancement is a predictor of
IDH-wildtype status, indicating a tendency for invasive behavior.
While it is increasingly recognized that nonenhancement tumors
also comprise a substantial proportion of grade IV gliomas (36),
it should be noted that images of atypical glioblastoma might not
be easily distinguished from lower-grade gliomas on routine
MRI. Furthermore, the presence of hemorrhage was not related
to a particular subgroup in our study. Moreover, previous studies
Frontiers in Oncology | www.frontiersin.org 9
show that the T2-FLAIR mismatch sign has high specificity in
diagnosing IDH-mutant astrocytoma (16). This tendency was
also shown in our research results, but it was not selected for
incorporation into the model due to the fair interobserver
agreement (k=0.396).

Calcification and cystic components also significantly
contributed to our predictive model in WHO grade II-IV
glioma. The absence of calcification strongly correlated with
the IDH-wildtype status in univariable analysis. This finding is
consistent with previous studies that have extensively evaluated
calcification in IDH-mutant gliomas (11). The interobserver
agreement was moderate (k=0.719, P<0.01). We hypothesize
that by expanding the sample size and optimizing the
examination sequence, the certainty and concordance of the
observers would further increase when observing calcification.
Kanazawa et al. (37) found that both calcification and cystic
components could be used to predict IDH-mutant status with
1p/19q deletion in lower-grade gliomas. However, in our study,
cystic components were more likely to be found in IDH-wildtype
tumors than in IDH-mutant tumors. Considering that IDH-
wildtype tumors are more necrotic than IDH-mutant tumors
(38), we speculate that subjectivity and overlap with necrotic
components limit the reproducibility of this correlation.

Several limitations of the current study should be noted. First,
we did not include infantile gliomas because high-grade gliomas
are a specific entity with a paradoxical clinical course that
distinguishes them from their pediatric and adult counterparts
(39). Second, the simplified description and measurements of the
ADC values combined with DWI cannot fully reflect the
complexity of cell components and structural changes; a more
advanced MRI postprocessing method (for example, a method
that uses semiautomatic or automatic segmentation to cover the
total tumor volume) may partially overcome these limitations at
the expense of more time-consuming preprocessing and
postprocessing workflows. It is worth mentioning that our
ADC measurements applied are available in most clinical
workstations. Finally, our study is a retrospective study based
on data from a single institution. The stability of the
morphological features may be affected by differences in the
MR parameters and protocol, the image postprocessing steps and
the repeatability of ADC measurements. Therefore, the next step
is to conduct a multi-center study to verify our inferences.

In conclusion, we demonstrated that the ADCmin to ADCn
ratio, combined with tumor morphologic features, has high
accuracy in predicting tumors with IDH-mutant status versus
tumors with IDH-wildtype status in adult diffuse glioma. The
combination may provide a noninvasive, significant and feasible
alternative marker. Further studies in larger sample trials are
needed to improve its clinical application value.
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