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Abstract

Motivation: Characterization of the coding sequences (CDSs) is an essential step in transcriptome annotation. Incorrect
identification of CDSs can lead to the prediction of non-existent proteins that can eventually compromise knowledge if
databases are populated with similar incorrect predictions made in different genomes. Also, the correct identification of
CDSs is important for the characterization of the untranslated regions (UTRs), which are known to be important regulators
of the mRNA translation process. Considering this, we present CodAn (Coding sequence Annotator), a new approach to
predict confident CDS and UTR regions in full or partial transcriptome sequences in eukaryote species. Results: Our analysis
revealed that CodAn performs confident predictions on full-length and partial transcripts with the strand sense of the CDS
known or unknown. The comparative analysis showed that CodAn presents better overall performance than other
approaches, mainly when considering the correct identification of the full CDS (i.e. correct identification of the start and
stop codons). In this sense, CodAn is the best tool to be used in projects involving transcriptomic data. Availability: CodAn is
freely available at https://github.com/pedronachtigall/CodAn. Contact: aland@usp.br Supplementary information:
Supplementary data are available at Briefings in Bioinformatics online.
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INTRODUCTION
The structural annotation of sequences resulting from a
transcriptome assembly is an important step to understand the
profile of genes expressed in the sample [4]. The coding region
of the transcripts (CDS) represents the portion of the transcript
that defines the resulting protein that will be produced [20].
Also, the untranslated regions (UTRs) are considered crucial
to understanding the genetic regulatory networks involved
in specific biological pathways [8, 24, 25]. UTRs are major
components of post-transcriptional regulation of gene expres-

sion (reviewed by [1]). UTRs are responsible to regulate mRNA
stability, export, cellular localization and translation efficiency,
which influence directly the final amount of protein (reviewed
by [27]). Moreover, the complex pattern of UTR regulation is
strongly associated with embryogenesis, cellular diversity and
diseases [8, 31, 40]. The correct characterization of the UTR and
CDS landscape is, therefore, an essential initial step in correctly
identifying the functional protein and the post-transcriptional
regulatory elements that can determine the final protein
output.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
aland@usp.br


2 P. G Nachtigall et al.

Currently, there are several computational tools to detect the
CDSs and UTRs of transcripts. Some of these tools focus on
characterizing the CDS [7, 23, 34] and others in characterizing
the UTR regions [6, 10, 15, 17, 39]. Additionally, some widely
used machine learning approaches were developed to classify
transcripts as protein-coding genes or non-coding genes [12, 22,
30, 41], but these methods are only classifiers and do not perform
annotation of the coding sequences.

There are basically two strategies for the implementation
of CDS predictors: similarity search and ab initio predictors.
Similarity-based methods [10, 26, 38] rely on the existence of
curated proteins and are useful for genes that code for closely
related curated proteins but fail to characterize CDS for novel
proteins. We can separate ab initio prediction methods in two
categories: (i) pre-trained methods [23, 29] that generally require
curated sequences to estimate specific parameters or the use
of the pre-computed parameters of the closely related species
available; and (ii) self-training methods, which detect putative
long ORFs in the transcripts to train a prediction model specific
to that set of sequences [3, 5, 7, 11, 34, 35].

The design of a computational tool that can be easily and
automatically applied on any species and to strand-specific,
strand-blind or partial sequences is necessary for a wide and
confident characterization of CDS and UTR landscape in all novel
transcriptome projects. Three previous approaches circumvent
this problem with a self-training approach, where predictors first
perform an expectation maximization (EM) interactive proce-
dure to train the prediction model using the target data and
can be applied to any organism: Prodigal [11], TransDecoder [7]
and GeneMarkS-T [34]. Of these, GeneMarkS-T [34] presents a
performance closer to a gold standard in stop-codon prediction,
with an average of more than 90% of correct predictions of
stop codons [34]. However, as we will show below, performance
decreases when considering full CDS prediction (i.e. correct start
and stop codon identification), strand-blind prediction (where
the orientation of the transcript is unknown) or partial sequence
prediction, indicating the need for new approaches that can
reliably characterize CDS in all sequencing scenarios.

Here we present CodAn, a new transcript characterization
software for eukaryotic organisms that dramatically increases
the current accuracy boundaries in partial and in strand-blind
sequences, increases the accuracy in start codon prediction and
matches or surpassing gold-standard accuracy for stop codon
prediction in strand-specific sequences. Currently, CodAn has
four probabilistic models, each for a specific group of eukaryotes:
vertebrates, invertebrates, plants and fungi. We show that with
these pre-designed models, CodAn can perform highly confident
predictions of the full CDS and UTR regions not only in strand-
specific full transcript sequences but also in strand-blind and
partial sequences in a rate far higher than other available soft-
ware.

METHODS
Algorithm implementation

CodAn uses two different architectures for analyzing transcripts,
one for full and one for partial transcripts (Figure 1). The first
model applies to transcripts that include the whole CDS region,
including the start and stop codon. The partial transcript model
assumes that the transcript sequence may not include either
the start, or the stop, neither the start or the stop codons. Both
architectures assume only one CDS per transcript. These archi-
tectures are described using Generalized Hidden Markov Models

(GHMMs) implemented using the ToPS probabilistic framework
[13]. Since GC content is known to affect gene prediction [33], we
partitioned our probabilistic model in GC content specific sub-
models. More details on the probabilistic model are described in
the SupplementalMethods.

CodAn uses ToPS [13] to implement the GHMM architectures,
Python (v.3.6.8) and Perl (v5.26.1) scripts to prepare and process
data for the ToPS probabilistic framework.

For each architecture, four different sets of parameters were
estimated, corresponding to four organism groups: vertebrates,
invertebrates, plants and fungi.

By default, CodAn takes as input transcripts in FASTA format,
performs the prediction and returns three FASTA files, contain-
ing the CDS, 3′UTR and 5′UTR sequences predicted for each
transcript, and a GTF file, containing the annotations of the pre-
dictions for each transcript. CodAn does not need any additional
training, the user just specifies the appropriate organism group
from the four current choices: vertebrates, invertebrates, plants
and fungi. Please contact the authors for customization to new
organism groups.

Training sets

CodAn uses probabilistic models for which we need to estimate
the parameters. For this, we used training sets with reference
sequences from different species downloaded from the RefSeq
database at NCBI (release number 94; ftp://ftp.ncbi.nlm.nih.gov/
refseq/). Due to a lack of complete annotations of transcripts
for Caenorhabditis elegans at RefSeq, we used the sequences
deposited at the WormBase (release WS270; ftp://ftp.wormbase.
org/pub/wormbase/). We retrieved sequences following three
criteria: (i) presence of a reviewed and/or curated status; (ii)
validated expression status; and (iii) full-length transcripts.
We estimated four different parameter sets, each one targeted
to a different group of eukaryotic organisms: vertebrates,
invertebrates, plants and fungi. The training sets for each
parameter set contained reference transcript sequences of a
mix of species from each group (detailed in Supplemental Table
S1_A). Moreover, we detail the workflow of the training set in
the Supplemental_Figure§1.

Comparison protocol

We compared the prediction performance of CodAn against
that of ESTscan (v3.0.3; [23]), TransDecoder (v5.5.0; [7]), Prodigal
(v2.6.3; [11]) and GeneMarkS-T (v5.1; [34]). We used all tools with
default command-line options, following their usage guidelines,
as the fine-tuning of the software options of each tool is beyond
the scope of this analysis. For ESTscan we used the pre-trained
models either of the species being tested or the closest related
species when the species-specific model was not available (the
pre-trained models used for each species are specified in Supple-
mental Table S1_B). Since there was no fungi model for ESTScan,
we did not perform comparison tests for this tool in the Fungi
group. For Prodigal, we used the mode directed to predict intron-
less genes (‘switched-off RBS model’), which can be applied to
predict coding regions in transcripts of eukaryotes.

We performed a comparison in both full transcript and partial
transcript sets. Following Tang and collaborators [34], we used
both annotated and Ribo-seq validated full transcripts. The first
for evaluating the accuracy of stop codon prediction, the second
for evaluating full CDS prediction accuracy. In all tests we mea-
sured the Precision (computed as TruePositives / (TruePositives

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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Figure 1. The two GHMMs representing transcripts. (A) Full transcript model, gray figures represent final states, the arrows represent the flow of the architecture,

indicating only one initial state, 5′UTR. (B) Partial transcript model, gray figures represent final states, the arrows represent the flow of the architecture. The four states

represented by circles are states with explicit duration distribution that emit the protein-coding region: fullCDS, pCDS0, pCDS1 and pCDS2. The state fullCDS models

a complete coding region. The states pCDS0, pCDS1 and pCDS2 represent partial coding regions that start, respectively, at frame 0, 1 and 2. The state labeled UTR can

be used to represent either the 5′UTR or the 3′UTR. The 3′UTR state represents 3′UTRs. The states Start and Stop in diamonds have a fixed length duration, and they

represent the start codon and stop codon, respectively.

+ FalsePositives), Recall (computed as TruePositives / (TruePosi-
tives + FalseNegatives)) and F1-score (computed as 2 * (Precision
* Recall) / (Precision + Recall)). Following [34], we considered True
Positives as the predictions that exactly matched the reference
annotation, False Positives as the predictions that presented any
difference from the reference annotation and False Negatives
as the sequences with no predictions. In this sense, for the
annotated full transcripts we considered as True Positives the
predictions that correctly matched the annotated stop codon
and false positives all other predictions. For both the Ribo-seq
validated sequences and for the partial sequences, we consid-
ered True Positives all predictions that correctly matched the
whole CDS of the transcripts.

We adopted the most common interpretation of the con-
cepts of True Positive, False Positive and False Negatives used
in gene prediction. These measures would be sufficient in the
ideal situation where all sequences are mRNA transcripts with
a CDS region. However, in transcriptome projects sequences
with no CDS region can be present, either being just UTRs or,
depending on sequencing protocol, ncRNAs. To evaluate the rate
of false discoveries, we also compared Specificity (computed as
FalsePositives / (FalsePositives + TrueNegatives)) of the various
approaches. For this, we used two different negative datasets:
3′UTR regions and ncRNAs. It is important to note that here the
definition of False Positives is somewhat different from that used
in computing Precision, Recall and F1-score: in the latter case
false positives were only predictions that did not exactly match
the CDS nucleotides, for Specificity we considered any prediction
as a false positive.

Testing sets

The test sets for comparison against other approaches consisted
of transcript data from 34 eukaryote species that are of inter-
est in the fields of evolutionary and biomedical studies and/or
highly used in food production (Table 1). For each of the 34
organisms, we retrieved 2000 randomly selected full transcripts

presenting the following three criteria: (i) validated expression
status; (ii) full length; and (iii) full CDS annotation. None of these
sequences included any of the transcripts used for training the
probabilistic model. For each transcript set, we generated seven
distinct validation sets: two sets with full transcripts, four sets
with partial transcripts and one set with ncRNA sequences (as
shown in the flow diagram at the Supplemental_Figure§2).

The first full transcript set (Full Strand-Specific) included
all 2000 transcripts as downloaded from the database. For
the second, full transcript set (Full Strand-Blind), intended to
measure the performance of the predictors in sequences with
unknown translation direction, we randomly selected half of
the sequences in the previous datasets (1000 transcripts) and
replaced it for its reverse complement.

To compare the prediction of complete CDSs, we followed
the approach of Tang and collaborators [34], using a set of
full transcripts with their respective start codons validated and
annotated by Ribo-seq experiments [18]. We, however, extended
the number of species in the validation including Homo sapiens,
Mus musculus, Danio rerio, Drosophila melanogaster and Arabidopsis
thaliana [21]. For the data previously analyzed by [18], we selected
transcripts where the annotated start codon at RefSeq matched
to the start codon confirmed by the Ribo-seq data resulting
in 5727 and 2701 sequences for H. sapiens and M. musculus,
respectively. On the data analyzed by [21], we considered only the
full transcripts with the curated annotation by the Ribo-seq data,
which led to 14 193, 20 326, 13 954, 13 653 and 6947 sequences
for H. sapiens, M. musculus, D. rerio, D. melanogaster and A. thaliana,
respectively.

For the partial transcripts datasets, we considered that the
de novo assemblies can result in partial transcripts with no start
codon and/or no stop codons. For the first partial transcript set
(No Start), we randomly selected, for each transcript of the full
transcript dataset, a truncation point in the CDS region and
pruned the 5′ part, eliminating the start codon. In the second
partial transcript set (No Stop), we randomly selected, for each
transcript, a new truncation point in the CDS region and pruned

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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Table 1. Species with validated annotations at RefSeq and used in
the present study

Kingdom Group Species Common Name

Animals Vert. Anolis carolinensis Lizard
Bos taurus Cow
Danio rerio Zebrafish
Gallus gallus Chicken
Homo sapiens Human
Mus musculus Mouse
Oreochromis niloticus Nile tilapia
Rattus norvegicus Rat
Salmo salar Salmon
Xenopus tropicalis Frog

Inv. Aedes aegypti Mosquito
Apis mellifera Bee
Caenorhabditis elegans Worm
Ciona intestinalis Ascidian
Drosophila melanogaster Fruitfly
Nematostella vectensis Sea anemone
Schistosoma mansoni Blood Fluke
Tribolium castaneum Beetle

Plants Dico. Arabidopsis thaliana Arabidopsis
Glycine max Soybean
Olea europaea Olive
Theobroma cacao Cocoa Tree

Mono. Oryza sativa Rice
Sorghum bicolor Sorghum
Setaria italica Millet
Zea mays Maize

Fungi Agaricus bisporus Mushroom
Aspergillus niger Fungus
Cryptococcus neoformans Encapsulated yeast
Neurospora crassa Red bread mold
Puccinia graminis Stem rust
Rhizopus microsporus Plant pathogen
Schizosaccharomyces pombe Fission yeast
Schizophyllum commune Fungus

Note: Vert.: Vertebrates; Inv.: Invertebrates; Dico.: Dicots; Mono.: Monocots.

the 3′ part, eliminating the stop codon. In the third partial
transcript set (No Start & No Stop), we randomly selected, for
each transcript two truncation points and eliminated the 5′ and
the 3′ ends of the transcript, retaining only part of the CDS region.
Cutting points were selected to guarantee a minimum size of
150 nt for the resulting sequences. In cases where the whole
transcript was smaller than 150 nt we only pruned the sequence
at the start and/or stop codon, depending on the dataset.

We used two different datasets to evaluate Specificity: 3′UTR
sequences and ncRNA sequences. The 3′UTR dataset consisted
of the complete 3′UTR regions of each transcript in the original
full transcript dataset. The 3′UTR set was designed to be a real
negative set for protein-coding transcriptome projects when the
experimental design leads to a selection of mRNA transcripts
based on poly-A selection. Additionally, to test the specificity
in RNASeq projects with no poly-a specificity, we used ncRNA
sequences. For this, we created a dataset containing all ncRNA
sequences longer than 200 nt length available for each species
in the RFAM database (release 14.1;https://rfam.xfam.org/). To
make the specificity test more close to a real transcriptome
assembly and fair for the self-training algorithms, we used a

mix of sequences containing a proportion of 500 sequences of
full-length transcripts and 500 sequences of partial transcripts
within the ncRNA sequences.

Moreover, to test CodAn as a classifier of sequences with
coding potential, we designed a test by combining all testing
sets (i.e. full transcript set, partial transcript set, UTR sequences
and ncRNA sequences). We compared the classification perfor-
mance of CodAn against PLEK (v1.2; [19]), CPAT (v2.0; [37]) and
CPPRED (v1.0; [36]) using the standard Precision, Recall and F1-
Score values as mentioned above. For this, we considered that
TruePositives are coding sequences correctly identified as coding
sequences, TrueNegatives are non-coding sequences correctly
identified as non-coding sequences, FalseNegatives are coding
sequences incorrectly identified as non-coding sequences and
FalsePositives are non-coding sequences identified as coding
sequences.

RESULTS AND DISCUSSION
CodAn is a stand-alone software that can be used to reliably
predict the location of UTR and CDS regions in full or partial
transcripts. CodAn uses two GHMMs, one for a full CDS and
another for partial transcripts. GHMMs are used by the most
successful gene predictors in use today [2, 16, 32] due to the
possibility of accurately modeling each region of the gene using
specific probabilistic models and by modeling more accurately
the length of each of these regions. With the use of ToPS [14] we
could experiment with different model configurations in order
to maximize performance. The final model incorporated the best
performing of the most successful probabilistic techniques used
in genomic gene prediction for the four eukaryotic organism
groups. Details on the probabilistic models used for the archi-
tecture can be found in Supplemental_Methods.

We compared CodAn’s performance against that of ESTScan
[23], TransDecoder [7], Prodigal [11] and GeneMarkS-T [34] in 34
different organisms of four groups: vertebrates, invertebrates,
plants and fungi (Table 1). For each organism, the performance
was measured in transcripts of eight different test sets: two sets
of strand-specific full transcripts, one set of strand-blind full
transcripts and three sets of partial transcripts (‘No Start’, ‘No
Stop’ and ‘No Start & No Stop’ and two distinct negative sets,
‘3′UTR partial transcripts’ and ‘ncRNA transcripts’).

Prediction accuracy assessment: full transcripts

For strand-specific stop codon prediction, CodAn presents
a higher performance in all four groups as we can see in
Table 2. Running F1-scores for each category were all above
97%, constantly higher than other approaches. Low standard
deviation values in all four organism groups (equal to or
lower than 0.01) indicate the robustness of the method. This
performance is confirmed when examining a summary of
the results for each species, as depicted in Figure 2A, which
shows the values obtained for Precision, Sensitivity and F1-
score. For complete strand-specific sets, CodAn presented a
higher performance for the majority of the organisms in all four
categories (Supplemental Table S2_A and Supplemental Table
S2_B).

When considering strand-blind sets CodAn significantly out-
performs all other applications in stop codon prediction (Table 3;
Figure 2B), the F1-scores are at least 40% higher than other
approaches, with consistently higher Precision and Recall values
in all organisms (Supplemental Table S2_C and Supplemental

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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Table 2. Average and standard deviation of precision, Recall and F1-score obtained by each tool in the strand-
specific full transcript sets analyzed. Bold font highlight the higher value for each group. No results are
available for ESTScan in fungal transcripts due to the absence of a fungal model

Group Predictor Precision Recall F1-score

Vertebrates CodAn 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.01
ESTscan 0.71 ± 0.05 0.71 ± 0.05 0.71 ± 0.05
TransDecoder 0.70 ± 0.11 0.69 ± 0.11 0.70 ± 0.11
Prodigal 0.53 ± 0.08 0.53 ± 0.08 0.53 ± 0.08
GeneMarkS-T 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

Invertebrates CodAn 0.99 ± 0.01 0.96 ± 0.03 0.97 ± 0.02
ESTscan 0.60 ± 0.19 0.41 ± 0.26 0.47 ± 0.25
TransDecoder 0.83 ± 0.09 0.80 ± 0.09 0.82 ± 0.09
Prodigal 0.77 ± 0.10 0.76 ± 0.10 0.77 ± 0.10
GeneMarkS-T 0.99 ± 0.02 0.95 ± 0.03 0.97 ± 0.02

Plants CodAn 1.00 ± 0.00 0.97 ± 0.04 0.98 ± 0.02
ESTscan 0.71 ± 0.12 0.70 ± 0.12 0.70 ± 0.12
TransDecoder 0.70 ± 0.19 0.68 ± 0.18 0.69 ± 0.18
Prodigal 0.69 ± 0.11 0.69 ± 0.11 0.69 ± 0.11
GeneMarkS-T 0.98 ± 0.01 0.96 ± 0.03 0.97 ± 0.02

Fungi CodAn 0.99 ± 0.01 0.95 ± 0.04 0.97 ± 0.02
ESTscan NA NA NA
TransDecoder 0.67 ± 0.17 0.64 ± 0.15 0.65 ± 0.16
Prodigal 0.71 ± 0.13 0.71 ± 0.13 0.71 ± 0.13
GeneMarkS-T 0.98 ± 0.01 0.94 ± 0.04 0.96 ± 0.02

Figure 2. Scatter plot of the full-length (FL) transcript test results. (A) Precision, Sensibility and F1-Score obtained by each tool in the strand-specific FL test. (B) Precision,

Sensibility and F1-Score obtained by each tool in the strand-blind FL test. Each dot represents a different organism, color-coded by organism group. Results are grouped

vertically by predictor.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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Table 3. Average and standard deviation of precision, Recall and F1-score obtained by each tool in
the Strand-Blind full transcript sets analyzed. Bold font highlight the higher value for each group.No
results are available for ESTScan in fungal transcripts due to the absence of a fungal model

Group Predictor Precision Recall F1-score

Vertebrates CodAn 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.01
ESTscan 0.36 ± 0.02 0.36 ± 0.02 0.88 ± 0.13
TransDecoder 0.18 ± 0.04 0.18 ± 0.04 0.93 ± 0.05
Prodigal 0.27 ± 0.05 0.27 ± 0.05 0.93 ± 0.02
GeneMarkS-T 0.50 ± 0.00 0.49 ± 0.00 0.49 ± 0.00

Invertebrates CodAn 0.99 ± 0.02 0.95 ± 0.03 0.97 ± 0.02
ESTscan 0.31 ± 0.10 0.21 ± 0.13 0.24 ± 0.12
TransDecoder 0.29 ± 0.08 0.28 ± 0.07 0.29 ± 0.08
Prodigal 0.39 ± 0.05 0.39 ± 0.05 0.39 ± 0.05
GeneMarkS-T 0.49 ± 0.01 0.48 ± 0.01 0.48 ± 0.01

Plants CodAn 0.99 ± 0.01 0.96 ± 0.04 0.98 ± 0.02
ESTscan 0.35 ± 0.06 0.35 ± 0.06 0.35 ± 0.06
TransDecoder 0.22 ± 0.13 0.21 ± 0.12 0.21 ± 0.12
Prodigal 0.35 ± 0.05 0.35 ± 0.05 0.35 ± 0.05
GeneMarkS-T 0.49 ± 0.01 0.48 ± 0.02 0.49 ± 0.01

Fungi CodAn 0.98 ± 0.01 0.94 ± 0.04 0.96 ± 0.02
ESTscan NA NA NA
TransDecoder 0.21 ± 0.11 0.20 ± 0.10 0.21 ± 0.11
Prodigal 0.36 ± 0.06 0.35 ± 0.06 0.36 ± 0.06
GeneMarkS-T 0.49 ± 0.01 0.47 ± 0.02 0.48 ± 0.01

Table S2_D). In fact, CodAn is the only software for which strand-
specific and strand-blind results are almost the same, with F1-
score values consistently over 95%. Considering that most RNA-
seq projects perform sequencing with an unknown orientation
of the transcript being sequenced, it is relevant to use predictors
that present high precision independently of the orientation of
the CDS in the transcripts. We can only speculate on the reasons
for this increase in performance, as strand-blind predictions
strategies are not always clearly described. In our case we have
tried two approaches, one with a single model for predicting
CDSs in both strands and one where we used a strand-specific
model in the input strand and in its reverse complement, select-
ing the performance with the highest score. In our case, this last
approach had a much better performance.

Prediction accuracy assessment: experimentally
validated strand-specific full transcripts

Next, we evaluated the accuracy for complete CDS prediction
using a set of full transcripts of H. sapiens, M. musculus, D. rerio,
D. melanogaster and A. thaliana with their respective start codons
validated and annotated by Ribo-seq experiments [18, 21].

The tests revealed that GeneMarkS-T and CodAn presented
higher performance than the other tools, but this time with a
clear advantage for CodAn, with a higher percentage of correct
predictions in five of the seven datasets and small advantage
in two (Table 4, Figure 3; Supplemental Table S2_E). CodAn pre-
sented higher rates of correct predictions and an almost perfect
score for predicting the stop codon position (over 97% of the
predictions in all datasets). These results confirm the consistent
advantage of CodAn in full CDS prediction obtained in the first
34 datasets (Supplemental Table S2_A and Supplemental Table
S2_B). There is a significant increase in correct CDS predictions
with CodAn, when compared to the next best performing soft-
ware, GeneMarkS-T: CodAn presented an average of 235 more

correct CDS predictions out of the 2000 genes in the dataset,
averaging a 17% increase (Table S2_A at supplemental_Table_S2)

In summary, for full transcripts, CodAn significantly outper-
forms other available software in predicting CDS for the full
transcript of unknown orientation and increases precision in
full CDS prediction, while still matching the best stop codon
precision measurements. This indicates that CodAn it the best
choice when the annotation of the whole coding sequence is
necessary for the subsequent analysis.

Prediction accuracy assessment: partial transcripts

In most real-life situations, transcriptome sequencing projects
performing de novo assemblies produce a high rate of partial
transcripts [9]. It is therefore relevant to measure the accuracy of
predictions also for these sequences. To form a more precise pic-
ture we separately measure the accuracy for prediction in tran-
scripts consisting of: (i) only CDS nucleotides; (ii) 5′UTR and CDS
nucleotides; and (iii) CDS and 3′UTR nucleotides. These datasets
presented a much harder challenge for all of the applications
used in the comparison (Figure 4; Supplemental Table S2_F). For
the NoStart dataset, only CodAn was able to correctly identify a
significant number of CDSs, in this case with very good results,
averaging over 97% in F1 score values. The situation changed for
the NoStop datasets but still with a clear advantage for CodAn:
average F1 score for CodAn was above 58%, in comparison to
a maximum of 27% for the other applications. Finally, for the
NoStartNoStop (CDS only) sequences, CodAn F1 scores were,
again, averaged more than 96%, while F1 scores for the other
applications were always below 13%.

These results showed that other approaches fail to obtain
even modest precision or recall rates for the prediction of CDSs
in partial transcripts, with CodAn achieving consistently higher
rates. This clearly indicates CodAn as the best approach to
handle cases where the partial transcripts are highly abundant

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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Table 4. Precision, recall and F1-score for the prediction in datasets with start codons
confirmed by ribo-seq experiments. True positives are sequences with the whole CDS
predicted correctly (start and stop codon). Bold font highlight the higher value for each
dataset. The ‘Size’ column refers to the number of transcripts in the dataset

Dataset Size Predictor Precision Recall F1-score

H.sapiens 14193 CodAn 0.81 0.75 0.78
(Lim et al., 2018) ESTScan 0.23 0.22 0.23

TransDecoder 0.37 0.35 0.36
Prodigal 0.27 0.27 0.27
GeneMarkS-T 0.67 0.63 0.65

H.sapiens 5727 CodAn 0.99 0.97 0.98
(Lee et al., 2012) ESTScan 0.68 0.68 0.68

TransDecoder 0.60 0.59 0.60
Prodigal 0.49 0.49 0.49
GeneMarkS-T 0.98 0.96 0.97

M.musculus 20326 CodAn 0.85 0.83 0.84
(Lim et al., 2018) ESTScan 0.30 0.30 0.30

TransDecoder 0.39 0.38 0.39
Prodigal 0.29 0.29 0.29
GeneMarkS-T 0.70 0.68 0.69

M.musculus 2701 CodAn 1.00 0.98 0.99
(Lee et al., 2012) ESTScan 0.74 0.74 0.74

TransDecoder 0.67 0.65 0.66
Prodigal 0.52 0.52 0.52
GeneMarkS-T 0.97 0.95 0.97

D.rerio 13954 CodAn 0.86 0.85 0.86
(Lim et al., 2018) ESTScan 0.44 0.44 0.44

TransDecoder 0.67 0.65 0.66
Prodigal 0.47 0.47 0.47
GeneMarkS-T 0.80 0.78 0.79

D.melanogaster 13653 CodAn 0.90 0.90 0.90
(Lim et al., 2018) ESTScan 0.68 0.66 0.67

TransDecoder 0.57 0.56 0.56
Prodigal 0.56 0.56 0.56
GeneMarkS-T 0.86 0.83 0.85

A.thaliana 6947 CodAn 0.87 0.85 0.86
(Lim et al., 2018) ESTScan 0.59 0.58 0.58

TransDecoder 0.67 0.65 0.66
Prodigal 0.56 0.56 0.56
GeneMarkS-T 0.82 0.79 0.80

Figure 3. Scatter plot of the precision, sensitivity and F1-score obtained by each tool in the Ribo-seq experimentally validated datasets considering the full CDS region.

Each dot represents a different dataset, color-coded by species dataset. Results are grouped vertically by predictor.
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Figure 4. Scatter plot of the partial transcript test results. The plots are showing the Precision, Sensitivity and F1-Score obtained by each tool on ‘No Start’, ‘No Stop’

and ‘No Start & No Stop’ tests performed on all species analyzed in the present study. Each dot represents a different organism, color-coded by organism group.

Figure 5. Scatter plot of Specificity obtained by each tool in the prediction. We used two negative datasets (A) 3′UTR region datasets (using only the partial model

of CodAn) and (B) ncRNA datasets (using the full and partial models of CodAn). Each dot represents a different organism, color-coded by organism group. Results are

grouped vertically by predictor.
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Figure 6. Scatter plot for Precision, Specificity and F1-score obtained by CodAn, PLEK, CPAT and CPPRED. Each dot represents a different organism, color-coded by

organism group, whereas blue, light blue, light orange and orange represent vertebrates, invertebrates, plants and fungi, respectively. Results are grouped vertically by

predictor.

in the transcriptome assembly. In fact, it is a common feature in
de novo assemblies in which partial transcripts can represent up
to 50% of the sequences assembled [9].

False-positive assessment using partial 3′UTR and
ncRNA transcripts

Different sequencing protocols can produce two types of neg-
ative sequences when considering CDS prediction: UTR-only
sequences or ncRNA sequences.

To estimate the rate in which such transcripts have false-
positive predictions in the first case we ran all applications
in the 3′UTR sequences of the previous datasets. The results
show that CodAn and TransDecoder, as a rule, presented the
lowest number of false-positives, whereas Prodigal presented
the highest number of false-positives (Figure 5A; Supplemental
Table S2_G). TransDecoder presented the best overall perfor-
mance with better average specificity values for invertebrates
(95% versus 90%), plants (95% versus 90%) and fungi (95% versus
90%). The only exception was for vertebrates with GeneMarkS-T
presenting a Specificity of 97%, against 95% of CodAn and 90%
of TransDecoder.

Specificity assessment for ncRNA sequences showed that the
full transcript model of CodAn presents the best performance
of all predictors. If instead, we use the partial model of CodAn,
its performance is higher for vertebrates, whereas Transdecoder
presented a slightly better performance in the other groups
(Figure 5B; Supplemental Table S2_H). Overall, both models of
CodAn presented satisfactory results on specificity tests.

CodAn as a coding potential classifier

The high performance obtained by CodAn on the specificity
tests of the previous section indicates that CodAn can be also
potentially used for evaluating the coding potential of sequences
and can be used to classify sequences as coding or non-coding.
This is a slightly different problem than identifying the coding
region of a transcript, but finding a full or partial CDS in a
sequence can lead to classify it as coding or non-coding. The cod-
ing potential tools developed are classifiers, which only indicate

if a sequence has the potential of being coding or non-coding.
In this sense, we compared CodAn with three different coding
potential classifiers using all datasets designed in the testing set
(i.e. full-length transcripts, partial transcripts, UTR transcripts
and ncRNA transcripts). The results revealed that CodAn out-
performed the competition, associating high precision values
with clearly superior sensitivity (Figure 6; Supplemental Table
S2_I). These data indicate that CodAn is suitable for the coding
potential classification task.

Running time

We measured the processing times of CodAn, ESTscan, TransDe-
coder, Prodigal and GeneMarkS-T by running the predictions on
a Full-Length transcript dataset containing 2000 sequences and
using a personal computer (Intel 6-Core i7 with 16-Gb memory).
The test revealed that CodAn processed the set of sequences in
32 s (i.e. about 0.016 s per sequence) when using a single CPU.
Despite being slower than its competitors (i.e. 16, 9, 6 and 5 s for
Prodigal, Transcoder, ESTScan and GenenmarkS-T, respectively),
CodAn is still fast enough to process large datasets in personal
computers. For example, 200 000 sequences will be processed
in about 53 min by using one CPU. Additionally, CodAn has an
option to use multiple CPUs that can significantly increase the
time performance. For instance, with the use of four CPUs, the
200000 sequences would be processed in only 17 min.

CONCLUSION
We presented CodAn, a software that generates highly confident
transcript characterization for a wide range of eukaryote organ-
isms. Currently, CodAn has four specific prediction models:
vertebrates, invertebrates, fungi and plants. CodAn was tested in
a variety of situations for transcript annotations in 34 different
organisms: full strand-specific stop codon characterization,
full strand-specific CDS characterization, full strand-blind and
partial sequences that excluded either the start codon, the stop
codon or both. In all but the first measure, CodAn obtained a
clear advantage over other software, in particular on partial and
strand blind sequences. Even for the prediction of stop codons
in strand-specific full sequences, CodAn matched or had a slight

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa045#supplementary-data
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advantage over the current gold-standard predictor, GeneMarkS-
T. This high confidence is achieved by the use of multiple
probabilistic models integrated using a GHMM. The design of
CodAn was based on the development of model parameters
for four groups of eukaryotes: vertebrates, invertebrates, plants
and fungi. Each parameter set was estimated based on a mix
of reference transcripts from several species of one of the
organism groups. CodAn can run on any desktops/laptops
or take advantage of large multi-processor servers based on
UNIX OS.

We showed that these generic models work well and result
in a reliable characterization of transcripts in a wide range
of eukaryote species. Considering the datasets used in the
present analysis, CodAn had a clear performance advantage
when considering all common situations of RNA sequencing
projects, in particular with strand-blind full sequences and
partial sequences. Also, even in strand-specific prediction
where CodAn and GeneMarkS-T presented similar stop-codon
prediction performance, CodAn presented a significant increase
in fully-correct CDS.

In summary, our data indicate that CodAn is the best
approach to be applied on studies focusing to characterize
the CDS regions and the UTR landscape of partial and/or full
transcripts and can help the improvement of current and future
gene annotation for transcriptomes of eukaryote species, which
is a field under constant expansion [28].

KEY POINTS
• CodAn is a CDS prediction software that performs con-

fident transcript characterization.
• A comprehensive analysis using data from 34 organ-

isms revealed that CodAn is suitable for use on a wide
range of eukaryote species, including plants, fungi, ver-
tebrates and invertebrates such as insects, C. elegans,
anemone, S. mansoni and C. intestinalis.

• CodAn improved the accuracy of whole CDS prediction
in transcripts with a known or unknown strand.

• CodAn improved the accuracy of CDS prediction in
partial sequences.

• CodAn presents higher performance than the competi-
tion on any scenario of transcriptome assembly.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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