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We discuss an active damping controller to reduce the energetic cost of a single step or
jump of dynamic locomotion without changing the morphology of the robot. The active
damping controller adds virtual damping to a virtual leg spring created by direct-drive
motors through the robot’s leg linkage. The virtual damping added is proportional to the
intrusion velocity of the robot’s foot, slowing the foot’s intrusion, and thus the rate at which
energy is transferred to and dissipated by the ground. In this work, we use a combination of
simulations and physical experiments in a controlled granular media bed with a single-leg
robot to show that the active damping controller reduces the cost of transport compared
with a naive compression-extension controller under various conditions.
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1 INTRODUCTION

Most approaches to legged robot locomotion assume rigid ground contacts. However, most surfaces
outside of the built environment are soft. This includes natural environments common on planet
Earth, such as forests, fields, hillslopes, beaches, and deserts; disaster sites in the built environment,
which may include landslides; and of course extraterrestrial environments such as the notoriously
soft soil on Mars. Many of these environments, when stepped on by a legged robot, and can be
modeled as granular media: a collection of rigid, macroscopic particles which together exhibit bulk
behavior forces.

In addition to being unpredictably deformable, which can cause a robot to slip or fall, granular
media is also highly dissipative. The reaction forces exerted by even dry sand with homogeneous
particles are complex, and understanding the interaction between the robot’s foot and the ground
requires a good understanding of the force response of the ground to the forces associated with
locomotion. Granular media physicists and robophysicists have developed bulk-behavior models of
dry, homogeneous granular media in response to vertical intrusion (Li et al., 2013; Aguilar and
Goldman, 2016). From models like this, we know that the bulk behavior of granular media
approximates a one-directional spring with quadratic damping. With damping this high, it is
not surprising that granular media is difficult and energetically costly to locomote over.

As part of a collaboration with geoscientists studying erosion in natural environments, we
regularly take legged robots acting as “field assistants” to deserts, and forested hillslopes (Roberts
et al., 2014a; Roberts et al., 2014b; Qian et al., 2017; Wilson et al., 2021). The energetic cost of
transport is a recurring issue on these field trips, resulting not only in reduced battery life for the
robots but also dangerously overheating motors. However, deserts are surprisingly variable
environments. On previous field trips to White Sands National Monument, the Jornada Long-
Term Experimental Range, and the Tengger desert, we observed differences in compaction, and
therefore force responses, on the order of half a robot body length (about 1/3 m) (Sherman et al.,
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2013; Barchyn et al., 2014; Roberts et al., 2014a; Roberts et al.,
2014b; Qian et al., 2017). Even in the best-case scenario, where the
granular media itself is not changing from step to step (which is
not a guarantee in natural landscapes), the forces will differ
greatly from step to step because of this range of compactions.
We therefore aim to develop a robust, analytically tractable
controller that is effective at reducing the energetic cost of
transport for locomotion on granular media without a model
of the specific media. That is, our controller should not require
parametric knowledge of the bulk-force response of the specific
media encountered by some particular foot placement.

Strategies for increasing the capabilities of legged robots on
sand are often inspired by the approaches employed by desert-
specialized animals, which rely on general principles of the force
response of the sand to intrusion. For example, increasing the
area of the intruding foot increases the effective stiffness of the
ground by increasing the depth-dependent “stiffness”-like force
(Aguilar and Goldman, 2016), leading to faster locomotion (Li
et al., 2009; Qian et al., 2015; Kolvenbach et al., 2021). Applying
two parallel intruders similar to the long toes found on the feet of
desert-specializing lizards could increase the effective area of the
“foot” created by increasing the number of grains that the
intruding object interacts with, which also increases the force
response of the ground (Pravin et al., 2020). We have already
adapted a robot for locomotion in the desert using these
empirically demonstrated methods of improving locomotion
performance by widening its feet (Roberts et al., 2014a,b)
based on the research indicating that a reduced foot pressure
increases the forward speed of the robot (Qian et al., 2015).
Similarly, the use of a universal granular jamming gripper (Brown
et al., 2010) as a foot (Chopra et al., 2020) allows a robot to spread
its foot out flat on granular media without losing grip on the small
footholds it may encounter on other kinds of rough terrain.

Overall, increasing a robot’s locomotor capabilities using
general principles of the force response of granular media to
intrusion by objects with different areas is a robust and effective
method. It works on all types of granular media without requiring
parametric knowledge of the bulk-force response of the specific
media. In addition, increasing the force response from the ground
by changing the morphology of the foot effectively increases the
forward speed of the robot, thus improving the locomotion
capability of the robot. If the power consumption is similar
with larger and smaller feet, this may decrease the energetic
cost of transport as a result. However, it is not always desirable
nor possible to substantially change the morphology of the robot
in order to adapt it to locomotion on new terrain.

Other researchers have worked to increase a legged robot’s
locomotor capabilities while walking on sand by changing the
robot’s controller. Changing parameters of a six-legged robot’s
gait was sufficient to increase its speed in granular media (Li et al.,
2009), and using different gaits can increase the maximum angle
of a dune slope that the robot can climb (Roberts et al., 2014b).
For example, if the robot’s rear right and left legs move at different
times, a large amount of the bodyweight of the robot is supported
by one leg at a time and that leg may overheat. If instead the robot
uses a gait in which the back legs move together, the legs may not
overheat as quickly, making it possible for the robot to climb

higher dunes at steeper angles. The stability of a robot’s climb up
an inclined dune can be affected by how dynamic the gait is
(Kolvenbach et al., 2021). While most of this work has focused on
either steady-state locomotion or single jumps, there has also
been some attention paid to efficiently stopping locomotion in
sand without dissipating too much energy into the substrate
(Lynch et al., 2020). However, none of this work directly
addresses the cost of transport during locomotion.

Model-based control methods can be used to increase
locomotor capabilities as well. Optimal control and
Gaussian process methods have been used to generate
motor trajectories that allow a robot to jump to a
prescribed height after learning the ground properties over
the course of a series of initial jumps (Chang et al., 2017, 2019).
In comparison to open-loop control, adaptive compliance
control improves the stability of a legged robot walking on
quartz sand (Zhu and Jin, 2016). Whole-body control of a
quadruped with an estimated ground model based on a linear
spring and damper shows increased stability in comparison to
whole-body control without the estimated model (Fahmi et al.,
2020), even though the state estimation drifts quickly (Fahmi
et al., 2021). Finally, a reinforcement learning-based controller
for a quadruped which uses an 8-dimensional vector to model
perturbations from the ground and elsewhere in the
environment shows improved stability in comparison to the
native controller shipped with the robot when tested on a
natural sand environment (Kumar et al., 2021). However, all
these projects focus on stability and achieving goals such as
specified jump heights, and do not address cost of transport as
a primary or even a secondary goal after robustness and
stability of locomotion.

Our approach differs from these other bodies of work in three
important respects: First, we use only changes to control and not
to robot morphology in order to decrease the cost of transport;
second, our robot controller does not use a model of the granular
media to achieve its results; and third, previous work on
controllers for legged locomotion on granular media focuses
on problems like maintaining a trajectory or achieving a
prescribed jump height. In contrast, our work seeks to lower
the energetic cost of a single jump as the primary goal, with a
secondary goal of not reducing the robot’s apex height while
jumping.

In previous work (Roberts and Koditschek, 2018; Roberts and
Koditschek, 2019) we introduced a reactive controller for sand
locomotion that uses a new variant of active damping to reduce
the energetic cost of transport (see Section 2.2) and performed
initial tests using a one-legged robot in simulation and emulation.
In Roberts and Koditschek (2018) we introduced the reactive
controller and showed in simulation that it reduced the energy
necessary to jump on granular media relative to its base controller
when varying forces from the ground and initial conditions. In
Roberts and Koditschek (2019) we built a robotic platform that
emulates the forces exerted by a simplified granular media model
and tested a physical robot jumping with the active damping
controller, varying the robot’s jump height. This paper addresses
the potential benefit of the active damping controller for legged
locomotion by further mathematical analysis and the first
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experiments on real, physical granular media rather than a
simulation or a simplified emulation.

Specifically, the contributions of the present work are:

1) Mathematical analysis showing that the energy transferred to
the ground when using active damping is strictly less than the
energy transferred to the ground when using a comparison
controller (Section 2.2.2; Figure 1)

2) Simulations comparing the effects of a wider range of parameters
(foot size, extension stiffness, ground force functions, and active
damping coefficient) than in Roberts and Koditschek (2018) and
discrete element model simulations suggesting that active
damping gives energetic savings for legged locomotion on
sand (Section 2.3; Figures 2, 3)

3) Experiments on physical prepared granular media comparing
the nominal and active damping controllers, corroborating
the results of the simulations and analysis (Section 2.4;
Figures 4, 5)

The rest of the paper is organized as follows. In Section 2.1 we
describe the model of granular media used in this work, the
quadrupedal robot we are targeting with this research, and the
abstracted one-legged robot model that we used for simulations
and instantiated in a physical robot in order to perform

experiments on granular media. In Section 2.2 we discuss the
controllers used on the robot. We first describe the standard
compression-extension controller and then introduce the active
damping controller (Section 2.2.1). We address Contribution 1
in Section 2.2.2 by using mathematical analysis to determine the
conditions under which a one-legged robot jumping with the
active damping controller should be expected to use less energy to
jump than a robot jumping with the comparison controller. In
Section 2.3 we describe two types of simulations that suggest that
the active damping controller is more energetically efficient than
the comparison controller (Sections 2.3.1, 2.3.2), addressing
Contribution 2. Measuring and simulating the energy
consumption shows that there is a difference between the
nominal controller and the active damping controller, but does
not provide an explanation for why such a difference exists. The
analysis in Section 2.2.2 and the discrete element simulations in
Section 2.3.2 offer an explanation: The nominal controller
energizes the ground more than the active damping controller,
thus dissipating more energy into the ground. Finally, in Section
2.4, we discuss the physical experiments. In Sections 2.4.1, 2.4.2
we describe the physical robot and the controlled granular media
bed, respectively. The results from the physical experiments are in
Section 3, addressing Contribution 3.

2 MATERIALS AND METHODS

2.1 Target Systems andModels Used in This
Study
In this section, we will first describe the analytical bulk-behavior
force model of the sand. We will then describe the target
quadrupedal robot and our one-legged model of the target robot.

2.1.1 Analytical Force Model of Sand
The granular media bulk-behavior model used in these
experiments (Aguilar and Goldman, 2016) was developed over
many years by granular media physicists performing careful
experiments on granular media with different properties. The
model has three component forces. The first force kg (xf), which is
a function of depth xf only, can be considered a “stiffness”
function of the ground. This force comes directly from
Resistive Force Theory (RFT) (Li et al., 2013), which describes
the hydrostatic-like forces in response to vertical, angled, and or
horizontal intrusion by an arbitrarily-shaped object1. The force
response has two linear regions with a smooth transition. The first
linear region has a higher stiffness, and this portion of the stiffness
function corresponds to the recruitment period for the stagnant
cone under the intruder. Larger intruders have a longer initial
linear region than smaller intruders. The overall force response
scales with the surface area of the intruding face, explaining why

FIGURE 1 | The compression-extension controller transfers more
energy to the ground than the active damping controller during the extension
mode. The surface indicates the rate of energy transfer between the robot’s
foot and the ground as a function of the state of the foot, with lighter
colors (yellow) indicating more energy transfer and darker colors (orange)
indicating less energy transfer. It is the right side of Eq. 2, the power function of
state associated with the total energy function. The dashed line plots a typical
trajectory of the foot through state space when jumping using the
compression-extension controller, while the dotted line plots the trajectory of
the same foot from the same initial conditions using the active damping
controller. The labels t0 and tf refer to the initial and final timesteps of the
trajectory. The lines overlap during the compression mode and only diverge
during the extension mode, when the active damping controller is active. See
Sections 2.2, 2.2.2 for more information.

1RFT models the force response using multiple experimentally determined and
measured parameters about the individual grains making up the granular media. It
should be noted that a more recent model captures the same force response
prediction using only the internal friction angle in a single universally scalable
model (Kang et al., 2018).
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FIGURE2 | From simulations of the robot jumping on granular media, we expect that there should be a larger benefit to using active damping on a robot with a stiffer
virtual extension spring and larger feet. These lines show the joules used in a simulation of a single jump with a range of active damping coefficients, foot sizes, extension
stiffnesses, and scalings of the ground’s nominal stiffness and damping forces, kg (N/m) and dg (kg/s). These ground forces correspond to the stiffness and damping of
fluidized, loosely packed poppyseeds. The points corresponding to the compression-extension controller are those for which the active damping coefficient equals
zero. See Section 2.3.1 for more information.
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animals and robots with a larger foot area display better
locomotion capabilities on dry, and homogeneous granular
media (Qian et al., 2015).

The second force is the depth-dependent inertial drag term,
dg(xf) _x2

f. This force can be considered a quadratic “dissipation”
function of the ground with a coefficient that changes with depth
for small depths (Clark and Behringer, 2013; Bester and
Behringer, 2017). As in the stiffness function, once the
stagnant cone is fully formed, and the coefficient on the
quadratic dissipation function becomes a constant. This term
describes the hydrodynamic-like forces from intrusion into

granular media. These forces result from the inertia of the
grains accelerated to move along with the intruder, including
both the grains that become part of the stagnant cone and the
grains in the boundary layer next to the cone which are
continuously recruited and shed from the fully-formed cone as
the intruder pushes ever deeper.

The last force is the added mass force, ma(xf)€xf. This force
describes the added mass of the stagnant cone to the intruding
object. As with the other two forces, at low depths the recruitment
of the grains into the cone of added mass creates a
proportionately larger force as a function of depth. Once the
stagnant cone is fully formed, the coefficient that is a function of
depth levels off and increases only with the rate of continued
shedding and recruitment of grains. The three forces together give
the full model:

F xf, _xf, €xf( ) � kg xf( ) + sign _xf( )dg xf( ) _x2
f +ma xf( )€xf. (1)

Plots of the three force functions can be found in Roberts and
Koditschek (2018) (Figure 6). An illustration of a robot foot
intruding into granular media can be found in Aguilar and
Goldman (2016), with a cone of recruited grains forming under
the robot’s foot (Figure 2). Note that the term sign( _xf) is required
in order to make the damping force act in the correct direction
when the foot pushes into the ground with a negative velocity.

2.1.2 Description of Quadrupedal Robot TargetedWith
This Research
The Minitaur2 (Kenneally et al., 2016) robot (Figure 7) is a
quadrupedal robot with direct-drive legs (no gearboxes). All of

FIGURE 3 | Discrete element model simulations run based on a
trajectory produced in a simulation using the analytic force models. Notice
how much more kinetic energy the ground absorbs under the compression-
extension controller. See Sections 2.3.2, 2.2.2 for more information.

FIGURE 4 | The robot used more energy with the compression-
extension controller than the active damping controller when jumping on the
granular media bed. Recall that the compression-extension controller
corresponds to an active damping coefficient of zero. The foot radius
had a larger effect on the joules per jump than the leg’s virtual spring stiffness
during its extension mode. In this plot, the size of the circle indicates the foot’s
radius, the line style indicates the stiffness gain during extension, and the
horizontal bars indicate standard error. See Section 3 for more information.

FIGURE 5 | Using the active damping controller did not change the jump
height. In most conditions, the robot jumped slightly higher (up to 3 mm) on
average when using active damping. Open circles indicate the average height
of the robot’s center of mass at the apex of the jump and horizontal lines
indicate standard error. Line style indicates the leg spring’s stiffness during
extension. See Section 3.4 for more information.

2Ghost Robotics, 3,401 Gy Ferry Ave, Philadelphia, PA 19146.
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the robot’s components are rigid, but the legs exert spring-like
forces using feedback control through their linkages. The legs
therefore behave like virtual springs, with a virtual stiffness
coefficient, and damper that can be changed programmatically
to control locomotion. Because the forces from the legs are
known, when they are compressed by environmental
perturbations, they can be used as force sensors, and provide
haptic feedback to the robot (Kenneally et al., 2016; Topping et al.,
2019). This is referred to as “direct-drive transparency” and
provides great benefit to using a direct-drive architecture.

Minitaur nominally uses a variant (De and Koditschek, 2018)
of active damping control (Seçer and Saranlı, 2013) to stabilize its
vertical (hopping) degree of freedom. Here, “active damping”
refers to a type of controller that actively changes the damping
coefficient of a virtual spring to affect the behavior of a system.
Minitaur’s nominal vertical hopping controller works in the
following manner (De and Koditschek, 2018). First, the leg
detects touchdown using a position error on its leg length.
Then, while maintaining one virtual stiffness, the leg’s virtual
damper sweeps through a sinusoidal curve that dips below zero as
the leg finishes contracting and begins to expand. The negative
virtual damping injects energy into the physical system by
causing the actuators to apply greater torque, in turn causing
the robot to expand its leg more quickly and jump.

By pairing legs, Minitaur can use a series of virtual bipedal
gaits: Trotting, bounding, and or pronking. For example, a
forward bounding gait would have the two front legs and the
back legs paired, creating a virtual biped gait with one front leg,
and one rear leg. To trot, the front right and rear left legs would be
paired, as would the front left and rear right legs. When two legs
are paired together into one virtual pair, the positions and

velocities of the individual legs, and thus the forces to exert,
are averaged to produce the length, and velocity of the virtual leg.

The overall control of the robot is typically a composition of
virtual spring- and damper-like forces, which can result in a variety
of robust steady-state and transitional locomotion behaviors (De and
Koditschek, 2015; Topping et al., 2019). In our example of a
composition of controllers for forward bounding, the robot
would at bare minimum have the following controllers. First, it
would have a controller for vertical hopping on each of the virtual
legs. When triggered, this controller would inject energy into the
physical legs, causing the pair of legs comprising each virtual leg to
jump. Second, the robot would have a controller for how the legs
sweep backward during stance to affect the forward speed. If this
controller is set to a neutral position, the robot would hop up and
down on its front and back pairs of legs, and bounding in place. If
this controller is set to a forward position, the robot would move its
legs backwards during stance so that it pushes itself forward as well as
up during each jump. Finally, the robot would have a controller for
roll that keeps the body level by increasing or decreasing the length of
the legs on that side of the robot’s body in response to IMU data.
Each of these controllers would operate in parallel to exert spring-
and damper-like forces to keep the robot moving forward in steady
state. More controllers can be added to increase stability and
robustness, such as a controller for the yaw direction and a
controller for which direction the robot considers “up” since the
morphology is reversible. This composition is the robot’s fastest gait,
and it has been shown to be robust to perturbations (De and
Koditschek, 2018). The quadrupedal robot can be seen bounding
down a dune in the Supplementary Video.

2.1.3 Description of the AbstractedOne-LeggedRobot
Model Used in This Study
In the present work, we address Minitaur’s vertical hopping
controller with a one-dimensional one-legged model jumping

FIGURE 6 | An abstracted model of the one-legged robot used in this
study. This model was instantiated in simulation (described in Section 2.3.1)
and as a physical robot (described in Section 2.4.1). The kinematics and
inverse kinematics can be seen in Eq. 16. The two bars l1 and l2 are the
symmetric leg linkages, with r the radius of the leg and β the angle of the first
leg link. The positions of the body and foot in absolute terms are xb and xf,
respectively. The dotted spring in the middle of the figure denotes the virtual
leg spring created by feedback control on the two motors operating in parallel
in the body (at xb) through the leg linkage. The torques from each of the motors
are denoted by τ1 and τ2.

FIGURE 7 | The Ghost Minitaur robot running in White Sands National
Monument (New Mexica, United States), a common study site for geoscientists.
This compacted, flat interdune area was the only flat area of the desert where the
robot could reliably run. It was also able to run downhill on compacted dune
faces. The robot’s legs consist of two direct-drive motors in parallel which drive
opposing symmetric leg linkages. The leg links are rigid, but the proportional-
derivative control on the motors through the kinematics of the leg linkage makes
the overall behavior of the legs like damped springs. The markings on the robot’s
front left leg (left side of the image) show the correspondence between the
diagrammatic figureswhich appear later in the paper and the physical quadrupedal
robot. In this photo, the robot isbounding: The front two legs andback two legs are
paired. See the Supplementary Video for a video clip of the robot bounding.
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on granular media. The model is instantiated in simulation (see
Section 2.3.1) and in the physical world (see Section 2.4.1) with a
one-legged robot attached to a linear rail and jumping in a box
with granular media. An abstracted model of the robot which
applies to both simulation and the physical robot can be seen in
Figure 6. The robot has two motors in the body which operate in
parallel. Though they rotate in opposite directions, since the robot
is constrained to move only vertically, and the forces from the
motors should always be equal.

We chose not to use Minitaur’s typical vertical hopping
controller as our base controller in this study for two reasons.
The first reason was that when we took the robot to White Sands
National Monument in 2016, we had great difficulty in getting the
robot’s legs to trigger touchdown appropriately. This is essentially
a gain-tuning issue, with different gains being required for
different ground stiffnesses, and it would almost certainly be
possible to adjust the existing vertical hopping controller to jump
on soft ground. However, since we aimed to develop a robust
vertical hopping controller that did not require a model of the
environment, we wanted to avoid adding anything to our
controller that required modeling the ground stiffness. The
second, and less important reason, was that Minitaur’s typical
vertical hopping controller uses negative damping to energize the
leg, with the consequence that the foot moves at high velocity
during stance. Since the dissipation function of the ground is
quadratic with velocity, this high-speed interaction with the
ground is bound to dissipate a lot of energy quickly. We
instead modeled the vertical hopping controller using a simple
compression-extension controller (described in the next section),
a well studied and robust type of control for dynamic legged
locomotion.

2.2 Description and Analysis of the
Compression-Extension and Active
Damping Controllers Used in This Study
In this section, we first describe the compression-extension (base)
controller and the active damping (experimental) controller. We
then describe the analysis we performed to determine the
conditions under which the active damping controller should
be expected to expend less energy than the compression-
extension controller.

2.2.1 Description of the Compression-Extension and
Active Damping Controllers
A “compression-extension” controller uses a soft virtual leg
spring during the first half of stance, when the leg is
compressing, and then injects energy into the leg spring using
some form of active impedance control during the second half of
stance, when the leg is extending. Increasing the energy in the leg
spring when switching between the compression, and extension
modes pushes the body up and the robot jumps. Active
impedance controllers have been around for decades (Raibert,
1986; Hurst et al., 2004; Semini et al., 2015; Kenneally et al., 2016)
and are sometimes used to support controllers developed through
other means to increase the robustness of the locomotion
behavior overall (Park et al., 2017).

The specific compression-extension controller used on our
robot in this study operates in the following manner. The robot’s
leg is programmed to hold the same nominal leg length
throughout the duration of the jump. There are two virtual
stiffness gains: A soft gain for the compression mode, and a
stiff gain for the extension mode. The soft gain is sufficiently soft
that the robot’s leg compresses easily under the weight of the
body, and the stiff gain is sufficiently stiff that the robot leg
expands with great force and pushes the robot’s body up very
quickly, causing the robot to jump. In the robot used for these
experiments, the virtual leg spring is created by the direct-drive
motors through the kinematics of the leg linkage.

On soft ground like sand, stiffening the virtual leg spring does
not only push the body up, and but also quickly pushes the robot’s
foot into the ground (Figure 8). A clip of the simulated robot
jumping using on granular media is also included in the
Supplementary Video. Because sand is highly dissipative,
moving the foot further into the ground at high velocity
results in a large loss of energy. In Figure 1, the surface
indicates the rate at which energy is transferred between the
foot and the ground as a function of the state of the foot. Let us
consider the rate at which energy is absorbed by the ground.

First, notice that the energy used to plastically deform the
ground cannot be recovered because the ground does not exert
restoring forces. The spring potential energy ∫xf

0
kg(xf)dxf

therefore represents the first mode by which the robot’s foot
transfers energy to the ground. The rate of change of this energy
with time is _Espring � d

dt∫xf
0
kg(xf)dxf � kg(xf) _xf. This is then

the rate at which the ground is gaining “spring potential energy.”
Next, notice that the uni-directional “spring” formed by the foot-
ground system has a dissipation function, meaning that we can
treat the dissipation of its energy to the ground’s “damper” like we
would any other spring-mass system with a damper. For a typical
spring-mass damper system with a damper that is linear with

FIGURE 8 | An example body and foot trajectory from the simulated
robot using the compression-extension (CE, dashed line) and active damping
(AD, dotted line) controllers described in Section 2.2. In the simulation, l1 �
0.1 m and l2 � 0.2 m. The neutral leg length, the distance between the
body center of mass (xb) and the foot (xf), is 0.27 m.When the virtual leg spring
switches from a soft compression gain to a stiff extension gain, the
compression-extension controller pushes the foot further into the ground. The
active damping controller does not. See Section 2.2 for more information.
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velocity dlin _xf, recall that the rate at which the damper dissipates
energy works out to dlin _xf · _xf � dlin _x

2
f. For a quadratic damper

dquad _x
2
f, the rate at which energy is dissipated is cubic with

velocity rather than quadratic. In order to be able to consider
motion in the negative direction, we must add an absolute value
sign to ensure that the energy dissipated is never negative, which
would imply that energy is gained by the system: dquad| _x3f|. For
our system with quadratic dissipation function dg(xf) _x2

f, the
rate at which energy is dissipated by the ground is therefore
dg(xf)| _x3

f|. The rate at which energy is lost to the ground can
then be written as

_E � −kg xf( ) _xf − dg xf( )| _x3
f|. (2)

This equation describes the “power function” of the ground, or
the rate at which energy is physically transferred from the foot to
the ground. See Roberts and Koditschek (2018) for a more
detailed derivation.

Notice that we do not include the mass function ma (xf) in the
power function. We decided not to include this function for
several reasons. First, the kinetic energy of the mass of grains at
the time when the robot lifts off is zero no matter what controller
the robot is using, meaning that all of the kinetic energy in the
ground subsystem is taken up either into the spring potential
function or dissipated by the damping function. Second, the
forces produced by the added mass function are much smaller
than the forces produced by either the stiffness or damping
functions of the ground. In previous simulation work, we
found that the forces from the added mass function were two
orders of magnitude smaller than the forces from the stiffness or
damping functions (Roberts and Koditschek, 2018). There might
be a different amount of potential energy in the foot depending on
whether the cone of added mass under the robot’s foot is fully
formed or whether the robot has penetrated the ground further
using one controller, but in our previous simulation work this
difference in potential energy was negligible compared to the
energy taken up by the ground’s stiffness function and dissipated
by its damper (Roberts and Koditschek, 2018).

Figure 1 shows the surface defined by this power function with
two trajectories through the foot’s state space during stance. If a
trajectory stays in the upper regions of the surface, the foot is
transferring very little energy to the ground. The foot starts with a
large negative velocity and at depth 0, but quickly slows its velocity
as the soft leg spring compresses. The leg continues to compress as
the whole robot sinks into the sand, causing the first dip along the xf
axis. Once the leg reaches its maximum compression and starts to
extend, the robot switches from the soft spring of compression
mode to the stiff spring of extension mode. This causes the second
dip along the xf axis: Stiffening the leg pushes the small foot further
into the ground as it also pushes the body up.

In (Roberts and Koditschek, 2018), we introduced the active
damping controller. The active damping controller adds virtual
damping to the virtual leg spring in proportion to the intrusion
velocity of the foot during the extension mode (Figure 3). This is
accomplished by adding a new force term, FAD:

FAD � dAD| _xf| _xb − _xf( ), (3)

where dAD is the active damping gain and _xf, _xb are the velocities
of the foot and body, respectively. This force only acts when the
foot’s intrusion velocity is negative. This one force during
extension (Figure 4) reduces the energy transferred from the
robot’s battery through its leg linkage to its foot and thus into the
ground. Notice that in contrast to the form of active damping
used in Minitaur’s nominal controller (Section 2.1.2), this
controller adds positive damping rather than negative.

2.2.2 Analysis of Active Damping Controller
To determine when the active damping controller should cost
less energy than the compression-extension controller to
perform a single jump on granular media, we compared the
rate at which energy is transferred from the foot to the ground
(Eq. 2) under the two controllers. Recall that kl and dl are the
stiffness and damping coefficients of the virtual leg spring, kg
and dg are the stiffness and damping coefficients of the ground,
mb and mf are the masses of the robot’s body and foot, and xb
and xf are the positions of the robot’s body and foot. Finally, l is
the nominal length of the robot’s leg spring and g is the
gravitational constant. Recall also that the ground exhibits no
restoring forces and has quadratic damping. For the purposes of
this analysis, assume that the ground stiffness is linear and the
ground damping is constant in depth, kg (xf) � kgxf and
sign( _xf)dg(xf) _x2

f � sign( _xf)dg _x2
f. The equation of motion

for the robot’s foot under the compression-extension
controller is then

mf€xf � kl xb − xf − l( ) + dl _xb − _xf( ) − kgxf − sign _xf( )dg _x
2
f

−mfg.

(4)

Recall that the active damping force from Eq. 3 is added to the
leg damping. Thus, the equation of motion for the robot’s foot
under the active damping controller is

mf€xf � kl xb − xf − l( ) + dl + dAD| _xf|( ) _xb − _xf( ) − kgxf

− sign _xf( )dg _x
2
f −mfg. (5)

Next, we solve each of these equations for xf. For xCE
f the depth

of the foot under the compression-extension controller, this
gives us

xCE
f � +dl _xb − dl _xf − sign _xf( )dg _x

2
f − lkl − €xfmf + klxb −mfg

kg + kl

(6)

and for xAD
f the depth of the foot under the active damping

controller, this gives us

xAD
f �

+dAD _xb| _xf| + dl _xb − dAD| _xf| _xf − dl _xf − sign _xf( )dg _x
2
f − lkl − €xfmf + klxb −mfg

kg + kl
.

(7)

Recall the power function of the ground (Eq. 2) is
_E � −kg(xf) _xf − dg(xf)| _x3

f|. We can now substitute in the
values for xCE

f and xAD
f to get the power functions under the
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compression-extension and active damping controllers. For PCE
the power function of the ground under the compression-
extension controller, this simplifies to

PCE � −dg| _x3
f|

+ _xfkg dl _xf − dl _xb + sign _xf( )dg _x
2
f + lkl +mfg + €xfmf − klxb( )

kg + kl

(8)

and for PAD the power of the active damping controller, this
simplifies to

PAD � −| _x3
f|dg+

_xfkg | _xf|dAD + dl( ) − _xb + _xf( ) + _xfkg sign _xf( )dg _x
2
f + lkl +mf g + €xf( ) − klxb( )

kg + kl

(9)

Notice from the formulation of Eq. 2 that PAD and PCE are
both always negative. To find out under which conditions PCE has
the larger magnitude, we can subtract PCE from PAD and look for
the conditions under which this quantity is positive. The
difference simplifies down to

PAD − PCE � −| _xf| _xfdAD _xb − _xf( )kg
kg + kl

. (10)

Since kg
kg+kl is a constant (the ground stiffness over the sum of

the ground and leg stiffnesses), we can divide it out. Simplifying
this slightly, we are left with

PAD − PCE ∝ − sign _xf( ) _x2
fdAD _xb − _xf( ). (11)

Assuming negative foot velocity _xf and positive active
damping gain dAD, this quantity is greater than zero when
_xf < _xb. When the foot velocity and active damping gain are
both negative, this quantity is greater than zero when the body
and foot velocity are both negative, and the body is moving faster
than the foot ( _xb < _xf < 0).

The first situation could occur when the foot accelerates more
quickly than the body in response to a change in virtual leg
stiffness—for example, in a robot with more mass in its body than
its foot switching from a soft compression gain to a stiff extension
gain when the leg is fully compressed. The second situation could
occur when the robot’s body accelerates more quickly than its
foot, for example if the foot mass is greater than the body mass,
and or (more likely) if the ground is very stiff. Under these
conditions, adding energy to the leg with a negative velocity
gain—as in the standard Ghost Minitaur bounding gait—will
result in more energetically efficient locomotion than a naive
compression-extension controller. However, on compliant
ground, adding damping to reduce the foot’s intrusion velocity
saves energy.

2.3 Simulations
In this section, we will describe the simulation experiments we
performed. First, we will describe a series of simulations of single
jumps using the analytical force models of granular media
described in Section 2.1.1. In these simulations, we estimated
the energy consumption of the robot as it jumped on granular

media that exerts forces according to the analytic force model of
the ground. Then, we will describe two discrete element model
simulations using trajectories generated by the analytic force
model simulations. The DEM simulations show how the
kinetic energy of the ground changes under the two
controllers. These simulations show a potential mechanism for
how the active damping controller may be losing less energy to
the ground than the compression-extension controller.

2.3.1 Simulations Using the Analytic Force Models
We performed a series of simulations on idealized granular media
using the force functions from the added mass model (Aguilar
and Goldman, 2016) described in Section 2.1.1 to determine the
effect of changing the foot size, the virtual extension stiffness, and
the active damping coefficient3 The simulation program was
custom-built in Python using Euler’s method to simulate the
robot-ground interaction as a discrete dynamical system with a
very small time step (dt � 10–6 s) and based on the program used
to produce previous results on locomotion on granular media
(Roberts and Koditschek, 2018). The simulation code is available
on GitHub (see Data Availability Statement) and an example of
the compression-extension controller and the active damping
controller can both be seen in the Supplementary Video.
Whereas in Roberts and Koditschek (2018) we compared the
effects of initial velocity and scaled the forces from the ground, in
these simulations we compare the effects of scaling the ground
forces, the extension stiffness, the size of the foot, and the active
damping coefficient. We used coefficients for the ground forces
that were measured for poppyseeds (Li et al., 2013), the same
linear scaling parameter as in (Hubicki et al., 2016), and as in
(Roberts and Koditschek, 2018), we set the integration constant C
equal to 1. The physical meaning of this constant in the model is
the rate of shedding and re-recruiting of grains under the robot’s
foot as it continues to move through the granular media after the
cone of added mass is fully formed.

The simulated robot was assumed to have a mass of 1.75 kg in
its body and 0.175 kg in its foot (10% of body mass), and was
constrained to move vertically (Figure 3). A programmable linear
spring connected the body and foot masses with an update loop of
1 kHz, the same as the update loop of the physical robot. The leg
spring had a small damping coefficient, dl � 0.5 kg/s during
compression and dl � 5 kg/s during extension. The nominal
leg length was set to 0.27 m and the gravitational constant was
set to 9.81. See Figure 3 for details.

The simulation had two modes: Stance and ballistic flight.
During stance, the robot and the ground were modeled as a two-
mass, two-spring system with nonlinear springs. With xnb, x

n
f the

body and foot center of mass at timestep n, kl and dl the virtual leg
stiffness and damping coefficients, l the neutral leg length, and g
the gravitational constant, the force from the leg spring was as
follows:

Fbf � kl xb − xf − l( ) + dl _xb − _xf( ). (12)

3Please see https://github.com/KodlabPenn/jumping_on_granular_media/blob/
main/README.md for source code.

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 7409279

Roberts and Koditschek Virtual Energy Management

https://github.com/KodlabPenn/jumping_on_granular_media/blob/main/README.md
https://github.com/KodlabPenn/jumping_on_granular_media/blob/main/README.md
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Letmb be the mass of the body. Letmf be the mass of the robot’s
foot. Recall from Section 2.1.1 that the foot recruits mass as it
moves through the ground, forming a cone underneath the robot’s
foot. At timestep n, the mass of the foot may be different than at
timestep n + 1. Therefore letmn

f � mf(xn
f) be the mass of the foot

at timestep n. Recall the stiffness and damping functions for the
ground from Section 2.1.1, kg (xf) and sign( _xf)dg(xf) _x2

f. The
forces from the ground at timestep n were therefore calculated as:

Fn
g � kg xn

f( ) + sign _xn
f( )dg xn

f( ) _xn
f( )2. (13)

Then, the accelerations of the body and foot at time n in stance
were calculated as:

€xn
b � −Fbf

mb
− g (14)

€xn
f � Fbf

mn
f

− Fg

mn
f

− g (15)

The switch from the robot’s compression spring stiffness to
extension spring stiffness occurred when the following
conditions were met: Either the leg length rate of change and
the body velocity were both positive, _xb − _xf > 0 & _xb > 0, or
the leg length was below a threshold, xb − xf < 0.105. That is, either
the leg was starting to extend after having been compressed, or it
had been compressed nearly as far as possible before reaching a
singularity in the kinematics of the leg.

As the robot was extending its leg but before its foot lifted off
of the ground, the forces the robot exerted on the ground and the
forces from the ground were near equal. As a result, during this
part of the simulation, the ground would switch between
providing force and no force based on whether the current
foot velocity was negative. If the foot velocity was negative, the
ground would push back with the force determined by the depth,
and velocity of the foot. If the foot velocity was positive or zero,
the ground would give zero force. This prevented the ground
from providing restoring forces and acting as a two-directional
spring instead of a one-directional spring. When the robot’s leg
first started to extend, the foot was pushed further into the
ground. However, after the forces from the leg spring and the
ground equalized, the foot’s velocity would switch between
having a very small positive velocity, and having a very small
negative velocity as the leg continued to extend. The ground
therefore switched between providing force and providing no
force with each timestep during the last part of each stance mode.
We post-processed the simulation logs, in which we recorded the
forces from the ground and robot, to replace the zero force values
that occurred before lift-off. Lift-off was determined to occur
when the forces from the leg were greater than mn

f · g. During
flight mode, the simulation dropped the added mass from the
robot’s foot and set the ground forces to zero to avoid restoring
forces. We simulated the body and foot mass in ballistic flight
while connected by a spring.

We calculated the “cost to jump” in simulation using a simple
motor model and the inverse kinematics of the robot’s leg. For l1,
l2 the lengths of the robot’s leg linkages, r the length from the
robot’s foot to the motor center of mass, and β the angle of the
first link relative to the vertical, the inverse kinematics are:

θ � π − β � cos−1
l21 − l22 + r2

2l1r
( ). (16)

For Df|r the transpose Jacobian taking forces f from the end
effector at leg radius r through the linkage to the torque at the
motor, the torque for the leg spring force Fbf is then τ � Df|rFbf.
We torque-limited the simulation using the stall torque τs � 3.5
Nm reported on the T-motor U8 datasheet4.

Since the simulated leg was modeled as a linear spring, we
calculated the torques at the two opposing motors operating in
parallel that were required to produce the forces observed at the
foot, and then calculated the energy lost to heat. The electrical
energy successfully converted to mechanical energy was modeled
as _θτ for θ in Eq. 16 and τ the motor torque. The electrical energy
lost to heat for our two motors operating in parallel was modeled
as 2Rm(c2)2 for Rm the resistance of the motor from the T-motor
U8 datasheet and c the current that would be required from a
single motor to produce the forces at the foot through the robot’s
kinematics. This is an underestimation of the energetic losses,
which at the very least include passive draw from the electronics.
We also expect that the simulated losses should not exactly match
the losses of the robot jumping on the physical media because the
simulated granular media and physical media are different in
grain size, density, friction, and so on. However, the approximate
form of the force functions in the bulk-behavior model should be
the same, so the simulations can still be used to generate
hypotheses for the experiments in the physical world. For the
plots in this paper, we added a constant to the estimated joules.
We calculated this constant by comparing the actual estimated
energetic cost of a jump with our physical system on granular
media to a simulated jump with the same virtual extension
stiffness and no active damping.

We ran simulations varying the foot size, the active damping
coefficient, and the virtual extension stiffness of the robot’s leg to
predict when the robot would be more likely to benefit from the
active damping controller as compared with the compression-
extension controller (Figure 2). To account for different ground
types, we also scaled the simulated stiffness and damping forces
from the ground. The effect of reaching the robot’s torque limit is
evident in these simulations. Increasing the active damping
coefficient initially increases the difference in the cost of a
single jump relative to the compression-extension condition.
However, after a certain point, the robot hits its torque limit
more and more during its extension mode and gains no further
benefit from increases to the active damping coefficient. There
appears to be a trade-off with ground stiffness and foot size that
affects the location of the “elbow” in the plot. The robot reaches
the point of diminishing returns more quickly when the ground is
less stiff and the foot is smaller.

A few more patterns emerge. In the compression-extension
condition (active damping coefficient � 0), there is never a large
difference between the joules cost for a smaller versus a larger
foot. The maximum difference, in the softest ground condition
with the stiff gain, was only 5 J. In contrast, when using active

4https://store.tmotor.com/goods.php?id�322.
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damping, the difference between the joules cost for different foot
sizes with all other conditions held constant can be quite large.
This is particularly the case when the ground is stiff and has little
damping. When the ground stiffness is low and has larger
damping forces, there is less of a difference in the joules cost
for a single jump with different foot sizes. The greatest benefit
from using active damping is conferred when the robot has a
small foot and a high virtual extension stiffness.

Based on these simulations, we therefore make two predictions:

1) Jumps using the compression-extension controller with the
same virtual extension stiffness should have similar energetic
cost regardless of the size of the foot.

2) Jumps using active damping should have the highest savings
when using the small foot and stiff extension spring
coefficient, and the lowest savings when using the large
foot and soft extension spring coefficient.

We compare the results of our physical experiments to these
predictions in Section 3.

2.3.2 Discrete Element Model Simulations
We used two discrete element model simulations performed with
LAMMPS Improved for General Granular and Granular Heat
Transfer Simulations (LIGGGHTS)5 an open-source discrete
element modeling simulation tool, to compare the energy
transferred to the ground from the compression-extension and
active damping controllers. We generated two trajectories for a
cylindrical foot moving through an idealized granular media using
either the compression-extension or the active damping controller
with our previously described simulation using the analytic force
functions of the ground. These simulations can be seen in the
Supplementary Video. The movements of individual grains
underneath and around the robot’s foot were then simulated as
it traveled along the two different trajectories6 The kinetic energy of
the grains for the two different conditions is plotted in Figure 3.
Under the compression-extension controller, the grains
experienced a surge of kinetic energy when the robot enters its
extension mode. In contrast, the active damping controller only
imparted small amounts of kinetic energy to the ground over the
course of its whole jump. These simulations provide additional
corroboration for the empirical validity of the mathematical
analysis in Section 2.2.2. The active damping controller reduces
the energy transferred from the robot to the ground according to
the bulk behavior model of the substrate mechanics.

2.4 Physical Experiments on Prepared
Granular Media
In this section, we will describe the jumping experiments we
performed on physical granular media. First we will describe the

physical robot used in the jumping experiments. Next, we will
describe the prepared granular media bed and how we controlled
its preparation between experiments. We will then describe the
experimental protocol we used for the jumps on physical media
and how we calculated the quantities of interest, namely the
energy consumption data and the jump heights. In these
experiments we measured the actual energy consumption of
the physical robot by measuring the mAh required to recharge
the battery.

2.4.1 Robot Used in Jumping Experiments
The robot we used in these experiments was a single-leg hopper
using the samemotor controllers and basic hardware as the Ghost
Minitaur and T-motor brand U8motors, but with custom control
code to implement the classical compression-extension
controller, and the active damping controller. The robot used
two opposing motors to control the motion of its foot through a
symmetric 4-bar linkage. We powered the robot with a 4-cell LiPo
battery7 and charged it between experiments with a LiPo charger-
balancer8.

The robot’s leg was modified to linearize the vertical motion of
the foot (see Figure 9). The foot was attached to an aluminum rod
which passes through a linear bearing housed in the 3D-printed
top plate of the robot’s chassis, preventing any rotation of the foot
as the motors move the foot vertically through the leg linkages.
The rod was lubricated with machine oil at the start of each day
that experiments were performed. The robot’s foot was 3D
printed from ABS (acrylonitrile butadiene styrene, a
thermoplastic polymer). Two foot sizes were used in these
experiments: One with a radius of 0.051 m, and one with a
radius of 0.038 m. The robot (Figures 6, 9) weighed 2 kg,
accounting for the force exerted by the string potentiometer.
The leg’s maximum length was 0.3 m and its minimum length,
when fully compressed, was 0.1 m. The neutral length was set to
0.27 m. The robot can be seen performing a jump in the
Supplementary Video. The robot was attached to a gantry
plate and was free to move up and down along a vertical rail9

The angle of the vertical rail was checked using an analog angle
gauge at least once per day of experiments.

The robot was programmed with a simple hybrid controller
which cycled between two states: compresssion, in which the
robot’s leg emulated a soft virtual spring through a low
proportional and derivative gain on the motors through the
leg kinematics (Figure 6), and extension, in which the leg
emulated a stiff virtual leg spring. The robot switched from
compression to extension when the leg was compressed
beyond a small threshold, with a deflection of at least 0.05 m,
and the rate of change of its leg length goes to zero, _xb − _xf � 0.
The requirement that the robot’s leg must have deflected at least a
small amount before the robot switches from compression to
extension prevents the robot from switching to extension mode

5https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-
simulation-code.
6Thanks to Swapnil Pravin, Temple University, for running these pre-generated
trajectories through LAMMPS.

7ThunderPowerRC, 3,550 East Post Road Suite 500 Las Vegas, NV 89 120, Reaper
series, and part number TP6600-4SR70.
8ThunderPowerRC, part number TP610HVC.
9OpenBuilds, 719 Whig Ln, Monroeville, and NJ, 08343.
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any time its leg length remains constant for some period of time,
for example while the robot is in flight. The switch from extension
back to compression occurs when the leg reaches its neutral leg
length l (0.27 m for these experiments). The active damping
controller added a force during extension, but did not
otherwise change the control. The injection of energy caused
by a sudden change from a soft to a stiff virtual leg spring is what
causes the robot to jump (Figure 8).

We tested two virtual extension stiffnesses and five active
damping gain conditions. We picked the active damping gains
used in this study based on the suggestion from a previous study
(Roberts and Koditschek, 2019) that high active damping gains
would result in high energetic savings. The extension gains (300
and 400) were converted to stiffness coefficients (units: N/m) and
the active damping gains (50, 100, 150, 200, and 250) were
converted to damping coefficients (units: kg/s) using a least-
squares fit we performed in a previous study on a similar leg
(Roberts and Koditschek, 2019). For a stiffness coefficient k,
stiffness gain gk, damping coefficient d, and damping gain gd,
the formula for stiffness is k � 2.56gk + 67.36, and the formula for
the damping coefficient is d � 3.32gd + 19.67. The plots in this
paper use the fitted stiffness and damping coefficients to ease
comparison with the simulations and enable other researchers to
more easily extend our results to their own robot platforms.

2.4.2 Controlled Granular Media Bed
The controlled granular media bed consisted of a clear acrylic box
with a 0.3 × 0.3 m base and 0.6 m walls. We filled the box with
3.4 mm glass beads10 to a depth of 0.16 m. Before each jump, we

lightly stirred the media and smoothed the surface. The surface
smoothing was performed with a slider cut to the inside shape of
the box from a sheet of thick cardboard. Wings at the top of the
slider hooked over the top of the box as it was moved back and
forth, ensuring that the bottom of the slider prepared the surface
at the same depth for each jump. An example of granular media
preparation can be seen in the Supplementary Video.

We tested the range of compactions that the 3.4 mm glass
beads could occupy by pouring grains loosely into spherical flasks
of five different diameters, filling the remaining space with water,
and then compacting grains and removing water until no more
grains could be added. Water volume measurements were
collected for both the initially poured loose packed state and
the final maximum compaction state. We then fit a model which
estimates the compaction at the center of a spherical container
filled with media as the percent of media in the boundary layer
goes to zero for both the loose packed and hard packed states
using the method described in (Miskin and Jaeger, 2014).

The estimated volume fractions for the loose packed and hard
packed states were 0.61 and 0.63, respectively (see Figure 10). To
determine whether this variation was acceptable, we considered
how the variation would affect the conclusions of our data. Since
the maximum random close packing of a homogeneous granular
media with spherical grains is about 0.64 (Cumberland and
Crawford, 1987), in the 0.61–0.62 range, an impacting leg
should not be able to substantially increase the compaction.
Considering the force response from the granular media as a
function of the compaction, the forces from the granular media
should level off as the compaction approaches the maximum
random closed packing. In Aguilar and Goldman (2016), the
experimenters jumped a robot on a controlled granular media bed
with a range of compactions. The expected relationship between
compaction and jump height emerged, with the jump heights
levelling off as the compaction exceeded 0.61. In the 0.61–0.63
range, the difference in jump heights is small and close to within
experimental noise. This maximum 2% possible range of
compactions in the granular media in our preparation was
therefore deemed acceptable for our physical experiments.

Instead of testing on different preparations of granular media,
which is typical for experiments on prepared granular media
(Qian et al., 2015; Hubicki et al., 2016), we affected the force
functions of the granular media by changing the robot’s foot size.
The foot radius multiplies terms in all three of the ground’s force
functions: The stiffness function kg (xf), the damping function
dg(xf) _x2

f, and the added mass function ma (xf). Changing the
area of the foot, like changing grain properties such as friction or
density, affects the overall force response from the ground.

It is worth noting that changing different parameters like foot
size, grain density, and grain friction will all change the force
response from the ground in slightly different ways. The friction
of the grains appears in all three of the component granular media
forces, while the grain density appears in only the added mass,
and the dissipation functions. The foot area most directly affects
the stiffness function of the foot, but it changes the depth at which
the cone of added mass is fully formed under the robot’s foot, and
therefore also affects the amount of added mass that can be
recruited under the robot’s foot. Since the point at which the

FIGURE 9 | Left: The one-legged robot which was adapted for vertical
jumping experiments on prepared granular media. Right: The full setup, with
robot attached to linear rail in the sandbox. See Section 2.4.1 for more
information.

10Jaygo, Inc., 7 Emery Ave, Randolph, and NJ, 07869.
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dissipation function’s coefficient becomes constant depends on
the depth at which the cone is fully formed under the robot’s
foot, this function is also affected by the foot size, but to a lesser
extent. In short, no two parameters affect the model in exactly
the same ways. For details on the granular media model used in
these simulations and analysis, please see Aguilar and Goldman
(2016).

2.4.3 Experimental Protocol for Robot Jumping on
Controlled Granular Media Bed
The full setup, with the robot constrained to a linear rail in the
sandbox, is pictured in Figure 9. The robot’s foot was centered in
themiddle of the box to avoid boundary conditions during jumps,
meaning that there was a minimum of about 0.1 m between the
edge of the foot and any side wall during the experiment.

The energy consumption for the cost of transport
measurements was calculated by recharging the battery after
use and recording the mAh reported by the charger. The
battery was recharged to the storage voltage of 15.4 V (3.85 V
per battery) instead of the maximum voltage of 16.8 V because
the relationship between percent of charge and voltage for lithium
ion polymer batteries is nonlinear at the top of the voltage range
(Jeon, 2014). Keeping the battery close to the storage voltage
avoids this nonlinearity.

We took several additional precautions to reduce noise in the
energy consumption measurements. First, if experiments had not
been run the previous day, the battery was discharged by jumping
the robot 20–50 times and then recharged before starting
experiments for the day. This mitigated the effect of passive
self-discharge. Second, we either randomized the order of

experiments in each day or used block ordering, depending on
how many experiments were to be conducted. Experiments were,
however, performed in a rough ordering of foot size and
extension gain: All experiments with the larger foot were
performed first, and all experiments with the stiffer extension
spring were performed first for a given foot size.

We also used a timer to ensure that all of the experiments took
the same length of time (12 min). This was necessary because
resetting the ground between jumps took significantly longer than
the time the robot spent jumping. The passive power
consumption of the robot’s electronics, even when the motors
were not powered, and added significant noise to the energy cost
measurements if this was not held constant. Sometimes, the
motor controllers would report the incorrect leg configuration,
and the robot would need to be restarted up to 3 times. When this
happened, we quickly flipped the switch on and off, and noted
how many starts were required. We were not able to detect a
difference in the power consumption between trials with multiple
starts versus one start.

We prepared and checked the experimental setup to ensure
that it was consistent from day to day. Before starting
experiments each day, we checked the angle of the robot’s
vertical rail to make sure that it was within 1 degree of
vertical. We added machine oil to lubricate the linearizing rod
attached to the robot’s foot which passes through a linear bearing
in the 3D-printed top of the robot’s chassis.

Each Experiment Proceeded as Follows

1) Connect battery to robot and turn the hard switch on,
providing power to the robot’s electronics but only zero
gain to the motors.

2) Start the timer.
3) Connect the robot’s microcontroller board to the laptop and

extend and compress the leg to ensure that the robot is
booted up and transferring data correctly.

4) Repeat steps 1 and 3 as many times as necessary to get
accurate length readings.

5) Begin logging data to the laptop.
6) Remove the clamp that the robot is resting on and move the

robot down until it is just past a mark on the string
potentiometer indicating the start position (0.42 m).

7) Drop the robot.
8) Catch the robot before it touches down a second time.
9) Replace the clamp and allow the robot to rest while resetting

the ground.
10) Repeat steps 7-9 for a total of 25 jumps.
11) Allow the robot to rest on the clamp until the full 12 min

have passed.
12) Cut power to the battery and place it to charge. Stop logging

data and upload the code for the next experiment.

We performed at least one control experiment per day, and
almost always at least one from all of the same extension gains as
the experiments with active damping that we tested that day. At
least 10 experiments were performed for each combination of foot
size, extension gain, and active damping gain, with more
experiments performed for some control conditions.

FIGURE 10 | The difference between the minimum and maximum
possible compactions ϕ, and therefore forces exerted by the ground, was 2%.
The x-axis on this plot describes the ratio of the size of the grains (a � 3.4 mm)
to the container radius. The y-axis corresponds to the volume fraction of
the media, that is, and the percentage of space occupied by the grains. The
y-intercepts on this plot therefore correspond to the volume fractions when
the radius of the container goes to infinity. The range of the y-axis is
determined by the possible range of granular media compactions. The vertical
bars indicate one standard deviation. See Section 2.4.2 for more information.
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2.4.4 Calculation of Energy Consumption Data
During preliminary experiments (not reported), we found that a
large source of variability was the amount of time that the robot
spent passively drawing power from the battery while the
experimenter reset the ground. Because the robot sometimes
moved unexpectedly on startup or required several starts to
appropriately link to its motors, the robot could not be fully
disconnected from its power source while the ground was being
reset. We were concerned that a stationary power supply might not
sufficiently capture the transient high-current spikes, particularly
during touchdown and the switch from compression to extension
mode, that are of primary concern for dynamic legged locomotion.
We also had extremely consistent data from a previous study in
which we used the same power setup that we did here: The robot
jumped a number of times with a battery, and then we recharged
the battery and recorded the number of mAh reported on the
charger (Roberts and Koditschek, 2019). We were therefore
convinced that the method of measuring power consumption
was sound, and the variability was coming from another source.

Measurements of the passive power consumption while the robot
was hanging froma clamp for 20, 24, 30, 40, 50, and 60min confirmed
the hypothesis that passive power drawwas a large source of variability
in our initial experiments. Obtaining a linear fit to this data (R2 � 1),
we estimated that the passive power draw over a 12-min experiment
added 86.2 to the mAh reported by the charger. We chose 12min
because this was more than sufficient time to consistently complete all
25 jumps and reset the ground adequately every time, even if there
were several occasions when the ground needed extra time to be reset.
The stance duration for a typical jump is less than 0.5 s and each
experiment consisted of only 25 jumps, meaning that the robot spent
only about 10 s in stance during each experiment. The time spent
during stance was therefore considered trivial relative to the estimated
passive power consumption, and 86.2 was subtracted from each
measurement recorded from the charger.

2.4.5 Calculation of Jump Height Data
The robot’s height during each jump was measured with a string
potentiometer attached to the top of the robot, with its string
attached to the top of the vertical rail the robot jumped up and
down along. The data was captured by the robot’s controller
board and passed to the experimenter’s laptop through a serial-
to-USB connection.

After all experiments were complete, we used a custom script to
display the logs and allow the experimenter to visually check each
jump before accepting it as a data point. We rejected jumps where
the log had a dropped packet or the script failed to correctly identify
the apex of the jump. For a single condition, the minimum number
of accepted jumps was 185 and the maximum number was 272.

3 RESULTS

In general, the robot used more energy under the compression-
extension controller than the active damping controller (Section
3.1). However, we did not see a relationship between the active
damping coefficient and a reduction in the energetic cost to jump.
A small foot appears to contribute to larger savings when using

active damping than a larger foot (Section 3.2). Finally, there was
no difference in the jump height when using active damping or
the compression-extension controller (Section 3.4). All statistical
tests reported in this section use a threshold of p < 0.05.

3.1 The Active Damping Controller Used
Less Energy Than the
Compression-Extension Controller to Jump
We used a one-way ANOVA to check for an overall relationship
between active damping coefficient and energy consumption in
the active damping controller, which was not significant at the p
< 0.05 threshold for any combination of foot size and virtual
extension stiffness (see Table 1 for a summary).

We pooled all of the active damping conditions together and used a
t-test to compare the pooled active damping condition to the control
condition. There was a statistically significant difference between all of
the pooled active damping conditions and their respective control
conditions (p < 0.05) except for the large foot, soft spring condition
(p � 0.071). See Table 2 for a summary. The simulations (Section
2.3.1) suggested that a smaller foot and a stiffer extension gain would
lead to a larger difference between the active damping and the
compression-extension controllers, which is consistent with our
results. Pooling across active damping condition and foot size
resulted in all comparisons having a statistically significant
difference (p < 0.05). The data from the physical experiments is
plotted in Figure 9.

The simulations (Section 2.3.1) indicate that there is a point of
diminishing returns for the active damping coefficient. Assuming
that the model is correct, all of our physical experiments appear to
have active damping coefficients beyond this point.
Unfortunately, without collecting a large amount of data a
priori, we were not able to determine ahead of time that all of
our active damping gains would be above the point of
diminishing returns.

We also performed individual statistical tests comparing each
of the active damping conditions for a combination of foot size
and extension gain. For each pairing of a control compression-
extension condition and active damping condition, we first used
an F-test to check for equal variances and then used a t-test to
compare the conditions using the appropriate assumption about
equal or unequal variances. Across all combinations of foot radius
and virtual extension stiffness, the robot used less energy to jump
with active damping than with the compression-extension
controller. Most, but not all, of these comparisons were
statistically significant (see Table 3).

3.2 Energy Saved From Using Active
Damping With Different Foot Sizes and Leg
Extension Stiffnesses
We calculated the energy saved by using active damping relative
to the compression-extension controller, using data pooled across
active damping conditions. Recall that this pooling is justified by
the lack of statistically significant difference between any two
active damping coefficient conditions for a combination of foot
size and leg extension stiffness (Section 3.1). Calling CE the
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average cost of a single jump under a compression-extension
controller with a certain foot size and extension stiffness and AD
the average cost of a single jump under the active damping
controller for that same foot size and extension stiffness, the
percent savings afforded by the active damping controller is (CE-
AD)/CE. The highest percent savings, 15%, was in the small foot,
stiff extension spring condition, and as expected from the
simulation results. The next highest was in the small foot, soft
extension spring condition (14%), followed by the large foot, stiff
spring condtiion (11%). The soft spring, large foot condition
saved the least energy (10%). These results are summarized in
Table 4. We can thus see that the percent savings was much more
affected by the foot size than the extension stiffness. The data
suggest that there is an appreciable increase in the percent savings
when using a smaller foot, but we cannot conclude from this data
that the leg extension stiffness has a non-negligible effect on the
percent savings conferred by using active damping.

3.3 Comparison of Results From Physical
Experiments to Predictions From the
Simulations
From the simulations (see Figure 2; Section 2.3.1), we expected
two things. First, we expected that there should be a negligible
difference between the joules per jump for a robot jumping with
the compression-extension controller using the same virtual
extension stiffness with different sized feet. Second, we
expected that there should be a larger reduction in the joules
per jump for the same active damping coefficient when using a
smaller foot. These patterns are not refuted by the data. Using the
same method of first testing for equal variance with an F-test and
then performing a t-test, we found that differences between the
joules per jump for the same virtual extension stiffness but

different foot sizes were not statistically significant for the
compression-extension condition (p > 0.5 for both). However,
seven of the ten extension stiffness-active damping pairs were
statistically significant (p < 0.05). One of the three which were
not statistically significant was from the smallest active damping
coefficient with the stiffer leg (p � 0.245) and the other two were
from the softer spring condition (active damping gain � 100, p �
0.079; active damping gain � 250, p � 0.057). Comparing the
larger and smaller foot sizes for the pooled active damping
condition, both the stiffer and softer extension springs had a
significant difference for joules per jump with foot size (p <
0.000 1 for both virtual extension stiffnesses). See Table 5 for a
summary.

3.4 Jump Heights on Physical Granular
Media
Previous simulations and experiments (Roberts and Koditschek,
2018; Roberts and Koditschek, 2019) suggested that the robot

TABLE 1 | This table contains the p-values for the ANOVAs testing whether there
is a relationship between the coefficient used by the active damping controller
and energy consumption.

Foot radius Extension stiffness p-value

0.04 m 850 N/m 0.366
0.04 m 1,100 N/m 0.411
0.05 m 850 N/m 0.472
0.05 m 1,100 N/m 0.294

Each row is the test of all active damping coefficients for that combination of leg extension
stiffness and foot size. In all cases, there is no statistically significant relationship between
active damping coefficient, and energy consumption.

TABLE 2 | This table contains the p-values for t-tests comparing the pooled active
damping controller conditions across each foot size and extension gain to the
corresponding compression-extension conditions.

Foot radius Extension stiffness p-value

0.04 m 850 N/m 0.028
0.04 m 1,100 N/m 0.002
0.05 m 850 N/m 0.071
0.05 m 1,100 N/m 0.007

TABLE 3 | This table contains the p-values for all of the statistical tests performed
with all combinations of foot size, leg extension stiffness, and active damping
(AD) coefficient.

Foot radius Extension stiffness AD coefficient p-value

0.04 m 850 N/m 186 kg/s 0.019
0.04 m 850 N/m 352 kg/s 0.081
0.04 m 850 N/m 518 kg/s 0.019
0.04 m 850 N/m 684 kg/s 0.025
0.04 m 850 N/m 850 kg/s 0.037
0.04 m 1,100 N/m 186 kg/s 0.041
0.04 m 1,100 N/m 352 kg/s 0.006
0.04 m 1,100 N/m 518 kg/s 0.001
0.04 m 1,100 N/m 684 kg/s 0.002
0.04 m 1,100 N/m 850 kg/s 0.002
0.05 m 850 N/m 186 kg/s 0.035
0.05 m 850 N/m 352 kg/s 0.113
0.05 m 850 N/m 518 kg/s 0.110
0.05 m 850 N/m 684 kg/s 0.128
0.05 m 850 N/m 850 kg/s 0.051
0.05 m 1,100 N/m 186 kg/s 0.007
0.05 m 1,100 N/m 352 kg/s 0.028
0.05 m 1,100 N/m 518 kg/s 0.103
0.05 m 1,100 N/m 684 kg/s 0.003
0.05 m 1,100 N/m 850 kg/s 0.002

TABLE 4 | The smaller foot, higher stiffness condition had the largest savings
when using active damping. Here, the “percent savings” was calculated for a
foot radius and stiffness coefficient in the following manner: (CE-AD)/CE for CE the
average joules required for the robot to jump once using the compression-
extension controller, and AD the average joules required for the robot to jump
once using the active damping controller, with experiments pooled across all
active damping gains.

Foot radius Extension stiffness Percent savings (%)

0.04 m 850 N/m 14
0.04 m 1,100 N/m 15
0.05 m 850 N/m 10
0.05 m 1,100 N/m 11
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should jump slightly less high when using the active damping
controller than when using the compression-extension controller,
with a maximum height loss of less than 5%. We did not see that
loss in these experiments (see Figure 10). Repeating our
procedure of performing an F-test for equal variance and then
a t-test with the appropriate assumptions, we found either a
statistically significant increase in jump height when using active
damping compared with the compression-extension controller,
and or no statistically significant difference. This means that the
robot is either jumping to the same height when using active
damping and the compression-extension controller, or—if there
is a difference—the difference favors the active damping
controller. In other words, there is absolutely no loss to jump
height from using active damping. Whereas previous work had
suggested that the active damping controller came at a slight cost
of a loss to jump height, these experiments on physical media
suggest that this is not always the case. That said, the largest
increase in jump height measured was only 3 mm. Although the
difference in height was statistically significant, it is small enough
to be negligible.

4 DISCUSSION

4.1 Application to Geoscience Research
Minitaur’s direct-drive legs can also be used as force sensors.
Because there are no gearboxes on the legs, deflections at the foot
can be sensed more transparently than possible through an
intermediating transmission (Kenneally et al., 2018). When the
forces exerted by the leg for a given deflection are known, the
deflection can be used as an effective force sensor. By dragging a
single leg across the surface of a patch of desert sand or poking the
leg straight down into the ground, it is possible to measure
ground properties such as shear stress and stiffness which are
relevant to erodibility (Qian et al., 2017). These represent
quantities of significant interest for researchers interested in
studying natural erosion processes like desertification (Roberts
et al., 2014a; Roberts et al., 2014b). Accurate measurements of

these forces require that the robot have small, lightweight feet,
and no gearboxes.

We regularly take our robots on field missions with
geoscientist collaborators who study deserts and other
challenging environments like forested hillslopes (Qian et al.,
2017). Our larger aim is to outfit our collaborators with a
heterogeneous team of robots: One or more RHex robots
(Haynes et al., 2012), which are heavily geared 10 kg legged
robots with a broad flat back that can be used to carry a large
sensor payload, and one or more Minitaurs. The Minitaurs
should run ahead and scout for locations of interest by
performing simple ground intrusion and shearing tests, while
the RHex robots slowly carry payloads of sensors to the most
interesting locations, and communicate data to the scientists as
they are captured. The semi-autonomy of a team of robots
working directly under human supervision provides a bridge
between the current methods used to perform planetary science
on Earth and the research modes used on planets such as Mars,
where human interaction with the rovers is very slow.

However, the Minitaur robot is currently challenged by long-
distance locomotion in the desert. While it is able to perform
short runs, the motors quickly overheat, and the robot cannot yet
be relied on as a self-transporting force sensor. Measurements
using the Minitaur hardware and software are currently
conducted with a single leg strapped to the back of the heavily
geared RHex robot, leaving little room for an additional sensor
payload, and removing the possibility of having two
independently behaving robots (Qian et al., 2017). To realize
this heterogeneous team, it is necessary to improve the energetic
efficiency of the Minitaur robot on granular media such as dry
desert sand without appreciably changing the robot’s physical
architecture.

4.2 Strengths and Contextualization of the
Present Work
In this work, we demonstrated that the active damping controller
reduces the energetic cost of transport without reducing the
robot’s jump height, a proxy for the effectiveness of
locomotion. We demonstrated this with a combination of
simulations, analysis, and experiments in physical granular
media. In other words, when using active damping, the
number of joules required to take a single jump was
significantly reduced without any loss to the height of the
jump. Our data also suggest the general trend that a robot
using a smaller foot will benefit more from using active
damping than a robot with a larger foot.

This method of reducing energy cost, because it uses basic
principles of the energetic properties of sand, is more similar to
adaptations like increasing the foot size than to adaptations like
optimizing a controller for a single jump based on a model of a
particular ground. As a result, this method may provide benefit in
comparison to optimization and reinforcement learning based
control methods because the robot does not need any awareness
of the ground or its properties. The robot only needs to know the
intrusion velocity of its foot. The robot does not even need to
know whether it is on sand or rigid ground, because if the

TABLE 5 | There was a statistically significant difference between the cost of a
single jump when using different foot sizes for 7/10 combinations of active
damping (AD) coefficient and leg extension stiffness.

Extension stiffness AD coefficient p-value

850 N/m 186 kg/s 0.043
850 N/m 352 kg/s 0.079
850 N/m 518 kg/s <0.001
850 N/m 684 kg/s 0.017
850 N/m 850 kg/s 0.057
1,100 N/m 186 kg/s 0.245
1,100 N/m 352 kg/s 0.010
1,100 N/m 518 kg/s 0.003
1,100 N/m 684 kg/s 0.005
1,100 N/m 850 kg/s 0.028
850 N/m Pooled < 0.001
1,100 N/m Pooled < 0.001

When all of the active damping gain conditions were pooled for a combination of foot size
and extension gain, the findings were statistically significant in both cases.
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intrusion velocity is zero, the active damping force will be zero,
and the robot will jump with its nominal compression-extension
controller, which is effective on rigid ground.

In contrast to methods like the one presented here, methods
relying on models of the environment may be more effective in
specific conditions where there is data available, or where the
ground conditions are relatively consistent (for example, Chang
et al. (2019)). However, this method should reliably reduce the
energy cost of jumping in any previously unencountered situation
where the ground exerts bulk behavior forces like a granular
media. Since variation can occur quickly in natural environments,
a robot locomoting in a natural desert will likely need to adapt
within one or two steps to changes in the ground stiffness.
Building an accurate and useful representation of a truly
unknown environment is a very difficult task which we
suggest is not necessary for many basic locomotion behaviors
(Roberts et al., 2020).

Since the active damping controller provides more benefit with
smaller foot sizes, it will be most effective when the robot’s feet
cannot be significantly enlarged. For example, if the robot needs
to walk over a mixed terrain with both sandy portions and rocky
portions that would be more easily traversed with a smaller foot
that can hook into crevices and lift over rocks without getting
stuck, it might be more useful to use active damping than to
increase the foot size. For our application, in which the robot’s
foot size cannot be significantly increased without reducing the
utility of its feet as force sensors, the active damping controller is
also an approach well suited to increasing endurance without
diminishing capability.

The results in this paper also warrant a further discussion
about the previous results from Roberts and Koditschek (2019),
in which we jumped the same physical robot on top of a lightly
geared robot emulating the forces from a compressible ground. In
that work, we found that a higher active damping coefficient
relative to the virtual extension stiffness resulted in a higher
energy savings, which we did not replicate in these results on
physical granular media, finding instead that varying the active
damping coefficient did not change the energetic savings. The
most likely explanation is that the robot’s motors are hitting their
torque limits during the extension mode in our experiments on
physical granular media, meaning that there is very little
difference from the motor’s point of view between the
different active damping coefficients. As we saw in the
simulations for this paper (Section 2.3.1; Figure 2), when we
reach the artificially set torque limits, there is no further benefit
from increasing the active damping coefficient after a certain
point. This is further supported by the fact that the Ghost motor
controllers used on our robot have a safety limit in their firmware,
meaning that there is a sudden hard limit on the torque output
from the motor, and the physical motors should behave similarly
to the simulated motors. In Roberts and Koditschek (2019), the
most significant increases from increasing the active damping
gains were in the low virtual extension stiffness conditions, when
a higher damping gain would not cause the robot to reach a
torque limit. We were not able to test those low extension stiffness
conditions on the physical setup due to the softness of the
granular material and the necessity of the experimenter to be

able to catch the robot while in flight. In the minimum stiffness,
minimum foot size condition tested in this paper, and the robot’s
foot achieved a height of only about 0.02 m from the undeflected
surface of the ground.

4.3 Limitations of the Present Work
One limitation of this work is that we only consider flat granular
media being penetrated vertically. We do not consider the role of
shearing forces or inclination in the granular media force
responses. Shearing is an important part of locomotion, and
more work in granular media physics is required to accurately
model the forces in response to concurrent shearing and vertical
intrusion. Work on inclined granular media (Forterre and
Pouliquen, 2008; Han et al., 2019) suggests that the force
response is similar in form but reduced in comparison to the
force response of flat media. However, in neither case are the
forces sufficiently well understood to perform the same sort of
analytic simulations and modeling used in this paper.

Another limitation of the present work is that we could not see
an effect of changing the active damping coefficient, likely due to
all of the leg extension stiffnesses and active damping coefficients
being sufficiently large that the robot hit its torque limits during
the experiments. This could be addressed in future work by using
a “stiffer” granular media, which would make it possible to use
lower extension stiffnesses, and lower active damping gains. In
this study we did not characterize the “stiffness” and “damping”
functions for the ground. Such characterization would have made
it easier to determine appropriate stiffness and damping
functions to use in simulation. Some of the discrepancies
between our observations in the simulations and the physical
world could be attributed to this lack of information about the
exact values of the stiffness and damping functions of the ground.
Another option would be to use a previously characterized
granular media which requires a fluidized bed.

Finally, we only performed a limited number of experiments,
and cannot draw conclusions about the effects of varying the leg
extension stiffness, the active damping gain, or the properties of
the granular media from our physical experiments. Without
more experiments in different active damping gain conditions, it
is impossible to determine the relationship between active
damping gain, and the reduction in energetic cost. Even
without using a fluidizing bed, future work could include
using grains with different densities or surface frictions to
change the stiffness, and damping functions of the ground.
Testing on more than one physical media would strengthen the
claims that using active damping mitigates the energy lost to the
ground during jumping. Also, without more experiments in
different conditions generally, it is impossible to optimize the
savings from the active damping controller in comparison to the
compression-extension controller. By testing more
combinations of foot sizes, active damping gains, extension
stiffnesses, and characterized granular media types, it would
be possible to make claims about the direct relationships
between these variables. The conclusion that we can draw
from our physical experiments are limited to the fact that
active damping generally decreases the cost of a single jump
to a certain height, and that smaller feet increase the savings
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conferred by active damping in comparison to the compression-
extension controller.

4.4 Summary and Potential Future
Directions
In our physical experiments, we found a consistent reduction in
the energetic cost of performing a single jump when using active
damping in comparison to the base compression-extension
controller. This reduction in the power drawn from the
battery did not result in a reduction in jump height, implying
that the active damping controller for locomotion on sand uses
the energy from the battery more efficiently for the goal of
locomotion. We conclude that the active damping controller
saves significant energy in comparison to the base
compression-extension controller.

Future work in this area could extend these results by
performing physical experiments with more granular media
types, particularly media that would be more like the media
that a robot would encounter on a sand dune. With the use of a
fluidizing bed, it would be possible to test media with a much
smaller diameter. Media with different densities and surface
frictions would also be particularly interesting to test, as both
of these parameters would increase the overall force response
from the ground and enable the experimenters to test with
smaller feet and softer leg extension spring coefficients.
Changing the relative humidity would be another interesting
avenue to explore along this dimension, as this would make it
possible to extend the results beyond dry granular media. It would
also be interesting to perform experiments with angled intrusions
and on tilted granular media. Once we understand how the
performance of the controller is affected by shearing and
tilting, the active damping controller should be compared with
the compression-extension controller on a freely behaving robot
in a natural desert environment.

The active damping controller could also potentially be
composed with other controllers for locomotion. For
example, one controller typically used on the Minitaur robot
uses negative damping to inject energy into the virtual leg spring
during stance (De and Koditschek, 2018). Positive damping,
meaning a positive damping coefficient on the virtual leg spring,
slows down how quickly the leg extends. In contrast, negative
damping makes the leg move faster, which causes the robot to
jump in a visually similar way to the controller we use in this
study, which injects energy by changing the leg stiffness.
However, since negative damping increases the speed of
motion of the leg, on granular media such a controller would
cause the robot’s foot to push very quickly into the sand,
potentially transferring a large amount of energy to the
ground quickly. Furthermore, if we think of the two
controllers acting in parallel, one controller will be adding
negative damping to the leg to energize it while the other
controller adds positive damping to slow down the foot’s
intrusion with the ground. In order for the robot to jump

successfully, the controllers would need to be carefully
balanced, and which might seriously limit the range of
ground conditions on which the robot could jump. In order
to test the general utility of the active damping controller on
sand, it should be possible however to compose it with
controllers developed using optimal control or machine
learning techniques.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SR and DK contributed to the conception and design of the study.
SR performed experiments, analyzed the data, and wrote the first
draft of the manuscript. SR and DK contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

This work was supported by NSF INSPIRE Grant 1514 882 and in
part by NSF NRI-2.0 Grant 1734 355.

ACKNOWLEDGMENTS

We thank the NSF INSPIRE and NRI programs which funded us
under grants 1514 882 and 1734 355 respectively. We thank
Swapnil Pravin and Tonia Hsieh for running the DEM
simulations. We additionally thank Tonia Hsieh and Marc
Miskin for discussions about the granular media preparation
and interpretations of the literature to justify the rigor of our
granular media preparation process. We thank Wei-Hsi Chen for
checking over the manuscript for errors. We thank Feifei Qian
and Chen Li for discussions about the granular media model
used. Thanks to Ghost Robotics and in particular Avik De, Tom
Jacobs, Gavin Kenneally, and Turner Topping, who provided
invaluable technical support. Thank you to Tonia Hsieh, Cynthia
Sung, and Marc Miskin for feedback on the overall project.
Finally, we gratefully acknowledge Diedra Krieger for
administrative support, and Terry Kientz and Jeremy Wang
for machining support.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.740927/
full#supplementary-material

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 74092718

Roberts and Koditschek Virtual Energy Management

https://www.frontiersin.org/articles/10.3389/frobt.2021.740927/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.740927/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


REFERENCES

Aguilar, J., and Goldman, D. I. (2016). Robophysical Study of Jumping
Dynamics on Granular media. Nat. Phys 12, 278–283. doi:10.1038/
nphys3568

Barchyn, T. E., Martin, R. L., Kok, J. F., and Hugenholtz, C. H. (2014). Fundamental
Mismatches between Measurements and Models in Aeolian Sediment
Transport Prediction: The Role of Small-Scale Variability. Aeolian Res. 15,
245–251. doi:10.1016/j.aeolia.2014.07.002

Bester, C. S., and Behringer, R. P. (2017). Collisional Model of Energy Dissipation
in Three-Dimensional Granular Impact. Phys. Rev. E 95, 032906. doi:10.1103/
PhysRevE.95.032906

Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., et al.
(2010). Universal Robotic Gripper Based on the Jamming of Granular
Material. Proc. Natl. Acad. Sci. 107, 18809–18814. doi:10.1073/
pnas.1003250107

Chang, A. H., Hubicki, C., Ames, A., and Vela, P. A. (2019). “Every Hop Is an
Opportunity: Quickly Classifying and Adapting to Terrain during Targeted
Hopping,” in 2019 International Conference on Robotics and Automation
(ICRA), Montreal, Canada, May 2019 (IEEE), 3188–3194. doi:10.1109/
icra.2019.8793757

Chang, A. H., Hubicki, C. M., Aguilar, J. J., Goldman, D. I., Ames, A. D., and Vela,
P. A. (2017). “Learning to Jump in Granular Media: Unifying Optimal Control
Synthesis with Gaussian Process-Based Regression,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on, Singapore,
May 2017 (IEEE), 2154–2160. doi:10.1109/icra.2017.7989248

Chopra, S., Tolley, M. T., and Gravish, N. (2020). Granular Jamming Feet Enable
Improved Foot-Ground Interactions for Robot Mobility on Deformable
Ground. IEEE Robot. Autom. Lett. 5, 3975–3981. doi:10.1109/
lra.2020.2982361

Clark, A. H., and Behringer, R. P. (2013). Granular Impact Model as an Energy-
Depth Relation. EPL 101, 64001. doi:10.1209/0295-5075/101/64001

Cumberland, D., and Crawford, R. J. (1987). The Packing of Particles. New York:
Elsevier.

De, A., and Koditschek, D. E. (2015). “Parallel Composition of Templates for Tail-
Energized Planar Hopping,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on, Seattle, WA, May 2015 (IEEE), 4562–4569.
doi:10.1109/icra.2015.7139831

De, A., and Koditschek, D. E. (2018). Vertical Hopper Compositions for Preflexive
and Feedback-Stabilized Quadrupedal Bounding, Pacing, Pronking, and
Trotting. Int. J. Robotics Res. 37, 743–778. doi:10.1177/0278364918779874

Fahmi, S., Fink, G., and Semini, C. (2021). On State Estimation for Legged
Locomotion over Soft Terrain. IEEE Sens. Lett. 5, 1–4. doi:10.1109/
lsens.2021.3049954

Fahmi, S., Focchi, M., Radulescu, A., Fink, G., Barasuol, V., and Semini, C. (2020).
Stance: Locomotion Adaptation over Soft Terrain. IEEE Trans. Robot. 36,
443–457. doi:10.1109/tro.2019.2954670

Forterre, Y., and Pouliquen, O. (2008). Flows of Dense Granular media. Annu. Rev.
Fluid Mech. 40, 1–24. doi:10.1146/annurev.fluid.40.111406.102142

Han, E., Zhao, L., Van Ha, N., Hsieh, S. T., Szyld, D. B., and Jaeger, H. M. (2019).
Dynamic Jamming of Dense Suspensions under Tilted Impact. Phys. Rev. Fluids
4, 063304. doi:10.1103/physrevfluids.4.063304

Haynes, G. C., Pusey, J., Knopf, R., Johnson, A. M., and Koditschek, D. E. (2012).
“Laboratory on Legs: an Architecture for Adjustable Morphology with Legged
Robots,” in Unmanned Systems Technology XIV (Baltimore, Maryland:
International Society for Optics and Photonics), 8387, 83870W. doi:10.1117/
12.920678

Hubicki, C. M., Aguilar, J. J., Goldman, D. I., and Ames, A. D. (2016). “Tractable
Terrain-Aware Motion Planning on Granular media: an Impulsive Jumping
Study,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, Daejeon, Korea, October 2016 (IEEE), 3887–3892. doi:10.1109/
iros.2016.7759572

Hurst, J. W., Chestnutt, J. E., and Rizzi, A. A. (2004). “An Actuator with Physically
Variable Stiffness for Highly Dynamic Legged Locomotion,” in IEEE
International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, New Orleans, LA, May 2004 (IEEE), 5, 4662–4667. doi:10.1109/
robot.2004.1302453

Jeon, D. H. (2014). Numerical Modeling of Lithium Ion Battery for Predicting
thermal Behavior in a Cylindrical Cell. Curr. Appl. Phys. 14, 196–205.
doi:10.1016/j.cap.2013.11.006

Kang, W., Feng, Y., Liu, C., and Blumenfeld, R. (2018). Archimedes’ Law Explains
Penetration of Solids into Granular media. Nat. Commun. 9, 1101. doi:10.1038/
s41467-018-03344-3

Kenneally, G., Chen, W.-H., and Koditschek, D. E. (2018). “Actuator Transparency
and the Energetic Cost of Proprioception,” in International Symposium on
Experimental Robotics, Buenos Aires, Argentina, November 2018 (Springer),
485–495.

Kenneally, G., De, A., and Koditschek, D. E. (2016). Design Principles for a Family
of Direct-Drive Legged Robots. IEEE Robot. Autom. Lett. 1, 900–907.
doi:10.1109/lra.2016.2528294

Kolvenbach, H., Arm, P., Hampp, E., Dietsche, A., Bickel, V., Sun, B., et al. (2021).
Traversing Steep and Granular Martian Analog Slopes with a Dynamic
Quadrupedal Robot. arXiv preprint arXiv:2106.01974.

Kumar, A., Fu, Z., Pathak, D., and Malik, J. (2021). Rma: Rapid Motor Adaptation
for Legged Robots. arXiv preprint arXiv:2107.04034.

Li, C., Umbanhowar, P. B., Komsuoglu, H., Koditschek, D. E., and Goldman,
D. I. (2009). Sensitive Dependence of the Motion of a Legged Robot on
Granular media. Proc. Natl. Acad. Sci. 106, 3029–3034. doi:10.1073/
pnas.0809095106

Li, C., Zhang, T., and Goldman, D. I. (2013). A Terradynamics of Legged
Locomotion on Granular media. Science 339, 1408–1412. doi:10.1126/
science.1229163

Lynch, D. J., Lynch, K. M., and Umbanhowar, P. B. (2020). The Soft-landing
Problem: Minimizing Energy Loss by a Legged Robot Impacting Yielding
Terrain. IEEE Robot. Autom. Lett. 5, 3658–3665. doi:10.1109/lra.2020.2977260

Miskin, M. Z., and Jaeger, H. M. (2014). Evolving Design Rules for the Inverse
Granular Packing Problem. Soft Matter 10, 3708–3715. doi:10.1039/
c4sm00539b

Park, H.-W., Wensing, P. M., and Kim, S. (2017). High-speed bounding with the
mit cheetah 2: Control design and experiments. Int. J. Robotics Res. 36, 167–192.
doi:10.1177/0278364917694244

Pravin, S., Chang, B., Han, E., London, L., Goldman, D. I., Jaeger, H. M., et al.
(2020). Effect of Two Parallel Intruders on Net Work during Granular
Penetrations. arXiv preprint arXiv:2010.15172.

Qian, F., Jerolmack, D., Lancaster, N., Nikolich, G., Reverdy, P., Roberts, S., et al.
(2017). Ground Robotic Measurement of Aeolian Processes. Aeolian Res. 27,
1–11. doi:10.1016/j.aeolia.2017.04.004

Qian, F., Zhang, T., Korff, W., Umbanhowar, P. B., Full, R. J., and Goldman, D. I.
(2015). Principles of Appendage Design in Robots and Animals Determining
Terradynamic Performance on Flowable Ground. Bioinspir. Biomim. 10,
056014. doi:10.1088/1748-3190/10/5/056014

Raibert, M. H. (1986). Legged Robots that Balance. Baltimore, Maryland: MIT
press.

Roberts, S. F., Duperret, J. M., Johnson, A. M., van Pelt, S., Zobeck, T., Lancaster,
N., et al. (2014a). Desert RHex Technical Report: Jornada and white Sands Trip.
Philadelphia, PA: University of Pennsylvania Electrical and Systems
Engineering Department.

Roberts, S. F., Duperret, J. M., Li, X., Wang, H., and Koditschek, D. E. (2014b).
Desert RHex Technical Report: Tengger Desert Trip.

Roberts, S. F., Koditschek, D. E., and Miracchi, L. J. (2020). Examples of Gibsonian
Affordances in Legged Robotics Research Using an Empirical, Generative
Framework. Front. Neurorobot. 14, 12. doi:10.3389/fnbot.2020.00012

Roberts, S. F., and Koditschek, D. E. (2019). “Mitigating Energy Loss in a Robot
Hopping on a Physically Emulated Dissipative Substrate,” in Proceedings of the
2018 IEEE International Conference on Robotics and Automation (ICRA),
Montreal, Canada, May 2019. doi:10.1109/icra.2019.8793781

Roberts, S. F., and Koditschek, D. E. (2018). “Reactive Velocity Control Reduces
Energetic Cost of Jumping with a Virtual Leg spring on Simulated Granular
media,” in 2018 IEEE International Conference on Robotics and Biomimetics
(submitted), Kuala Lumpur, Malaysia, December 2018 (IEEE). doi:10.1109/
robio.2018.8664858

Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., Focchi, M., Caldwell, D.
G., et al. (2015). Towards Versatile Legged Robots through Active
Impedance Control. Int. J. Robotics Res. 34, 1003–1020. doi:10.1177/
0278364915578839

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 74092719

Roberts and Koditschek Virtual Energy Management

https://doi.org/10.1038/nphys3568
https://doi.org/10.1038/nphys3568
https://doi.org/10.1016/j.aeolia.2014.07.002
https://doi.org/10.1103/PhysRevE.95.032906
https://doi.org/10.1103/PhysRevE.95.032906
https://doi.org/10.1073/pnas.1003250107
https://doi.org/10.1073/pnas.1003250107
https://doi.org/10.1109/icra.2019.8793757
https://doi.org/10.1109/icra.2019.8793757
https://doi.org/10.1109/icra.2017.7989248
https://doi.org/10.1109/lra.2020.2982361
https://doi.org/10.1109/lra.2020.2982361
https://doi.org/10.1209/0295-5075/101/64001
https://doi.org/10.1109/icra.2015.7139831
https://doi.org/10.1177/0278364918779874
https://doi.org/10.1109/lsens.2021.3049954
https://doi.org/10.1109/lsens.2021.3049954
https://doi.org/10.1109/tro.2019.2954670
https://doi.org/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1103/physrevfluids.4.063304
https://doi.org/10.1117/12.920678
https://doi.org/10.1117/12.920678
https://doi.org/10.1109/iros.2016.7759572
https://doi.org/10.1109/iros.2016.7759572
https://doi.org/10.1109/robot.2004.1302453
https://doi.org/10.1109/robot.2004.1302453
https://doi.org/10.1016/j.cap.2013.11.006
https://doi.org/10.1038/s41467-018-03344-3
https://doi.org/10.1038/s41467-018-03344-3
https://doi.org/10.1109/lra.2016.2528294
https://doi.org/10.1073/pnas.0809095106
https://doi.org/10.1073/pnas.0809095106
https://doi.org/10.1126/science.1229163
https://doi.org/10.1126/science.1229163
https://doi.org/10.1109/lra.2020.2977260
https://doi.org/10.1039/c4sm00539b
https://doi.org/10.1039/c4sm00539b
https://doi.org/10.1177/0278364917694244
https://doi.org/10.1016/j.aeolia.2017.04.004
https://doi.org/10.1088/1748-3190/10/5/056014
https://doi.org/10.3389/fnbot.2020.00012
https://doi.org/10.1109/icra.2019.8793781
https://doi.org/10.1109/robio.2018.8664858
https://doi.org/10.1109/robio.2018.8664858
https://doi.org/10.1177/0278364915578839
https://doi.org/10.1177/0278364915578839
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Seçer, G., and Saranlı, U. (2013). “Control of Monopedal Running through Tunable
Damping,” in 2013 21st Signal Processing and Communications Applications
Conference (SIU), Haspolat, Turkey, April 2013 (IEEE), 1–4.

Sherman, D. J., Houser, C., Ellis, J. T., Farrell, E. J., Li, B., Davidson-Arnott, R. G. D.,
et al. (2013). Characterization of Aeolian Streamers Using Time-Average
Videography. J. Coastal Res. 165, 1331–1336. doi:10.2112/si65-225.1

Topping, T., De, A., Vasilopoulos, V., and Koditschek, D. E. (2019). “Composition
of Templates for Transitional Pedipulation Behaviors,” in International
Symposium on Robotics Research (ISRR), Hanoi, Vietnam, October 2019.

Wilson, C. G., Qian, F., Jerolmack, D. J., Roberts, S., Ham, J., Koditschek, D., et al.
(2021). Spatially and Temporally Distributed Data Foraging Decisions in
Disciplinary Field Science. Cogn. Res. principles implications 6, 1–16.
doi:10.1186/s41235-021-00296-z

Zhu, Y., and Jin, B. (2016). Compliance Control of a Legged Robot Based on
Improved Adaptive Control: Method and Experiments. Int. J. Robot. Autom 5,
366–373. doi:10.2316/journal.206.2016.5.206-4536

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Roberts and Koditschek. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 74092720

Roberts and Koditschek Virtual Energy Management

https://doi.org/10.2112/si65-225.1
https://doi.org/10.1186/s41235-021-00296-z
https://doi.org/10.2316/journal.206.2016.5.206-4536
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Virtual Energy Management for Physical Energy Savings in a Legged Robot Hopping on Granular Media
	1 Introduction
	2 Materials and Methods
	2.1 Target Systems and Models Used in This Study
	2.1.1 Analytical Force Model of Sand
	2.1.2 Description of Quadrupedal Robot Targeted With This Research
	2.1.3 Description of the Abstracted One-Legged Robot Model Used in This Study

	2.2 Description and Analysis of the Compression-Extension and Active Damping Controllers Used in This Study
	2.2.1 Description of the Compression-Extension and Active Damping Controllers
	2.2.2 Analysis of Active Damping Controller

	2.3 Simulations
	2.3.1 Simulations Using the Analytic Force Models
	2.3.2 Discrete Element Model Simulations

	2.4 Physical Experiments on Prepared Granular Media
	2.4.1 Robot Used in Jumping Experiments
	2.4.2 Controlled Granular Media Bed
	2.4.3 Experimental Protocol for Robot Jumping on Controlled Granular Media Bed
	2.4.4 Calculation of Energy Consumption Data
	2.4.5 Calculation of Jump Height Data


	3 Results
	3.1 The Active Damping Controller Used Less Energy Than the Compression-Extension Controller to Jump
	3.2 Energy Saved From Using Active Damping With Different Foot Sizes and Leg Extension Stiffnesses
	3.3 Comparison of Results From Physical Experiments to Predictions From the Simulations
	3.4 Jump Heights on Physical Granular Media

	4 Discussion
	4.1 Application to Geoscience Research
	4.2 Strengths and Contextualization of the Present Work
	4.3 Limitations of the Present Work
	4.4 Summary and Potential Future Directions

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


