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A B S T R A C T   

Dual-phase [18F]AV45 positron emission tomography (PET) is highly promising in the assessment of neurode
generative diseases, allowing to obtain information on both neurodegeneration (early-phase; eAV45) and am
yloid deposition (late-phase; lAV45) which are highly complementary; yet eAV45 needs further evaluation. This 
study aims at validating eAV45 as an optimal proxy of [18F]FDG PET in a large mixed-population of healthy 
ageing and Alzheimer’s clinical syndrome participants (n = 191) who had [18F]FDG PET, eAV45 and lAV45 
scans. We found early time frame 0–4 min to give maximal correlation with [18F]FDG PET and minimal cor
relation with lAV45. Moreover, maximal overlap of [18F]FDG PET versus eAV45 associations with clinical 
diagnosis and cognition was obtained with pons scaling. Across reference regions, classification performance 
between clinical subgroups was similar for both eAV45 and [18F]FDG PET. These findings highlight the optimal 
use of eAV45 to assess neurodegeneration as a validated proxy of [18F]FDG PET. On top of this purpose, this 
study showed that combined [18F]AV45 PET dual-biomarker even outperformed [18F]FDG PET or lAV45 alone.   

1. Introduction 

The early and differential diagnosis of Alzheimer’s disease (AD) is 
still challenging (McKhann et al., 2011) and critically needs to be 
improved. As the field is moving toward a biological definition of AD 
(Jack et al., 2018), the role of biomarkers in diagnosis is becoming 
predominant e.g. with the β-amyloid (Aβ)/Tau/Neurodegeneration (A/ 
T/N) scheme. In addition to detailed clinical and neuropsychological 
information, and CSF data when available, neuroimaging biomarkers 
are particularly meaningful and informative as they provide comple
mentary information on the degree and topography of Aβ, tau and 
neurodegeneration (Chételat et al., 2020; Jack et al., 2018; Teipel et al., 
2015). 

In clinical setting, [18F]fluorodeoxyglucose ([18F]FDG) positron 

emission tomography (PET), measuring the reduction of cerebral 
metabolic rate of glucose caused by loss of synaptic activity, is an 
acknowledged biomarker for neurodegeneration in ageing and AD 
(Chételat et al., 2020). It provides functional information about disease 
stage and symptom severity (Landau et al., 2011; Mosconi et al., 2010) 
with an improved sensitivity compared to magnetic resonance imaging 
(MRI) (Laforce et al., 2018). Complementarily, [18F]Florbetapir ([18F] 
AV45) is recognized as an effective Aβ-specific radiotracer for use in PET 
imaging, and thus a reliable biomarker for Aβ in ageing and AD. It 
provides pathological information particularly useful for early diagnosis 
(Wong et al., 2010). There is widespread evidence that combining 
pathological and functional neuroimaging biomarkers would improve 
diagnostic accuracy and the specification of disease progression 
(Chételat et al., 2020; Ossenkoppele et al., 2013; Teipel et al., 2015). 
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However, multiple scans are necessary to get both complementary in
formation, namely [18F]AV45 PET for Aβ and [18F]FDG PET for neuro
degeneration, which dramatically increases costs, radiation exposure 
and examination time for the patients. 

Interestingly, due to the high lipophilic nature of the [18F]AV45 
tracer, accumulating evidence indicates that early-phase [18F]AV45 PET 
(eAV45) reflects cerebral blood flow (CBF), which in turn is tightly 
coupled to cerebral glucose metabolism measured on [18F]FDG PET 
(Paulson et al., 2010). Previous studies have shown a strong correlation 
of eAV45 with [18F]FDG PET uptake in AD (Hsiao et al., 2012; Kuo et al., 
2017; Lin et al., 2016), eAV45 appearing as a promising proxy for [18F] 
FDG PET. Dual-phase [18F]AV45 PET could thus allow to obtain both Aβ 
(pathological with late acquisition; lAV45) and neurodegeneration 
(functional with early acquisition; eAV45) information based on a 
unique [18F]AV45 PET injection, that may ultimately circumvent the 
need for an additional [18F]FDG PET scan in the AD work-up. However, 
further methodological development is critically needed towards eval
uating the optimal early time frame and preprocessing of eAV45 to 
maximize its sensitivity in a large sample including both young to 
elderly cognitively unimpaired volunteers and patients with Alzheimer’s 
clinical syndrome (Jack et al., 2018). Furthermore, none of earlier study 
assessed the potential of the [18F]AV45 PET dual-biomarker for auto
matic AD diagnosis compared to standard biomarkers for Aβ and neu
rodegeneration, which would be of greatest interest in clinical routine. 
In this study, we will use CBF as measured by eAV45 to address these 
gaps in knowledge, by carrying out comprehensive and complementary 
vertex-wise quantitative analyses according to various criteria to vali
date eAV45 as an optimal proxy for [18F]FDG PET. These criteria will 
include: (i) within- and inter- subject correlations between both mo
dalities; (ii) assessment of how each modality relates with clinical 
diagnosis and cognition, and quantification of the overlaps between 
both modalities; and finally (iii) supervised machine learning classifi
cation algorithm within robust cross-validation scheme to assess, at the 
individual level, the discriminatory power of [18F]AV45 PET as a dual- 
biomarker for AD diagnosis compared to the standard biomarkers for Aβ 
and neurodegeneration. These analyses will take into consideration the 
effects of the most widely used reference regions for both [18F]AV45 and 
[18F]FDG tracers, of early Aβ binding contamination and of partial 
volume effect (PVE). 

2. Materials and methods 

The full processing and analysis sequences are shown by a flow chart 
in Fig. 1. 

2.1. Study population 

Sixty-one native French-speaking participants from the ‘Imagerie 
Multimodale de la Maladie d’Alzheimer à un stade Précoce’ (IMAP) 
Study (Caen, France) were included in the present study: 31 healthy 
controls including young (yHC; n = 16) and elderly (eHC; n = 15) vol
unteers with no cognitive impairment and 30 Alzheimer’s clinical syn
drome patients (Alz-CS) of which 15 with amnestic mild cognitive 
impairment (aMCI) and 15 with dementia (AD-d). Inclusion and exclu
sion criteria of the IMAP Study are detailed in previous publications 
(Mutlu et al., 2017; Wirth et al., 2018). Patients were recruited from 
local memory clinics and selected according to corresponding interna
tionally agreed criteria. Patients with aMCI were selected based on 
Petersen’s criteria for amnestic MCI (Petersen and Morris, 2005) and 
patients with AD-d fulfilled standard NINCDS-ADRDA clinical criteria 
for probable AD (McKhann et al., 1984). Further stratification by amy
loid status was performed whenever needed (see section Neuroimaging 
data processing). 

We also included 130 older adults who were cognitively unimpaired 
(eHC) from the Age-Well randomized controlled trial of the Medit- 
Ageing European Project (Poisnel et al., 2018), sponsored by the 

French National Institute of Health and Medical Research (INSERM). 
Those were recruited from the general population, older than 65 years, 
native French speakers, retired for at least 1 year, educated for at least 7 
years, and able to perform within the normal range on standardized 
cognitive tests. The main exclusion criteria were safety concerns asso
ciated with magnetic resonance image (MRI) or PET scanning, evidence 
of a major neurological or psychiatric disorder (including alcohol or 
drug abuse), history of cerebrovascular disease, presence of a chronic 
disease or acute unstable illness, and current or recent medication usage 
that may interfere with cognitive functioning. 

All 191 participants from both Projects included in the present study 
had, within a maximum period of 3 months, structural MRI, dual-phase 
[18F]AV45 PET and [18F]FDG PET scans, along with a neuropsycho
logical examination (including the mini-mental state examination 
(MMSE) and the free and cued selective reminding test (FCSRT) (Grober 
and Buschke, 1987)). Participants’ demographics are displayed in 
Table 1. 

The IMAP Study was approved by a regional ethics committee 
(Comité de Protection des Personnes Nord-Ouest III) and is registered 
with http://clinicaltrials.gov (number NCT01638949). The Age-Well 
randomized controlled trial was approved by the ethics committee 
(Comité de Protection des Personnes Nord-Ouest III, Caen, France; trial 
registration number: EudraCT: 2016–002441-36; IDRCB: 2016-A01767- 
44; ClinicalTrials.gov Identifier: NCT02977819). All participants gave 
written informed consent to the study prior to the investigation. 

2.2. Neuroimaging data acquisition 

All participants were scanned on the same MRI and PET cameras at 
the Cyceron Center (Caen, France): a 3 T Philips Achieva scanner (Phi
lips Healthcare, Best, the Netherlands) and a Discovery RX VCT 64 PET- 
CT device (GE Healthcare, Milwaukee, WI, USA), respectively. The MRI 
sequences and parameters associated to the IMAP Study were described 
previously (Mutlu et al., 2017). For the Age-Well Study, high-resolution 
T1-weighted anatomical volume was first acquired using a 3D fast-field 
echo sequence (3D-T1-FFE sagittal; repetition time = 7.1 ms; echo time 
= 3.3 ms; flip angle = 6◦; 180 slices with no gap; slice thickness = 1 mm; 
field of view = 256 × 256 mm2; in-plane resolution = 1 × 1 mm2). A 
high-resolution T2-weighted FLAIR anatomical volume was then ac
quired using a 3D inversion recovery sequence (3D-IR sagittal; repetition 
time = 4800 ms; echo time = 272 ms; inversion time = 1650 ms; flip 
angle = 40◦; 180 slices with no gap; slice thickness = 1 mm; field of view 
= 250x250 mm2; in-plane resolution = 0.98x0.98 mm2). 

Both FDG and dual-phase [18F]AV45 PET scans were acquired with a 
resolution of 3.76 × 3.76 × 4.9 mm3 (field of view = 157 mm). Forty- 
seven planes were obtained with a voxel size of 1.95 × 1.95 × 3.2 
mm3. A transmission scan was performed for attenuation correction 
before the PET acquisition. For [18F]FDG PET, the participants were 
fasted for at least 6 h before scanning. After a 30 min resting period in a 
quiet and dark environment, 180 MBq of FDG was intravenously injec
ted as a bolus. A 10 min PET acquisition scan began 50 min after in
jection. For [18F]AV45 PET, each participant underwent a 10-minutes 
early acquisition (composed of ten 1-minute dynamical frames) that 
began immediately after the intravenous injection of ~ 4 MBq/kg of 
[18F]AV45, and a 10-minutes late acquisition (beginning 50-minutes 
after injection). 

2.3. Neuroimaging data processing 

2.3.1. Multimodal segmentation and central surface extraction 
MRI data were segmented and normalized using the multimodal 

segment routine of the Statistical Parametric Mapping 12 (SPM12) 
software (Wellcome Trust Centre for Neuroimaging, London, UK), 
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combining the information from different channels (T1w & FLAIR) in 
order to improve the segmentation accuracy (Fig. 1A). We applied an 
established algorithm implemented in the CAT12 toolbox (version 
r14501) for simultaneously estimating cortical thickness and recon
structing the native central surfaces of the left and right hemispheres by 
using the projection-based thickness method (Dahnke et al., 2013) 
(Fig. 1B). 

2.3.2. eAV45 dynamics realignment and mean time-frames generation 
The dynamic ten 1-minute images from eAV45 were initially cor

rected for motion using a 2-pass approach, first to the third frame and 
then to the 1 to 6 min mean (Hsiao et al., 2012) using SPM12 (Fig. 1C). 
We then iteratively generated the 34 possible combinations of eAV45 
mean images corresponding to the sums of different frame ranges 
(eAV45[T1,T2], where T1 = 0, 1, 2 or 3 min and T2 = 1, 2, 3, 4, 5, 6, 7, 8, 
9 or 10 min post-injection) (Fig. 1D). 

2.3.3. PET coregistration onto T1 MRI 
All eAV45 mean images were coregistered onto their corresponding 

T1 MRI using the 1 to 6 min mean image as the reference (Hsiao et al., 
2012) (Fig. 1E). In the same manner, static lAV45 and [18F]FDG PET 
were coregistered onto their corresponding T1 MRI (Fig. 1E). 

2.3.4. PET intensity normalization 
To allow for inter-subject comparison, the PET images were then 

intensity normalized. Scaling was done in subject’s T1 native space by 
dividing the PET images by the mean uptake in selected reference 

Fig. 1. Flow chart for data processing and analyses.  

Table 1 
Demographics.   

yHC eHC aMCI AD 
dementia 

P value 

Characteristics (n = 16) (n =
145) 

(n = 15) (n = 15)  

Female gender, n 
(%) 

7 (43.8) 89 (61.4) 2 (13.3) 6 (40)  0.001 

Age, years 40.2 ±
12.7 

70.4 ±
4.6 

75.6 ±
7.2* 

69.4 ± 8.2  < 0.001 

Education, years 12.6 ±
2.5 

12.9 ±
3.1 

12.3 ±
3.2 

12.2 ± 4.3  0.79 

MMSE 29 ± 1 29 ± 1 
(40NA) 

26 ± 3* 20 ± 5* 
(2NA)  

< 0.001 

Total Recall 15 ± 2 
(9NA) 

15 ± 1 
(40NA) 

10 ± 3* 5 ± 3* 
(5NA)  

< 0.001 

AV45 cortical 
SUVR [high- 
Aβ, n (%)] 

1.16 ±
0.08 [2 
(12.5)] 

1.24 ±
0.16 [74 
(51)] 

1.48 ±
0.22* 
[13 
(86.7)] 

1.52 ±
0.26* [14 
(93.3)]  

< 0.001 

Aβ amyloid β, AD Alzheimer’s disease, aMCI amnestic mild cognitive impair
ment, eHC elderly healthy controls, yHC young healthy controls, MMSE mini 
mental state examination, SUVR standardized uptake value ratio. 
Data presented as mean ± standard deviation. Categorical variables (gender, 
APOE ε4) were analyzed with Fisher’s exact test and continuous variables (age, 
education, MMSE, Total recall, SUVR) were analyzed with one-factor ANOVA 
with post-hoc Tukey’s HSD. The Aβ cutoff was determined using the specificity 
based cut off corresponding to the 95th percentile of the [18F]AV45 distribution 
in the neocortical mask of a group of 63 young healthy controls (age range =
20–40) (Jack et al., 2017). 
*P < 0.05 versus eHC subjects. 

1 http://dbm.neuro.uni-jena.de/cat/ 
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regions, classically used for [18F]FDG PET and lAV45, derived from MNI 
space (see description below) (Fig. 1F). Thus, inverse deformation from 
MNI space to the subject’s T1, estimated above by the SPM12 normal
ization step, was applied to a reference region (Fig. 1G). An erosion by a 
4-mm sphere and a masking by the corresponding thresholded tissue 
probability map (GM, WM or GM + WM; threshold = 0.5) were used to 
ensure that only appropriate voxels were considered when computing 
the mean uptake (Fig. 1G). lAV45 data were scaled using the cerebellar 
gray matter (GM), obtained from the Hammers atlas in MNI space 
(Hammers et al., 2003), as a reference region to obtain standardized 
uptake value ratio (SUVR) images (Fig. 1F). lAV45 uptake value was 
extracted in a predetermined neocortical mask (Besson et al., 2015; La 
Joie et al., 2013) (including the entire gray matter except the cere
bellum, occipital and sensory motor cortices, hippocampi, amygdala, 
and basal nuclei). Then, this value was used to classify participant as 
amyloid positive or negative using a threshold of 1.22 [The threshold for 
positivity was determined on the basis of the mean lAV45 uptake values 
in the neocortical mask of a group of 63 young healthy controls (age 
range = 20–40), using the specificity based cut off corresponding to the 
95th percentile of the lAV45 distribution since young healthy controls 
are likely to be relatively free of AD pathology (Jack et al., 2017)]. We 
considered seven different reference regions for scaling both eAV45 and 
[18F]FDG PET data in this study (Fig. 1F). These include: (i) cerebellum 
or cerebellar GM, obtained from the Hammers atlas in MNI space 
(Hammers et al., 2003), because of their low susceptibility to age-related 
or AD changes in metabolism (Herholz et al., 2002; M Bauer, 2013) and 
of the well preservation from Aβ plaques in these regions (Choi et al., 
2012); (ii) global normalization, by using proportional scaling to a 
physiologically realistic reference value of 6.5 mg/100 mL/min as 
proposed in (Perani et al., 2014), which is widely employed in [18F]FDG 
PET research of neurodegenerative dementia (Yakushev et al., 2008); 
(iii) pons, obtained from the Pick atlas in MNI space (Maldjian et al., 
2003), which seems to be metabolically least affected in AD (Minoshima 
et al., 1995) and more stable for lAV45 in MCI (Shokouhi et al., 2016a, 
2016b); (iv) a combination of both pons and cerebellum or pons and 
cerebellar GM, since composite regions may result in more accurate 
change measurements of lAV45 (Landau et al., 2015); and finally (v) 
cerebral WM regions (Gonneaud et al., 2017) because it seems to detect 
more stable and plausible longitudinal SUVR values of lAV45 (Fleisher 
et al., 2017). 

2.3.5. PET PVE correction 
Finally, all scaled PET images were corrected for PVE using the 3- 

compartmental voxel-wise “Müller-Gärtner” method (Gonzalez-Esca
milla et al., 2017; Muller-Gartner et al., 1992) (Fig. 1H). 

2.3.6. PET robust projection on native surface 
Both PVE-non corrected and PVE-corrected PET images were then 

robustly projected on the subject’s cortical surface (Marcoux et al., 
2018) (Fig. 1I). For each vertex, the projected PET signal was obtained 
by computing a weighted average of the PET signal intersecting the 
surfaces from 35% to 65% of the cortical thickness with a step t = 5% (i. 
e. the central surface corresponds to 50% of the cortical thickness). 
Using a normal distribution centered at the central surface, more weight 
was given to the surfaces located near this central surface as they have a 
higher probability to be well located within the cortex. 

2.3.7. Native surface PET normalization and 2D smoothing 
Each native surface PET map was subsequently registered against the 

standard surface space (“fsaverage” template) (Fig. 1J) and smoothed 
using an 8 mm full width at half-maximum isotropic 2-dimensional 
Gaussian kernel (Fig. 1K). 

2.3.8. Extraction of mean SUVR from Desikan-Killiany parcellation 
Lastly, mean values inside regions of interest (ROIs) from the 

Desikan-Killiany (DK) parcellation were extracted from all unsmoothed 

normalized PET surface maps (Fig. 1L). 

2.3.9. Semi-automatic quality check 
A semi-automatic quality check of both reconstructed surfaces and 

smoothed normalized preprocessed PET surfaces was applied. Euler 
number and defect size were computed for each reconstructed surface to 
estimate the number and size of topology defects, while correlations 
between all participants’ preprocessed PET surfaces for each tracer were 
calculated to assess the homogeneity of our data sample. Visual in
spection of native participant T1 MRI was executed for reconstructed 
cortical surfaces with high Euler number and/or defect size. In the same 
manner, visual inspection of native participant PET data was performed 
for preprocessed PET surfaces with global correlation lower than two 
standard deviations. Following these inspections, no participant had to 
be discarded from the statistical analysis. 

2.4. Statistical analysis 

2.4.1. Demographical and clinical statistics 
Between-group differences in demographic and clinical variables 

were assessed with one-factor ANOVAs (Group) with post-hoc Tukey’s 
HSD tests for continuous variables and χ2 tests for categorical variables 
in R (v.3.5.1). 

All further statistical analyses on PET data were performed on both 
PVE-non corrected and PVE-corrected data. 

2.4.2. Vertexwise within- and inter-subject correlations 
The vertex-wise within-subject Pearson’s correlation between 

smoothed normalized eAV45[T1,T2] and [18F]FDG PET maps, and 
eAV45[T1,T2] and lAV45 maps were calculated in R (v.3.5.1) for com
parison among all early time frame ranges (Fig. 1M). To assess the sta
tistical significance of differences among this large set of early time 
frames, we performed a non-parametric Friedman test (Hollander et al., 
2013) comparing the within-subject correlation of the 34 different early 
time frames simultaneously across multiple participants, for each of the 
correlations separately. The significantly highest vertex-wise within- 
subject correlation between eAV45[T1,T2] and [18F]FDG PET maps were 
used to select the best early time frame ranges. Then, the vertex-wise 
inter-subject Pearson’s correlation maps between smoothed normal
ized eAV45[T1,T2] and [18F]FDG PET maps, and eAV45[T1,T2] and 
lAV45 maps were calculated for comparison among those best early time 
frame ranges, for each reference region used for scaling (Fig. 1M). In 
order to obtain these vertex-wise inter-subject correlation maps, we 
applied a permutation inference for generalized linear models (PALM, 
version alpha 115) to provide exact control for false positives while 
making only weak assumptions about the data (Winkler et al., 2014). 
The number of permutations was set to 10,000 and vertex-wise inter- 
subject correlation coefficients were computed from the Student’s t 
statistic as: 

r = sign(t)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t2

N − rank(M) + t2

√

(1)  

where, r is the correlation coefficient; t is the Student’s t statistic; N is the 
number of observations (participants); and M is the matrix of explana
tory variables. 

Thus, the optimal early time frame of [18F]AV45 PET was deter
mined, among the best within-subject early time frame ranges, as the 
one that both maximized the inter-subject correlation of eAV45[T1,T2] 
with [18F]FDG PET and minimized the inter-subject correlation of 
eAV45[T1,T2] with lAV45 whatever the type of scaling used. 

2.4.3. Vertexwise clinical subgroups’ comparisons and correlations with 
neuropsychological scores 

Within the optimal early time frame of eAV45 and among reference 
regions used for scaling, we thereafter compared the vertex-wise 
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neurodegenerative patterns obtained when comparing i) high-Aβ Alz-CS 
patients to low-Aβ eHC or ii) high-Aβ AD-d patients to low-Aβ eHC, with 
eAV45 versus [18F]FDG PET smoothed normalized maps (Fig. 1N). 
Similarly, we compared the patterns of correlations with MMSE and 
Total Recall scores obtained with eAV45 versus [18F]FDG PET smoothed 
normalized maps across eHC and Alz-CS participants for the optimal 
early time frame of eAV45 and among reference regions used for scaling 
(Fig. 1N). To determine these vertex-wise significant patterns we 
computed threshold-free cluster enhancement statistics (combining the 
spatial extent of signals) (Smith and Nichols, 2009) from the PALM 
pipeline with sex, age and education as nuisance covariates. This non- 
parametric, permutation-based approach for statistical thresholding 
provides cluster-based inference without the need to specify an arbitrary 
cluster-forming threshold (as required when applying Gaussian random 
field theory) (Friston et al., 1996). The number of permutations was set 
to 10,000, then familywise error (FWE) rate correction was used to 
correct for multiple comparisons (Holmes et al., 1996), and significant 
clusters were reported for corrected p-values below 0.05. The vertex- 
wise overlap between optimal eAV45 and [18F]FDG PET significant 
neurodegenerative patterns was computed as the balanced accuracy 
(BACC) between “true pattern” ([18F]FDG PET vertices: 1 if significant 
else 0) and “predicted pattern” (optimal eAV45 vertices: 1 if significant 
else 0), which is the mean between sensitivity and specificity (Fig. 2). In 
order to robustly quantify the overlap of patterns between optimal 
eAV45 and [18F]FDG PET, we considered 91 statistical thresholds evenly 
distributed from p = 0.05 to p = 0.001 FWE corrected and then 
computed BACC associated to each of those statistical thresholds. 
Finally, to assess the statistical significance of differences among refer
ence regions used for scaling, we performed a non-parametric Friedman 
test (Hollander et al., 2013) comparing the balanced accuracies of the 
reference regions used for scaling simultaneously across multiple sta
tistical thresholds, for each of the vertex-wise comparisons or correla
tions tested. 

2.4.4. Machine learning binary classifications between clinical subgroups 
Lastly, supervised classification experiments based on linear support 

vector machine (SVM) algorithm were applied across reference regions 

successively on optimal eAV45, lAV45, [18F]FDG PET, [combined 
optimal eAV45 and lAV45] and [combined [18F]FDG PET and lAV45] 
measures, derived from mean PET values inside DK parcellation, to 
compare their discriminative ability for classification of patients with 
aMCI or AD-d from eHC (Fig. 1O). We used a repeated (N = 250 itera
tions) hold-out nested cross-validation scheme with class-sizes stratified 
in the training set (percentage of the smallest class to be reserved for 
training: 80%) and BACC as metric to measure the performance in order 
to minimize class-imbalance (Raamana, 2017). Again, we performed a 
non-parametric Friedman test (Hollander et al., 2013) comparing the 
ranks of classification performance of the reference regions used for 
intensity scaling simultaneously across the N iterations of the cross- 
validation scheme, according to both single (or combined with lAV45) 
eAV45 vs. [18F]FDG PET modalities. 

3. Results 

Main results are presented below based on PVE-non corrected PET 
data. Results obtained with PVE-corrected PET data for confirmation are 
summarized at the end of this section. 

3.1. Vertex-wise within- and inter-subject correlations of eAV45 with 
[18F]FDG PET and lAV45 PET: optimization of the time frame for eAV45 

For each starting time T1, the vertex-wise within-subject correlations 
of eAV45 with [18F]FDG PET were overall high (most of values between 
0.8 and 0.9) and relatively stable, with a trend of increasing rapidly after 
tracer injection and then decreasing slightly up to T2 = 10 min (Fig. 3a). 
The results from the Friedman and post-hoc Nemenyi tests are visualized 
in a convenient critical difference (CD) diagram as shown in Fig. 3b. The 
8 highest ranks (i.e. highest vertex-wise within-subject correlations), 
that were not statistically significantly different from each other, were 
connected by a light brown line from the highest ranked early time 
frame 1–5 min (ranked 31.81) to the lowest ranked early time frame 0–7 
min (ranked 27.46). 

As regard to the vertex-wise within-subject correlations of eAV45 
with lAV45, for each starting time T1, they linearly increased from tracer 

Fig. 2. Principle of vertex-wise pattern overlap of “true” and “predicted” patterns. a Vertex-wise “true” pattern. b Vertex-wise “predicted” pattern. c Vertex-wise 
overlap of “true” and “predicted” patterns quantified by balanced accuracy, which is the average of sensitivity and specificity. 
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injection up to T2 = 10 min (Online Supplementary Fig. 1a). The lowest 
ranks (i.e. lowest vertex-wise within-subject correlations), that were not 
statistically significantly different from each other, were connected by a 
blue line from the lowest ranked early time frame 0–1 min (ranked 1.02) 

to the highest ranked early time frame 0–5 min (ranked 8.45) (Online 
Supplementary Fig. 1b). Among these lowest vertex-wise within-subject 
correlations of eAV45 with lAV45, only early time frames 0–4 min 
(ranked 5.85) and 0–5 min (ranked 8.45) also belonged to the highest 

Fig. 3. Vertex-wise within-subject correlations of early-phase [18F]AV45 PET (eAV45) with [18F]FDG PET. a Vertex-wise within-subject Pearson’s correlation of 
smoothed normalized eAV45[T1,T2] with [18F]FDG PET maps according to start time T1 (0, 1, 2 or 3 min) and end time T2 (between 1 and 10 min) of early-phase 
time frames. b Critical difference (CD) diagram comparing the ranks of different early-phase time frames in a non-parametric Friedman test based on Pearson’s 
correlation from a total population of 191 participants. Here, greater numerical values for rank implies higher correlation. Different colored lines here present groups 
of early-phase time frames that are not significantly different from each other in ranks, each one using a different early-phase time frame as its reference point. 
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vertex-wise within-subject correlations of eAV45 with [18F]FDG PET 
(Fig. 3b). 

Based on the significantly 8 highest ranks of within-subject correla
tions of eAV45 with [18F]FDG PET, we performed vertex-wise inter- 
subject correlations of eAV45 with [18F]FDG PET, and eAV45 with 
lAV45 to precisely determine the best early time frame of eAV45. 

Among the top ranked early time frames of eAV45 and across all 
reference regions assessed for scaling, vertex-wise inter-subject corre
lations’ maps of eAV45 with [18F]FDG PET consistently presented the 
same pattern, with high correlation in highly vulnerable regions in AD 
(medial temporal, lateral temporal and parietal, and superior frontal 
cortices, temporo-parietal junctions, precuneus, cingulate gyri) (see 
particular case of early time frame 0–4 min in Fig. 4a). Early time frame 
0–4 min presented the maximal cortical surface area (ranging from 35% 
to 74.4%) with highest inter-subject correlation of eAV45 with [18F]FDG 
PET, whatever the reference region used for scaling (Fig. 4b) compared 
to other top ranked early time frames (Online Supplementary Table 1). 
Moreover, early time frame 0–4 min presented the maximal cortical 

surface area (ranging from 86.1% to 93%) with lowest inter-subject 
correlation of eAV45 with lAV45, whatever the reference regions used 
for scaling (Online Supplementary Fig. 2b) compared to the other top 
ranked early time frames (Online Supplementary Table 2). 

Based on vertex-wise within- and inter-subject correlation results of 
both eAV45 with [18F]FDG PET and eAV45 with lAV45, the early time 
frame 0–4 min of eAV45 appeared to be optimal, among the 34 initially 
generated early time frames of eAV45, whatever the reference region 
used for scaling. Following optimization of eAV45 reference region used 
for scaling was only based on this optimal early time frame. 

3.2. Clinical subgroups’ comparisons and correlations with 
neuropsychological scores 

Whatever the reference region used for scaling, AD-d presented sig
nificant vertex-wise hypometabolic patterns in highly vulnerable re
gions of AD compared to eHC, although less extensive in the particular 
case of global normalization (only including parietal and lateral 

Fig. 4. Vertex-wise inter-subject correlations of early-phase [18F]AV45 PET (eAV45) with [18F]FDG PET. a Vertex-wise inter-subject Pearson’s correlation of 
smoothed normalized eAV45 [T1 = 0,T2 = 4] with [18F]FDG PET maps according to the reference region used for intensity scaling. b Cortical surface area with 
maximum inter-subject correlations of eAV45 with [18F]FDG PET, occupied by time frame 0–4 min, among the significant highest within-subject correlated time 
frames and according to the reference region used for intensity scaling. 
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temporal cortices) (Fig. 5a). 
Optimal early time frame of eAV45 in AD-d presented also significant 

hypoperfusion patterns compared to eHC in highly vulnerable regions of 
AD but in a less sensitive manner than [18F]FDG PET (Fig. 5a), with best 
vertex-wise overlap (i.e. BACC) between eAV45 and [18F]FDG PET in 
the case of pons scaling (Fig. 5a). The results from the Friedman and 
post-hoc Nemenyi tests are visualized in a convenient CD diagram as 
shown in Fig. 5b. Among the 91 evenly distributed statistical thresholds, 
Friedman test confirmed that pons scaling had statistically significant 
best BACC (ranked 7) compared to other reference regions. Similar re
sults were found when comparing Alz-CS to eHC with pons scaling 
having the best BACC (ranked 6.98) (Fig. 6). 

Vertex-wise positive correlations of [18F]FDG PET with MMSE 
showed widespread patterns of correlation whatever the reference re
gion used, although less extensive in the particular case of global 
normalization (Fig. 7a). Optimal early time frame of eAV45 presented 
also significant vertex-wise positive correlation with MMSE, but in a less 
sensitive manner than [18F]FDG PET particularly in the case of WM 
scaling (Fig. 7a). Statistically significant best BACC were found for 
combined cerebellum and pons (ranked 6.21), pons (ranked 5.98) and 
cerebellum (ranked 5.23) compared to other reference regions (Fig. 7b). 

Finally, most of the reference regions, besides WM scaling and global 
normalization, showed good and statistically similar vertex-wise over
laps between eAV45 and [18F]FDG PET (ranked from 4.4 to 5.59, Online 
Supplementary Fig. 3b), regarding positive correlation with Total Recall 
in regions linked to memory (temporal lobes, orbito-frontal, lateral and 
medial parietal cortices) (Online Supplementary Fig. 3a). Among all 
these vertex-wise clinical subgroups’ comparisons and correlations with 
neuropsychological scores, both global normalization and WM scaling 
performed worse in terms of BACC. 

Based on quantified overlaps between eAV45 and [18F]FDG PET 
resulting from vertex-wise clinical subgroups’ comparisons and corre
lations with neuropsychological scores, while pons normalization ten
ded to give the best results, both global normalization and white matter 
reference regions appeared to give the worst results. Following optimi
zation of eAV45 reference region used for scaling consequently excluded 
both global normalization and white matter reference regions. 

The quantitative similarity presented above between both [18F]FDG 
PET and eAV45 can be also observed qualitatively on individual scans, 
with similar AD specific patterns in both the Aβ + aMCI and the AD- 
d individuals (see online Supplementary Fig. 4 for the sake of 
illustration). 

Fig. 5. Vertex-wise comparison of patterns of early-phase [18F]AV45 PET (eAV45) with [18F]FDG PET for the [low-Aβ elderly healthy controls (eHC) > high-Aβ 
dementia due to AD (AD-d)] contrast. a Vertex-wise patterns overlaps, quantified via balanced accuracy, between [18F]FDG PET and eAV45 for the [low-Aβ eHC >
high-Aβ AD-d] contrast, according to the reference region used for intensity scaling at P = 0.005 family-wise error (FWE)-corrected. b Critical difference (CD) di
agram comparing the ranks of different reference regions used for intensity scaling in a non-parametric Friedman test based on balanced accuracy at 91p-values 
evenly distributed from P = 0.05 to P = 0.001 family-wise error (FWE)-corrected. 
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When exploring the difference between means of smoothed Aβ- eHC 
individuals’ images and smoothed Aβ + Alz-CS individuals’ images for 
both [18F]FDG PET and eAV45 (Online Supplementary Fig. 5), a clear 
difference was observed between pons scaling and global normalization. 
When pons scaling was used the difference image for eAV45 seemed to 
be close but at lower sensitivity from the difference image for [18F]FDG 
PET, while when global normalization was used the difference image for 
eAV45 seemed to have divergent patterns, notably in frontal and orbito- 
frontal regions, compared to those of the difference image for [18F]FDG 
PET. 

3.3. Machine learning binary classifications: performance comparison 
between eAV45 and [18F]FDG PET 

Results from binary classifications of pairs of clinical groups ac
cording to single or combined modalities were only presented for the 
most promising pons scaling, although similar results were obtained for 
the four other reference regions. 

Performances of eAV45 vs. [18F]FDG PET in the binary classifica
tions of eHC vs. Alz-CS, eHC vs. AD-d and eHC vs. aMCI (Fig. 8a), were 
not significantly different from each other (ranked 7.13 vs. 7.42, 9.31 vs. 

9.05, and 5.20 vs. 6.52, respectively, Fig. 8b). eAV45 gave better per
formances than lAV45 significantly in the binary classification of eHC 
vs. AD-d (ranked 9.31 vs. 5.66), while non-significantly in the binary 
classifications of eHC vs. Alz-CS and eHC vs. aMCI (ranked 7.13 vs. 5.31, 
and 5.20 vs. 4.44, respectively, Fig. 8). 

Combined eAV45 and lAV45 always gave significantly better per
formances in the binary classifications of eHC vs. Alz-CS and eHC vs. 
aMCI than eAV45 alone (ranked 10.83 vs. 7.13, and 10.13 vs. 5.20, 
respectively), [18F]FDG PET alone (ranked 10.83 vs. 7.42, and 10.13 vs. 
6.52, respectively) or lAV45 alone (ranked 10.83 vs. 5.31, and 10.13 vs. 
4.44, respectively, Fig. 8). For eHC vs. AD-d binary classification, 
combined eAV45 and lAV45 gave better performance than lAV45 alone 
(ranked 9.03 vs. 5.66), while giving similar performances than eAV45 
alone (ranked 9.03 vs. 9.31) or [18F]FDG PET alone (ranked 9.03 vs. 
9.05, Fig. 8). 

Finally, performances of combined eAV45 and lAV45 vs. combined 
[18F]FDG PET and lAV45 in the binary classifications of eHC vs. Alz-CS, 
eHC vs. AD-d and eHC vs. aMCI were not significantly different from 
each other (ranked 10.83 vs. 10.47, 9.03 vs. 9.32, and 10.13 vs. 10.18, 
respectively, Fig. 8). 

Fig. 6. Vertex-wise comparison of patterns of early-phase [18F]AV45 PET (eAV45) with [18F]FDG PET for the [low-Aβ elderly healthy controls (eHC) > high-Aβ 
Alzheimer’s clinical syndrome (Alz-CS)] contrast. a Vertex-wise patterns overlaps, quantified via balanced accuracy, between [18F]FDG PET and eAV45 for the [low- 
Aβ eHC > high-Aβ Alz-CS] contrast, according to the reference region used for intensity scaling at P = 0.005 family-wise error (FWE)-corrected. b Critical difference 
(CD) diagram comparing the ranks of different reference regions used for intensity scaling in a non-parametric Friedman test based on balanced accuracy at 91p- 
values evenly distributed from P = 0.05 to P = 0.001 family-wise error (FWE)-corrected. 
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3.4. Brief description of the results based on PVE-corrected PET data 

Results were in accordance with those obtained from the PVE-non 
corrected PET data, despite (i) [18F]FDG PET had slightly non- 
significant better performance in the binary classifications of eHC vs. 
Alz-CS and eHC vs. aMCI than eAV45; (ii) eAV45 and lAV45 had similar 
performance in the binary classification of eHC vs. Alz-CS; and finally 
(iii) combined eAV45 and lAV45 had slightly non-significant better 
performance in the binary classification of eHC vs. AD-d than [18F]FDG 
PET (data not shown). 

4. Discussion 

The present study showed that the early time frame 0–4 min was 
optimal by maximizing both within- and inter-subject correlations of 
eAV45 with [18F]FDG PET, while minimizing both within- and inter- 
subject correlations of eAV45 with lAV45. Balanced accuracies of 
pattern overlap, derived from associations of both [18F]FDG PET and 
eAV45 with clinical diagnosis and cognition, were globally maximal 
with pons scaling, whereas classification performance between patients’ 
clinical subgroups and healthy controls were similar across reference 

regions for both [18F]FDG PET and eAV45. Finally, classification per
formance was significantly superior for combined eAV45 and lAV45 
compared to [18F]FDG PET alone, eAV45 alone or lAV45 alone, and 
similar to combined [18F]FDG PET and lAV45. 

Optimization and validation of eAV45 is a critical and timely issue 
(Valentina et al., 2016). Our dataset is optimal for addressing this issue 
with a large number of dual-phase [18F]AV45 PET exams acquired on 
the same scanner in a population ranging from healthy young to elderly 
volunteers with no cognitive impairment to Alzheimer’s clinical syn
drome with MCI or dementia. Validating the results on a mixed study 
population provides further support that optimal early time frame and 
preprocessing methods of eAV45 are not dependent on clinical diag
nosis, suggesting wider applicability of our methodology. While previ
ous studies (Asghar et al., 2018; Hsiao et al., 2012; Kuo et al., 2017; Lin 
et al., 2016; Ottoy et al., 2019) chose the optimal early time frame of 
eAV45 based solely on the best within- or inter-subject correlation with 
[18F]FDG PET SUVR values, this study considers for the first time many 
complementary quantitative analyses to robustly optimize both the 
early time frame and the preprocessing methods of eAV45, by compre
hensively assessing the similarities and differences between eAV45 and 
[18F]FDG PET. Moreover, this study contrasted the discriminatory 

Fig. 7. Vertex-wise comparison of patterns of early-phase [18F]AV45 PET (eAV45) with [18F]FDG PET for the positive correlation with mini mental state examination 
(MMSE). a Vertex-wise patterns overlaps, quantified via balanced accuracy, between [18F]FDG PET and eAV45 for positive correlation with MMSE, according to the 
reference region used for intensity scaling at P = 0.005 family-wise error (FWE)-corrected. b Critical difference (CD) diagram comparing the ranks of different 
reference regions used for intensity scaling in a non-parametric Friedman test based on balanced accuracy at 91p-values evenly distributed from P = 0.05 to P =
0.001 family-wise error (FWE)-corrected. 
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Fig. 8. Binary classification performance of pairs of clinical groups according to single or combined modalities. a Distributions of balanced accuracy for each binary 
classification (eHC vs. Alz-CS, eHC vs. AD-d or eHC vs. aMCI) according to each single (early-phase [18F]AV45 PET (eAV45), late-phase [18F]AV45 PET (lAV45) or 
18F]FDG PET) or combined ([eAV45 and lAV45] or [[18F]FDG PET and lAV45]) modalities. The performance presented here is a distribution of balanced accuracy 
values from repeated (N = 250 iterations) hold-out nested cross-validation (CV) scheme with class-sizes stratified in the training set (whose mean is shown with a red 
cross-hair symbol). b Critical difference (CD) diagram comparing the ranks of classification performance for each binary classification (eHC vs. Alz-CS, eHC vs. AD- 
d or eHC vs. aMCI) according to each single (early-phase [18F]AV45 PET (eAV45), late-phase [18F]AV45 PET (lAV45) or 18F]FDG PET) or combined ([eAV45 and 
lAV45] or [[18F]FDG PET and lAV45]) modalities. Here, greater numerical values for rank implies higher classification performance. Different colored lines here 
present groups of [biomarker:binary classification] pair that are not significantly different from each other in ranks, each one using a different [biomarker: binary 
classification] pair as its reference point. 
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power of eAV45 and [18F]FDG PET in individual cases using (i) a robust 
cross-validation scheme to avoid overly optimistic classification per
formance and (ii) a whole-brain data-driven approach rather than spe
cific ROIs to better compare performance between both modalities. 
Finally, the use of cortical surface-based analysis in PET have resulted in 
substantial improvements in the reliability and detectability of effects 
(Greve et al., 2014). 

Within-subject correlations of eAV45 and [18F]FDG PET distribu
tions were globally high and similar to published studies (Asghar et al., 
2018; Fu et al., 2014; Hsiao et al., 2012; Joseph-Mathurin et al., 2018; 
Ottoy et al., 2019; Rodriguez-Vieitez et al., 2016; Rostomian et al., 
2011), and generally associated with middle-to-high vertex-wise inter- 
subject correlations between both modalities irrespective of the refer
ence region. Higher correlations in vulnerable regions in AD may be 
explained by a greater dynamic range of metabolism and perfusion 
within these regions due to our mixed study population ranging from 
healthy controls to Alzheimer’s clinical syndrome with MCI or demen
tia. Our results suggest that early time frame of 0–4 min is optimal by 
maximizing vertex-wise both within- and inter-subject correlations of 
eAV45 with [18F]FDG PET, while minimizing vertex-wise both within- 
and inter-subject correlations of eAV45 with lAV45, whatever the 
reference region used for scaling and independently of the PVE. This 
optimal early time frame slightly differed from previous studies sug
gesting either 0–2 min (Ottoy et al., 2019) or 1–6 min (Hsiao et al., 
2012) as the optimal early time frame of eAV45 with the best association 
with [18F]FDG PET. Discrepancies with previous studies may arise from 
multiple factors including: (i) our sample size of 191 participants 
compared to relatively small sample sizes of 39 (Ottoy et al., 2019) and 7 
(Hsiao et al., 2012) participants previously; (ii) the use of complemen
tary quantitative analyses (within- and inter-subject correlations) to 
optimize the early time frame of eAV45, contrary to within-subject 
correlations only for previous studies; (iii) the minimization of the 
correlations of eAV45 with lAV45 to avoid early Aβ binding contami
nation within eAV45 signal, not previously considered; (iv) the valida
tion of the optimal early time frame of eAV45 on both non-PVC and PVC 
results, contrary to only PVC (Ottoy et al., 2019) or non-PVC (Hsiao 
et al., 2012) results previously; (v) the validation of the optimal early 
time frame of eAV45 on multiple reference regions, contrary to only one 
or two reference regions previously; and finally (vi) our vertex-wise finer 
scale of analysis, contrary to region-based (Ottoy et al., 2019) or voxel- 
wise (Hsiao et al., 2012) scales previously. Moreover, our optimal time 
frame 0–4 min of eAV45 starts at the time of injection, ensuring the 
record from the initial phase of tracer influx up to the time of peak 
concentration which occurred within 4 min of tracer administration. 
Lastly, a previous work showed that restricting the early time frame 0–2 
min of eAV45 instead of 1–6 min provides more CBF-like than [18F]FDG- 
like information (Hsiao et al., 2012). 

[18F]FDG PET showed significant cortical glucose metabolism de
creases in Alzheimer’s clinical syndrome participants compared to eHC 
and the extent of these decreases were wider with disease severity. 
Moreover, these decreases were well associated with global cognitive 
and episodic memory impairments. eAV45 with pons scaling showed 
significant cortical hypoperfusion patterns best overlapping with 
hypometabolic patterns of [18F]FDG PET, compared to other reference 
regions. However, whatever the reference region used for scaling, the 
extent of hypometabolic patterns was generally higher than the extent of 
hypoperfusion patterns, particularly in the prodromal AD stage. The 
frontal cortex for instance is altered using [18F]FDG PET; with eAV45, it 
is not detected at the same threshold but only when using a more lenient 
threshold (data not shown). This is in agreement with previous studies 
showing that changes in early amyloid PET distribution between subject 
group seemed to reasonably well approximate those of [18F]FDG PET, 
but at the cost of lower sensitivity (Forsberg et al., 2012; Fu et al., 2014; 
Hsiao et al., 2012; Ottoy et al., 2019; Segovia et al., 2018). This might 
reflect the fact that eAV45 only measure blood perfusion deficits while 
[18F]FDG PET is sensitive to additional processes leading to glucose 

consumption default above hypoperfusion. Moreover, the observation of 
relatively preserved perfusion in metabolically deficient regions (such as 
frontal cortices) or relatively preserved metabolism in perfusion defi
cient regions (such as medial parietal cortices) could be explained by a 
regional neurovascular decoupling in the resting brain (Gur et al., 2008). 
Finally, our knowledge is still incomplete regarding the spatiotemporal 
relationships between brain perfusion and metabolism, which may not 
necessarily follow a consecutive progression (Besson et al., 2015). 

Regarding reference regions, the pons appeared as the best choice in 
terms of quantified overlaps between eAV45 and [18F]FDG PET when 
evaluating cross-sectional associations with disease severity and cogni
tion, above the cerebellum, while both global normalization and WM 
reference regions generally were the worst. The pons has been shown to 
be a more stable reference region than the cerebellum (Shokouhi et al., 
2016a, 2016b), since cerebellar perfusion can itself be affected by cross 
cerebellar diaschisis in AD which might propagate to bias in normalized 
SUV calculations. In addition, previous studies have shown that the 
cerebellum is relatively hyperperfused compared to its rate of glucose 
metabolism (Gur et al., 2008; Hsiao et al., 2012), suggesting that cere
bellum may not be considered as the best reference region for screening 
perfusion changes in AD. The lower performance of the global normal
ization procedure was expected given that the global measure used for 
scaling is influenced by the effect of the pathology. Previous studies have 
shown that the cerebral WM appears as the optimal reference region for 
longitudinal lAV45 studies where values are more stable (Fleisher et al., 
2017). However, we showed here that it is not the case for cross- 
sectional eAV45 measurements. It is possible that the signal in the 
WM is also influenced by the pathology or that the signal in the WM is 
less reliable to measure inter-individual variability of eAV45 
measurements. 

eAV45 showed globally similar classification performance for eHC 
vs. Alz-CS, eHC vs. AD-d, and eHC vs. aMCI to that of [18F]FDG PET 
whatever the reference region used. Furthermore, the combination of 
eAV45 and lAV45 significantly improved the classification performance 
for distinguishing both Alz-CS from eHC and aMCI from eHC compared 
to [18F]FDG PET alone or lAV45 alone, whatever the reference region 
used. This suggests that, for an equal number of tracer injection, dual- 
phase [18F]AV45 PET outperformed the classification performance of 
[18F]FDG PET and lAV45. Thus, the combination of [18F]AV45 PET 
dual-biomarker for aMCI classification is necessary and valuable (Fu 
et al., 2014; Li et al., 2008). Finally, contrary to our results showing 
similar classification performance for the combination of [18F]AV45 
PET dual-biomarker and the combination of [18F]FDG PET and lAV45, 
Fu et al. (2014) showed that the combination of [18F]FDG PET and 
lAV45 had better performance, for the classification of eHC vs. aMCI, 
than the combination of [18F]AV45 PET dual-biomarker. This may be 
explained (i) by the use of only 4 composite ROIs derived from AAL atlas 
rather than a whole-brain data-driven approach to compare perfor
mance between both modalities, and (ii) by the use of leave-one-out 
cross-validation rather than repeated hold-out nested cross-validation 
scheme, what could provide overly optimistic classification 
performance. 

This study could facilitate biomarker-based research in allowing to 
get Aβ and neurodegeneration highly complementary information from 
a single [18F]AV45 PET scan. Therefore, characterization of neuronal 
activity, a proxy for neurodegeneration, alongside amyloidosis, is key to 
a more complete understanding of cognitive decline. It would also have 
clinical implications since the combination of these complementary Aβ 
and neurodegeneration information from a single [18F]AV45 PET scan 
would improve the diagnosis, by providing simultaneous information on 
the underlying pathology (Aβ) and on the disease stage with predictive 
power of short-term outcome (neurodegeneration). Moreover, for par
ticipants already receiving an [18F]AV45 PET scan for assessment of Aβ 
deposition, substitution of eAV45 for [18F]FDG PET would minimize 
costs, examination time, radiation exposure and thus participant burden 
by acting as a surrogate for the [18F]FDG PET scan. There is still a need 
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to validate the use of eAV45 as an alternative of [18F]FDG PET in lon
gitudinal studies (e.g., to monitor the progression of AD or assessing a 
treatment response in a clinical trial), since potential differences be
tween eAV45 and [18F]FDG PET might be of importance when small 
effect size are relevant (see also above). Furthermore, the question of the 
optimal reference region for eAV45 in longitudinal assessment should be 
specifically assessed, which could lead to a conclusion differing from 
this cross-sectional study – as it was the case for lAV45. Future studies 
should evaluate whether eAV45 proxy can replace [18F]FDG PET on a 
single subject level for clinical purposes in the differential diagnosis of 
dementia. In addition, due to the mechanistic similarity between AV45 
and the other commercially available amyloid imaging agents ([11C]PiB, 
[18F]Florbetaben and [18F]Flutemetamol), there would be widespread 
clinical use potential in translating our comprehensive methodology to 
one or more of these agents or even to possibly one of the tau imaging 
agents as described previously (Rodriguez-Vieitez et al., 2017). Finally, 
a medium-term development would be the integration into PET-scanner 
of a readily available software to optimally extract the [18F]AV45 PET 
dual information. 

Previous studies showed that the relative delivery rate R1, derived 
from pharmacokinetic modeling or simplified reference tissue model 
(SRTM) of the dynamic amyloid-PET scan as the ratio of the first-pass 
influx rate (K1) to its reference region value, could be a closer proxy 
of perfusion and synaptic function than early amyloid PET (Bilgel et al., 
2019; Joseph-Mathurin et al., 2018; Ottoy et al., 2019). However, R1 
images has the disadvantage of requiring a long dynamic scanning 
protocol (subject to patient motion and discomfort) (Shokouhi et al., 
2016a, 2016b) and are generally noisy, forcing the need of further 
processing including noise reduction for clinical application (Hsiao 
et al., 2012). Thus, R1 would only be advised in clinical research setting 
in which high accuracy is needed. Alternatives would nevertheless be 
possible as simultaneous ASL MRI and amyloid PET or pharmacokinetic 
modeling of non-invasive dual-time window acquisition (Bullich et al., 
2018). Another limitation is that cerebellum and subcortical structures 
have not be assessed in this cortical surface-based study. While it could 
be interesting to verify in these regions the consistency of results 
compared to cortical areas, the similarities of eAV45 with [18F]FDG PET 
would be biased in these regions since there are known to be hyper
perfused with respect to their glucose metabolism (Gur et al., 2008; 
Hsiao et al., 2012). In addition, differences of eAV45 uptake in very 
localized subcortical regions would not influence the image content and 
thus the diagnostic accuracy. 

5. Conclusion 

In conclusion, this study shows that eAV45 from 0 to 4 min with pons 
scaling is an optimal surrogate of [18F]FDG PET in ageing and Alz
heimer’s clinical syndrome. The strong potential of optimized dual- 
phase [18F]AV45 PET is highlighted by the capacity to outperform at 
the individual level the discriminative power of [18F]FDG PET or lAV45 
alone, when combining both eAV45 and lAV45 information obtained 
from a single PET-tracer injection. Interestingly, the use of dual-phase 
[18F]AV45 PET instead of [18F]FDG PET plus lAV45 will reduce the 
radiation dose, total time and number of visits and costs. 

6. Data statement 

The datasets used for the present work, with the exception of the 
participant PET and MRI images, are available on request from the 
corresponding author pending the institute Ethics approval. 
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Arenaza-Urquijo, A. Bejanin, A. Cognet, J. Dayan, M. Delarue, B. 

Desgranges, S. Egret, F. Felisatti, M. Fouquet, M. Gaubert, J. Gonneaud, 
E. Kuhn, R. La Joie, M. Leblond, A. Manrique, K. Mevel, F. Mézenge, I. 
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Ibáñez, E., Carnero Pardo, C., Martínez Lozano, M.D., Sopena-Novales, P., 2018. 
Usefulness of Dual-Point Amyloid PET Scans in Appropriate Use Criteria: A 
Multicenter Study. J. Alzheimers Dis. 1–15. 

Shokouhi, Sepideh, Campbell, D., Brill, A.B., Gwirtsman, H.E., The Alzheimer’s Disease 
Neuroimaging Initiative, 2016a. Longitudinal Positron Emission Tomography in 
Preventive Alzheimer’s Disease Drug Trials, Critical Barriers from Imaging Science 
Perspective: Longitudinal PET studies in AD. Brain Pathol. 26, 664–671. https://doi. 
org/10.1111/bpa.12399. 

Shokouhi, S., McKay, J.W., Baker, S.L., Kang, H., Brill, A.B., Gwirtsman, H.E., Riddle, W. 
R., Claassen, D.O., Rogers, B.P., 2016b. Reference tissue normalization in 
longitudinal (18)F-florbetapir positron emission tomography of late mild cognitive 
impairment. Alzheimers Res. Ther. 8, 2. https://doi.org/10.1186/s13195-016-0172- 
3. 

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing 
problems of smoothing, threshold dependence and localisation in cluster inference. 
Neuroimage 44, 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061. 

Teipel, S., Drzezga, A., Grothe, M.J., Barthel, H., Chetelat, G., Schuff, N., Skudlarski, P., 
Cavedo, E., Frisoni, G.B., Hoffmann, W., Thyrian, J.R., Fox, C., Minoshima, S., 
Sabri, O., Fellgiebel, A., 2015. Multimodal imaging in Alzheimer’s disease: validity 
and usefulness for early detection. Lancet Neurol. 14, 1037–1053. https://doi.org/ 
10.1016/s1474-4422(15)00093-9. 

Valentina, G., Silvia, M., Marco, P., 2016. Dual-phase amyloid PET: hitting two birds 
with one stone. Eur. J. Nucl. Med. Mol. Imaging 43, 1300–1303. https://doi.org/ 
10.1007/s00259-016-3393-6. 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014. 
Permutation inference for the general linear model. Neuroimage 92, 381–397. 
https://doi.org/10.1016/j.neuroimage.2014.01.060. 

Wirth, M., Bejanin, A., La Joie, R., Arenaza-Urquijo, E.M., Gonneaud, J., Landeau, B., 
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