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Abstract

The objective of the current study was to systematically review the in-vitro anticancer activity 
of green synthesized gold nanoparticles (AuNPs) against hepatic cancer cells. The articles were 
identified through electronic databases, including PubMed, Scopus, Embase, Web of Science, 
Science Direct, ProQuest, and Cochrane. In total, 20 articles were found eligible to enter into 
our systematic review. Our findings showed that 65% of the articles used herbal extracts for the 
synthesis of AuNPs. Significantly, almost all of the articles stated the biofabrication of AuNPs 
below 100 nm in diameter. Impressively, most of the studies showed significant anticancer 
activity against HepG2 cells. Molecular studies stated the induction of apoptosis through the 
AuNPs-treated cells. We provided valuable information about the molecular mechanisms of 
AuNPs-induced cytotoxicity against HepG2 cells as well as their biocompatibility. The studies 
represented that AuNPs can be effective as anticancer drug nanocarrier for drug delivery systems. 
In addition, AuNP surface functionalization provides an opportunity to design multifunctional 
nanoparticles by conjugating them to diagnostic and/or therapeutic agents for theranostic 
purposes. Overall, our findings depicted considerable biogenic AuNPs-induced cytotoxicity, 
however, future studies should assess the anticancer activity of biogenic AuNPs through in-vivo 
studies, which was missing from such studies.
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Introduction

Hepatic cancer or liver cancer remains 
the second leading cause of cancer-related 
deaths and the sixth most common cancer in 
the world (1). The World Health Organization 
(WHO) anticipated that more than one million 
people will die from hepatic cancer in 2030, 
according to annual projections (2). Based on 
GLOBOCAN, around 782,000 new cases and 
745,000 deaths of hepatic cancer occurred in 
2012 in the world (3). The American Cancer 
Society (ACS) anticipated 42,030 new cases 
and 31,780 deaths, including hepatic cancer 
and intrahepatic bile duct cancers in 2019 in 
the United States. According to the ACS, the 
prevalence of hepatic carcinoma in American 
men is almost three times higher than that 
in American women. Moreover, it has been 
shown that in both males and females, the 
incidence of hepatic cancer is rising faster 
than that for all other cancers (4). 

The most common form of hepatic cancer 
is hepatocellular carcinoma with the most 
common primary malignancy of the liver 
comprising 70 to 85% of the total hepatic 
cancer burden (5). It is anticipated that 85% 
of hepatocellular carcinoma occurs in low and 
middle-income countries, especially in sub-
Saharan Africa as well as Eastern Asia (6). 
The risk factors for hepatic cancer include 
obesity, fatty liver disease and diabetes, 
cigarette smoking, metabolic liver disease, 
heavy alcohol consumption, chronic hepatitis 
B and C viruses, and exposure to dietary toxins 
like aflatoxin (4, 6). Surgery is the principle 
therapy for patients in the early stages of the 
disease, while the majority of hepatic cancer 
cases are detected through advanced stages. 
Besides, sorafenib, as an FDA-approved 
medicine for the treatment of advanced 
hepatic cancer exhibits low patient survival. 
It was stated that in the sorafenib treatment 
group the overall survival was 10.7 months, 
while in the placebo group it was 7.9 months 
indicating only minimally impact patient 
survival of sorafenib by several months. 
Furthermore, chemotherapy and radiotherapy 
have been shown to be ineffective approaches 
to combat hepatic cancer (7). Thus, there is an 
exceeding need for a new effective therapy 
toward hepatic cancer. 

Nanotechnology is a new strategy to design 
innovative smart medicine to target hepatic 

cancer cells. Nanomaterials due to their specific 
properties can act as nanocarriers for targeted 
drug delivery systems (8). The diagnostic 
and/or therapeutic agents can be conjugated 
to nanomaterials for theranostic purposes 
(9). Among a wide range of nanomaterials, 
metallic nanoparticles (NPs) have attracted 
great interest for different applications owing 
to their unique optical, electrical, physical, 
chemical and biological properties (10-13). 
Metallic NPs can be synthesized through 
biological procedures by using natural 
resources ranging from plants(14-19) to 
microorganisms (20), micro and macroalgae 
(21, 22), viruses (23), and even animal tissue 
extracts (24). 

The biological methods are low-cost, 
energy-efficient, and eco-friendly (23). It 
was shown that in biological processes, 
biomolecules are responsible for reducing 
the metal salts to convert them to their 
nanoforms (25-27). These biomolecules also 
act as capping agents resulting in instability 
of these NPs (28). Among different metallic 
NPs, gold nanoparticles (AuNPs) have been 
studied significantly for a wide range of 
biomedical and pharmaceutical potential 
applications (29-32). AuNPs like their bulk 
counterparts are stable against oxidation under 
physiological conditions. Besides, the surface 
of AuNPs can be functionalized easily to build 
multifunctional NPs by a variety of ligands for 
therapeutic or diagnostic purposes (30).

Recently, two systematic reviews reported 
the efficacy of biological mediated fabricated 
AuNPs against colorectal and lung cancer 
cells through in-vitro investigations (33, 
34). Interestingly, some of the researchers 
have focused on utilization of biologically 
synthesized AuNPs to combat hepatic cancer 
cells in recent years. Kalpana et al. synthesized 
AuNPs using the bacterium Klebsiella 
pneumoniae and evaluated the cytotoxicity of 
AuNPs in the concentrations of 0.01 to 100    
µg/mL against hepatic cancer cells (HepG2) 
using MTT assays. After 48 h of treatment, no 
cell growth inhibition was observed, indicating 
no anticancer activity of AuNPs toward HepG2 
(35). On the contrary, Shanmugasundaram 
et al. reported the synthesis of AuNPs using 
Streptomyces nogalater and evaluated the 
anticancer activity of AuNPs against HepG2 
cells using MTT assays. The AuNPs showed 
significant anticancer activity against HepG2 
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cells after 24 h of treatment with an IC50 value 
of 43.25 µg/mL (36). 

To date, no reviews reported the anticancer 
activity of biogenic AuNPs against hepatic 
cancer. The literature is suffering from 
a comprehensive review to evaluate the 
cytotoxicity of biogenic AuNPs toward 
hepatic cancer cells. Due to the importance 
of finding new strategies for hepatic cancer 
therapy, we conducted a global systematic 
review through original published articles to 
evaluate the anticancer activity of biogenic 
AuNPs against hepatic cancer cells. In this 
systematic review, we discussed the different 
cytotoxicity of biogenic AuNPs against 
HepG2 cells and also highlight the challenges 
that should be addressed for the translation 
of laboratory setting studies to clinical 
trials. Furthermore, we discuss the proposed 
molecular mechanisms of the anticancer 
activity of biogenic AuNPs against hepatic 
cancer cells. 

Experimental 

This investigation is a systematic review 
representing the anticancer activity of green 
AuNPs toward hepatic cancer cells. 

Data Source and Search Strategy
The articles that were published up 

to September 25, 2019, were identified 
through online databases comprising of 
PubMed, Scopus, Embase, Web of Science, 
Science Direct, ProQuest, and Cochrane. 
The keywords included “Au”, “gold”, and 
“biofabrication”, “biosynthesis”, “synthesis”, 
“fabrication”, “microbial”, “plant*”, 
“biological”, “herbal”, “biomimetic”, 
“fungal”, “biogenic”, “green”, “bacterial”, 
“myco*”, “alga*”, “phyto*”, “bioreduction”, 
and “nano-gold”, “nanoparticle*”, “colloidal”, 
“nanostructure*”, “nanomaterial*”, and 
“antineoplastic”, “cytotoxicity”, “cancer*”, 
“cytotoxic”, “cell line*”, “tumor*”, 
“antitumor*”, “anticancer*”, “hepatic”, 
“liver”. 

Inclusion Criteria
We included articles that met the following 

criteria: a) published peer-reviewed articles; b) 
research articles published up to 25 September 
2019; c) English language articles; d) original 
in-vitro studies; e) articles containing sufficient 

data; and f) articles evaluating the cytotoxic 
influence of green AuNPs against hepatic 
cancer cells.

Exclusion Criteria 
We excluded the articles that met the 

following criteria: a) articles not in the English 
language; b) articles containing inadequate 
information; c) review articles; d) letters to the 
editor; e) editorials; f) congress abstracts; g) 
articles evaluating the cytotoxic influence of 
chemical and/or physical mediated fabrication 
of AuNPs against hepatic cancer cells; and 
h) reports evaluating the cytotoxic impact 
of green AuNPs against any other cell lines 
except hepatic cancer cells. 

Eligibility Assessment
The guidelines of Preferred Reporting 

Items for Systematic Reviews and Meta-
analyses (PRISMA) were used for eligibility 
assessment of the identified articles (37). The 
articles were screened through first and second 
screening. The first screening was conducted 
by reviewing the articles’ titles and abstracts. 
In this step, most of the irrelevant articles were 
excluded. Then, for the remained articles, 
the second screening was conducted by 
reviewing their full texts to select the eligible 
articles that met all inclusion characteristics. 
Two individual researchers performed the 
eligibility assessments to avoid bias. For the 
case of disagreement, a third one judged. 

Data Extraction and Tabulation
Two individual researchers extracted the 

information from the selected articles using 
a data extraction form containing first author, 
year of publication, a biological source with 
scientific name, characterization techniques, 
size (nm), morphology, hepatic cancer cell 
line, dose, exposure time, cytotoxicity method, 
and significant outcome (Table 1).

Results

Search Results
Of 1522 identified records, 797 records 

found a duplicate. 679 articles were excluded 
through the first screening and 27 articles 
were excluded through the second screening. 
Finally, 20 articles were found eligible to enter 
into the current study. The search process is 
summarized in Figure 1.
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Figure 1. Flowchart describing the study design process. 

 

 

 

Figure 1. Flowchart describing the study design process.

Characteristics of Included Studies
Our findings showed that 65% of articles 

applied plant extracts for the fabrication of 
AuNPs as reducing and capping agents (38-
50). However, bacteria (35, 36), algae (51-
53) and fungi (54, 55) were other natural 
sources that were applied for the preparation 
of AuNPs. The size distribution of AuNPs 
in almost all of the articles were found to 
be less than 100 nm in diameter. Spherical 
shaped AuNPs were fabricated in most of the 
articles. Cytotoxicity studies was performed 
by using MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) assays in 
all of the articles. Moreover, the cytotoxic 
investigation was performed toward HepG2 in 
all of the articles. A vast 80% of articles (36, 
38-45, 47-50, 52, 53 and 55) stated significant 
anticancer activity of green AuNPs against 

HepG2 cells. Whereas 15% (46, 51 and 54) 
and 5% (35) of articles reported less AuNPs-
induced cytotoxicity, and no cytotoxicity 
against HepG2 cells, respectively.

Strategies Used to Synthesize 
Nanomaterials 

The bottom-up and top-down approaches 
are two basic strategies for the synthesis of 
nanomaterials. In the top-down approach, the 
nanomaterials are fabricated from their bulk-
state counterparts. The milling technique is 
an example of a top-down approach that cuts 
down the bulk materials to reach their fine 
particles (56, 57). In the bottom-up approach, 
the process starts at the molecular level, and 
the collection of these molecules finally results 
in the formation of nanoparticles (58). The 
aggregation of nanoparticles in the bottom-up 
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approach is a challenging concern. Extensive 
research has been performed to prevent the 
aggregation of nanomaterials during the 
synthesis procedures by using stabilizing and/
or capping agents (59-61). Chemical reduction 
and biosynthesis are two methods that are 
classified into a bottom-up approach. In 
chemical reduction, the existence of a reducing 
agent in the procedure is not adequate alone 
and external additive stabilizing agents like 
polymers is necessary to avoid aggregation 
(62, 63), whereas, in the biosynthetic approach, 
the biomolecules play a role as reducing and 
stabilizing agents (64). The chemical methods 
may use toxic chemicals that may be harmful 
to the environment and human, while the 
biosynthetic approach is eco-friendly and non-
toxic for the preparation of nanoparticles (65-
67). 

Emerging Nano-biomaterials: A 
Biosynthetic Approach

Emerging nano-biomaterials and in 
particular, biogenic metallic nanoparticles, 
have been one of the most challenging and 
fastest-growing sectors of nanotechnology 
throughout the world over the last decade (43, 
56, 58, 65 and 67). The biosynthesis of metallic 
nanoparticles has been accomplished using 
a wide range of biological resources ranging 
from plants and algae to microorganisms 
such as bacteria, fungi, actinomycetes, and 
yeast (10). Each plant and/or algae, as well 
as species from each type of microorganisms, 
can synthesize the same composition of 
metallic nanoparticles with a different size 
distribution and morphology such as a 
sphere, triangular, cubic, rod, etc. (33, 34). 
Microorganisms may synthesize metallic 
nanoparticles intracellularly or extracellularly. 
In the intracellular pathway, the metal ions 
are transferred into the microorganism to 
convert to their nanoforms in the presence of 
biomolecules and enzymes.

In contrast, in the extracellular pathway, 
the extracellular secreted enzymes and 
biomolecules in the medium are responsible 
for converting the metal ions to their 
nanoforms (68). Besides, the plant-mediated 
synthesis of metallic nanoparticles consists 
of the use of a plant extract as a reducing 
and capping agent for converting metal ions 
to their nanoforms (65). The phytosynthesis 

of metallic nanoparticles seems to be more 
attractive compared to microbial synthesis 
(34, 56 and 58). 

The findings from this systematic review 
also confirmed phytosynthesis as a general 
approach for the synthesis of AuNPs. The 
metallic nanoparticles having a size distribution 
of less than 100 nm exhibited unique physical, 
chemical, optical, and biological properties 
that are not exhibited by their bulk-state 
counterparts (10). In a biosynthetic approach 
for the fabrication of metallic nanoparticles, 
several parameters influence the unique 
properties of nanoparticles such as type of 
biological sources, pH, temperature, reaction 
medium, surface charge, etc. (33, 34). 
Optimizing these parameters results in the 
control of size, shape and monodispersity of 
these nanoparticles. Then, in each optimized 
condition, the behavior of nanoparticles can be 
determined. This is the reason that elucidates 
the high number of publications during the 
past decade that applied different biological 
procedures for the fabrication of metallic 
nanoparticles. 

Bioactivity of Gold Nano-biomaterials 
Compared to Chemical-mediated Synthesized 
Gold Nanomaterials 

Gold nano-biomaterials represented a 
wide range of bioactivites and have the 
potential to be utilized for various biomedical 
and pharmaceutical applications (69). In 
biosynthetic approach for NPs fabrication, 
biological molecules are responsible for 
bioreduction and stabilization of metallic 
NPs, and surround these NPs as capping 
agent. These biomolecules may improve 
the bioactivity of green synthesized metallic 
NPs (70). Interestingly, a study reported 
that hesperetin capped AuNPs improved 
the treatment of hepatocellular carcinoma 
in male Wistar albino rats and reduced 
the dose of chemotherapy drug. More 
interestingly, hesperetin capped AuNPs 
represented significant anti-inflammatory 
and anti-proliferative activity during liver 
carcinogenesis (71). The studies reported 
different bioactivity of biologically and 
chemically synthesized AuNPs. For instance, 
in a study, curcumin capped AuNPs showed 
higher antioxidant activity than citrate capped 
AuNPs (72). In another study, plant-mediated 
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synthesized AuNPs showed significantly more 
cytotoxicity than chemically synthesized 
AuNPs against different cancer cell lines 
(HeLa, MCF-7, A549 and H1299). The IC50 
value of biosynthesized AuNPs was found 
approximately 200 µg/mL for all cancer cells, 
whereas no cytotoxicity was observed at 400 
µg/mL (the maximum dose studied) against 
healthy human embryonic kidney cells. For 
the case of chemichally fabricated AuNPs, 
approximately 20 to 25% cytotoxicity was 
found against all cancer cells at 400 µg/mL 
(the maximum dose studied) as well as a dose 
dependent cytotoxicity against healthy human 
embryonic kidney cells (73). 

Anti-cancer Gold Nano-biomaterials to 
Combat Hepatic Cancer Cells

Our findings showed the significant 
anticancer potential of biogenic AuNPs 
against hepatic cancer cells through in-vitro 
models. Figure 2 shows the interface of nature, 
nanotechnology and hepatic cancer. According 
to Table 1, a variation was observed between 
the cytotoxicity responses. This refers to the 
different natural sources that were used for the 
biosynthesis of AuNPs, the size distribution, 
the morphology, the situation of the study and 
even the skills of the researchers to perform 

the cytotoxicity assay. It has been shown that 
the unique physicochemical and biological 
properties of the nanoparticles differ by a 
change in their characteristics, such as shape 
and size. Hence, the difference in the half-
maximal inhibitory concentration (IC50) is 
due to the direct influence of variation in 
nanoparticle characteristics among all studies. 
The lower the IC50 values, the more the 
cytotoxicity of the sample. According to the 
study of Lee et al., the anticancer activity of 
biogenic AuNPs against HepG2 cells is shape-
dependent. After 24 h of treatment of HepG2 
cells with biogenic AuNPs using MTT assays, 
the IC50 value was found at 127.1 μM for 
nanospheres, 81.8 μM for nanostars, and 22.7 
μM for nanorods. This means that nanorods 
(average length size: 60.4 nm; average width 
size: 16.4 nm) were more cytotoxic than 
nanostars (average size: 99 ± 47 nm) and 
nanospheres (average size: 8.7 ± 1.7 nm) 
against HepG2 cells (40).

Moreover, the nanostars were more 
cytotoxic than nanospheres against HepG2 
cells. Furthermore, in another study, the 
cytotoxicity of AuNPs synthesized from two 
different plants was evaluated toward HepG2 
cells using MTT assays. The AuNPs were 
synthesized by two plants, including Carica 

 

 

 

 

Figure 2. The interface of nature, nanotechnology and hepatic cancer. 

  

Figure 2. The interface of nature, nanotechnology and hepatic cancer.
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papaya (CP) and Catharanthus roseus (CR), 
separately. The anticancer activity of the CP- 
and CR-mediated fabricated AuNPs against 
HepG2 cells after 24 h of treatment showed 
significant AuNPs-induced cytotoxicity with 
an IC50 value of 100 µg/mL for CP-mediated 
synthesized AuNPs and an IC50 value of 150 
µg/mL for the CR-mediated synthesized 
AuNPs. The comparison of IC50 values in this 
study revealed that the AuNPs synthesized 
from Carica papaya as more cytotoxic than 
that synthesized from Catharanthus roseus 
(48). 

Further, a time-dependent cytotoxicity 
of biogenic AuNPs against HepG2 cells 
was reported by Ashokkumar et al. They 
fabricated AuNPs using the plant extract of 
Cajanus cajan with a size distribution ranging 
from 9 to 41 nm and spherical morphology. 
They evaluated the phytofabricated AuNPs-
induced cytotoxicity against HepG2 cells in 
the range of 2 to 10 µg/mL using an MTT 
assay after 24 and 48 h of treatment. After 24 
h of treatment, the IC50 value was found at 6 
µg/mL, and after 48 h of treatment, at 2 µg/mL 
(minimum concentration that was studied), 
80% of growth inhibition was observed which 
indicated a time-dependent cytotoxicity of 
biogenic AuNPs against HepG2 cells (50). 

Studies have also shown that AuNPs 

could act as a nanocarrier for drug delivery 
systems. In a study, pectin was applied for 
the fabrication of AuNPs as a reducing and 
capping agent. The synthesized pectin-
capped AuNPs were found to be spherical 
with an average diameter size of 14 nm. 
The anticancer drug doxorubicin was loaded 
onto the synthesized AuNPs. Drug loading 
was found at 78% with high stability under 
different electrolytic conditions and varying 
pH. Then, the anticancer activity of free 
doxorubicin was compared to doxorubicin-
loaded AuNPs and also free AuNPs against 
HepG2 cells. The results showed that the 
pectin-capped AuNPs without doxorubicin 
had no cytotoxic influence toward HepG2 
cells. Besides, the doxorubicin-loaded AuNPs 
were found to be more cytotoxic than free 
doxorubicin toward HepG2 cells (74). This can 
be evidence indicating the potential of AuNPs 
as a promising nanocarrier for anticancer drug 
delivery to overcome hepatic cancer.

Mechanistic Approach for the Anti-cancer 
Activity of Gold Nano-biomaterials Toward 
Hepatic Cancer Cells

Studies proposed the possible molecular 
mechanisms of biogenic AuNPs-induced 
cytotoxicity in hepatic cancer cells. Figure 
3 represents a schematic anti-cancer 

Figure 3. Schematic anti-cancer mechanisms of biogenic AuNPs against hepatic cancer. 

 

Figure 3. Schematic anti-cancer mechanisms of biogenic AuNPs against hepatic cancer.
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mechanisms of biogenic AuNPs against 
hepatic cancer. In a study, the anticancer 
activity of phytosynthesized AuNPs was 
reported against HepG2 cells with an IC50 
value of 59.62 ± 4.37 µg/mL after 24 h of 
treatment through MTT assays. The western 
blotting technique was used to assess the 
cytotoxic influence of AuNPs on the apoptotic 
signaling proteins in HepG2 cells. The results 
showed the upregulation of the expression of 
pro-apoptotic Bax, caspase-9 and caspase-3 
proteins. In contrast, the expression of anti-
apoptotic Bcl-2 and Bcl-XL proteins were 
downregulated, indicating the activation of 
the apoptosis pathways in the AuNPs-treated 
cells. In contrast, the untreated cells showed 
increased expression of anti-apoptotic proteins 
(Bcl-XL and Bcl-2). Moreover, intracellular 
reactive oxygen species (ROS) in the AuNPs 
treated Hepg2 cells was determined using the 
dichlorofluorescein diacetate staining method. 
The results showed high fluorescent intensity 
in the treated cells compared to control, 
indicating overgeneration of intracellular ROS 
through AuNPs-treated cells (39). 

In a similar study, the significant anticancer 
activity of mushroom-mediated fabricated 
AuNPs was reported against HepG2 cells. 
The results confirmed elevated intracellular 
overgeneration of ROS. Besides, the real-
time PCR analysis showed that in AuNPs-
treated cells, the apoptotic genes, including 
caspase-9, caspase-3, Bax and Bid expression 
were upregulated, whereas the expression 
of anti-apoptotic Bcl-2 was downregulated. 
Moreover, the induction of apoptosis was 
evaluated by quantifying the enzyme activity 
of caspases-3, -8, and -9 through the AuNPs-
treated cells by using a colorimetric assay 
kit method. The findings showed that the 
enzyme activity of the apoptotic caspases-3, 
-8 and -9 dramatically increased in the treated 
cells compared to untreated cells. Besides, 
the rhodamine-123 staining method was 
performed to evaluate the integrity of the 
mitochondrial membrane potential (MMP) 
in treated HepG-2 cells. The results showed 
that the integrity of MMP was disrupted in the 
AuNPs-treated cells (55). 

Additionally, in a study, the DNA 
fragmentation assay (as a characteristic feature 
of apoptosis) was performed to evaluate the 
DNA damage in the biogenic AuNPs-treated 
HepG2 cells. The results showed fragmented 

DNA in the treated cells compared to the control. 
Besides, flow cytometry analysis revealed the 
presence of apoptotic cells in AuNPs-treated 
cells (36). In a similar study, the fragmented 
DNA was confirmed in biogenic AuNPs-
treated cells by using a DNA fragmentation 
assay. In apoptosis, the chromosomal DNA 
cleaves into oligonucleosomal fragments 
(49). Furthermore, in another study, the 
spherical AuNPs were phytosynthesized in 
the size distribution ranging from 9 to 41 nm, 
and consequently, the anticancer activity of 
AuNPs was evaluated against HepG2 cells. 
The AuNPs showed significant anticancer 
activity. The oxidative DNA damage was 
assessed by using the comet assay. The results 
showed an increased number of tail length, tail 
DNA, olive tail moment, and tail moment in 
AgNPs-treated HepG2 cells. Besides, the flow 
cytometry analysis revealed 62.85% early 
apoptotic cells and 6.14% late apoptotic cells. 
Additionally, the cell cycle assay showed the 
cell cycle arrest in the sub-G0/G1 phase in 
AuNPs treated HepG2 cells (50). 

Biocompatibility of Gold Nano-
biomaterials: Are Gold Nano-biomaterials 
Safe Enough for Clinical Trials?

Biocompatibility is an important 
issue for clinical therapeutic purposes to 
avoid systemic adverce effects (75, 76). 
Biocompatibility encompasses a wide range 
of tests and a biocompatible nanomaterial 
should pass these tests including genotoxicity, 
implantation, irritation, systemic toxicity, 
hemocompatibility, cytotoxicity, and 
sensitization (76). The biocompatibility of 
NPs can be affected by different parameters 
such as material composition, particle size, 
surface area, surface chemistry, and surface 
charge (77). The AuNPs showed no acute 
oral toxicity in female rats with acute oral 
lethal dose (LD50) of over 5 g/kg of body 
weight. Besides, the primary skin irritation 
test for AuNPs showed no primary irritation 
on rabbits (78). Furthermore, a study reported 
size dependent toxicity of AuNPs in mice. The 
mice were treated using intraperitoneal route 
of administration. The group treated with 
smaller AuNPs size distribution (3 to 5 nm) did 
not show any sickness, whereas fatigue, loss 
of appetite, and weight loss were observed for 
larger AuNPs (79). Moreover, in a comparative 
study, biologically and chemically synthesized 
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AuNPs were compared for their toxicity on 
Wistar rats. The rats were orally administered 
with biologically and chemically synthesized 
AuNPs at the dose of 5 mg/kg body weight 
for 28 days. The results represented that 
the biologically synthesized AuNPs did 
not showed any toxicity according to the 
serum biochemical analysis, hematology and 
histochemical studies, whereas chemically 
synthesized AuNPs induced toxicity in Wistar 
rats (80). A meta analysis reported that the odds 
of cyototoxicity of biologically synthesized 
AuNPs in cancer cell lines were 6.889 times 
more than healthy cell lines (OR = 6.88, P  =  
0.018) indicating far less cytotoxicity chance 
of biogenic AuNPs in healthy cell lines (81). 
However, further studies should be carried out 
using different tequniches to provide safety 
profile of biogenic AuNPs for pharmaceutical 
applications.

Conclusion

This systematic review provided 
preliminary evidence indicating the 
potency of green AuNPs to combat hepatic 
cancer. In summary, it can be concluded 
that biosynthesized AuNPs had significant 
anticancer activity toward hepatic cancer 
cells through in-vitro models. Our findings 
showed that the anticancer activity of AuNPs 
is due to intracellular overgeneration of ROS 
and induction of apoptosis. Future studies 
should determine the anticancer potency of 
green AuNPs through animal studies. The 
studies showed that AuNPs can be used 
as anticancer drug nanocarrier for drug 
delivery systems. Moreover, AuNP surface 
functionalization provides an opportunity 
to design multifunctional nanoparticles 
by conjugating them to diagnostic and/or 
therapeutic agents for theranostic purposes. 
Remarkably, the synthesis of AuNPs using 
biosynthetic approaches does not mean that 
they are safe for human. An extensive toxicity 
assessment should be performed to determine 
the safety profile of AuNPs. Many challenges 
should be addressed in future studies including 
the biogenic AuNPs pharmacokinetics, 
pharmacodynamics, genotoxicity, 
immunogenicity, acute and chronic toxicity as 
well as the role of the protein corona on the 
anticancer efficacy of AuNPs and finally the 
fate of the AuNPs in the body.
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