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Julien Mamet1, Scott Harris1, Michael Klukinov2,
David C Yeomans2, Renee R Donahue3, Brad K Taylor3,
Kelly Eddinger4, Tony Yaksh4 and Donald C Manning1

Abstract

Background: AYX1 is an unmodified DNA-decoy designed to reduce acute post-surgical pain and its chronification with a

single intrathecal dose at the time of surgery. AYX1 inhibits the transcription factor early growth response protein 1, which is

transiently induced at the time of injury and triggers gene regulation in the dorsal root ganglia and spinal cord that leads to

long-term sensitization and pain. This work characterizes the AYX1 dose-response profile in rats and the link to AYX1

pharmacokinetics and metabolism in the cerebrospinal fluid, dorsal root ganglia, and spinal cord.

Results: The effects of ascending dose-levels of AYX1 on mechanical hypersensitivity were measured in the spared nerve

injury model of chronic pain and in a plantar incision model of acute post-surgical pain. AYX1 dose-response profile shows

that efficacy rapidly increases from a minimum effective dose of � 0.5 mg to a peak maximum effective dose of � 1 mg. With

further dose escalation, the efficacy paradoxically appears to decrease by � 30% and then returns to full efficacy at the

maximum feasible dose of � 4 mg. The reduction of efficacy is associated to doses triggering a near-saturation of AYX1

metabolism by nucleases in the cerebrospinal fluid and a paradoxical reduction of AYX1 exposure during the period of early

growth response protein 1 induction. This effect is overcome at higher doses that compensate for the effect of metabolism.

Discussion: AYX1 is a competitive antagonist of early growth response protein 1, which is consistent with the overall

increased efficacy observed as dose-levels initially escalate. Chemically, AYX1 is unprotected against degradation by nucle-

ases. The sensitivity to nucleases is reflected in a paradoxical reduction of efficacy in the dose-response curve.

Conclusions: These findings point to the importance of the nuclease environment of the cerebrospinal fluid to the research

and development of AYX1 and other intrathecal nucleotide-based therapeutics.
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Introduction

Pain following surgery remains a major public health
issue with �80% of surgery patients suffering acute
pain and � 10% to 50% developing chronic pain.1–4

The transition to chronic pain reflects the long-term sen-
sitization of the dorsal root ganglia (DRG) and spinal
cord network triggered by surgical trauma.5 Upon such
trauma, the transcription factor early growth response
protein 1 (EGR1) is transiently induced in the DRG
and spinal cord and locally initiates genomic regulations
that establish long-lasting neuronal sensitization.6–10
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AYX1 is an unmodified double-stranded 23-bp
deoxyoligonucleotide, or DNA-decoy, with a sequence
that mimics the natural genomic DNA sequence bound
by EGR1 and specifically inhibits its activity.11 It is
delivered via a single intrathecal (IT) bolus injection
around the time of surgery to reduce acute pain and
prevent its chronification. AYX1 efficacy in animal
pain models has been described in a prior publication:
briefly, a one-time administration provides up to �80%
reduction of mechanical hypersensitivity over controls.11

The preventive effect can lasts for over a month (i.e., the
longest tested period in the rat spared nerve injury model
of chronic pain, at which point pain was resolving in
controls in our hands) and is observed across pain
models of complementary etiologies (e.g., tissue incision,
bone, or nerve injury).11 AYX1 is under active clinical
development (ADYX-004 trial, clinicaltrial.gov identifier
NCT02081703).

We characterized the AYX1 dose-response profile in
rats using the complementary spared nerve injury and
plantar incision models of pain. To be effective, AYX1
must be present in the DRG-spinal cord network at suf-
ficient levels to inhibit EGR1. Prior studies in the spinal
cord have shown that EGR1 induction is detectable
from 30 to 60min up to at least �12 h following a nox-
ious or sensitizing stimulus.12,13 The pharmacokinetic
properties of single strand oligonucleotides are just
beginning to be understood14–17 and to the best of our
knowledge, no information is publicly available regard-
ing IT injection of DNA-decoys as a class of molecules.
We characterized AYX1 local pharmacokinetics (PK)
and metabolism features driving AYX1 exposure in the
lumbar cerebrospinal fluid (LCSF), DRG, and spinal
cord during that timeframe. These combined data
show that the AYX1 dose-response pattern is consistent
with the PK and metabolism features of AYX1 as an
oligonucleotide unprotected from nuclease-based
metabolism.

Methods

Animals

Sprague Dawley rats (Harlan industry or Charles River
Laboratories), �250 to 350 g were used. Experiments
were carried out according to animal care protocols
approved by the respective Institutional Animal Care
and Use Committees of each testing site and were
designed to minimize the amount of animals utilized.

The following number of rats were used: 35 rats for
the ADY-SNI2 pharmacology study (one rat in the vehi-
cle group and one rat in the 1.05mg AYX1 group were
excluded from the study due to autotomy and euthanasia
following surgery), 42 rats for the ADY-INC5 pharma-
cology study (no exclusion), 75 rats for the in vivo PK

and metabolism work (no exclusion), 4 rats for the spinal
homogenate metabolism work (no exclusion), and 4 rats
for the histology presented here (no exclusion).

IT administration

AYX1 (sense strand: 50-GTATGCGTGGGCGGTG
GGCGTAG-30, antisense strand: 50-CTACGCCCACC
GCCCACGCATAC-30) or vehicle were administered
intrathecally under anesthesia as a percutaneous bolus
at the L4/5 or L5/6 vertebral level at the time of surgery
as previously described in literature.11 IT injection
volume was 20 mL in the ADY-SNI2 and ADY-INC5
studies. For the PK experiments, 1.1mg of AYX1 clin-
ical formulation (110mg/mL) was injected in 10 mL,
2.2mg in 20 mL, and 3.85mg in 35 mL to follow an
ascending dose-volume scheme similar to that of
AYX1 clinical trials (clinicaltrial.gov identifier
NCT02081703).

Behavioral testing

The spared nerve injury and plantar incision models were
performed as described elsewhere.11 Rats were habitu-
ated to cages with mesh wire floors for at least 1 h
before testing. Calibrated von Frey hairs were applied
with the following pseudo-random pattern: 6, 1, 10, 4,
26, 10, and 8 g. For each testing level, the von Frey hair
was applied five times consecutively around the incision,
and the number of paw withdrawals (0–5 per level, 0–35
total) was recorded as a response. The time interval
between each testing level for a given rat was 3min.
For each study, each tested cohort of animals included
controls. Testing was conducted by a single experimenter
at each testing site in a blinded fashion: blinded test and
control article vials were sent to the testing sites, and the
codes were only revealed after the entire testing was
completed.

Tissue sampling

For AYX1 concentration measurement, LCSF was col-
lected percutaneously once at the L3/4 vertebral level in
separate groups of rats at 30, 60, 120, 240, 360, and
720min following IT administration. The collection
was facilitated by pressing the neck and applying mech-
anical traction to the tail while holding the head of the
animal and/or inclining the animal’s position to an
approximate 45� angle as follow: rats were placed over
a stainless steel bowl to curve the lumbar portion of the
spinal cord/vertebra, anesthetized under 1% to 3% iso-
flurane using a nose mask, the animal head and forepaws
both taped to the nose mask to secure the animal and
allow the experimenter to gently apply traction to the tail
during collection. A 30G needle was inserted directly
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into the IT space to allow the LCSF to rise naturally by
differential pressure between the LCSF and the air out-
side the needle. The LCSF that rose in the needle hub
was then collected using a sterile insulin syringe and
needle. No impact of anesthesia was observed on
LCSF collection; 30 to 50 mL of LCSF were collected
per animal. Animals were then sacrificed, and DRG
and spinal cord from the T12 to T13 vertebral level (cor-
responding to the L1–L2 spinal level)18 to the sacral tip
were collected, washed in 1X phosphate buffered saline
(PBS), and frozen for subsequent AYX1 tissue uptake
analysis (DRG were pooled for each animal).

AYX1 analytical assay

AYX1 was quantified by Capillary Gel Electrophoresis-
Hybridization (CGEH). Samples were extracted using
phenol-chloroform and alcohol precipitation and hybri-
dized to a fluorescent-labeled probe specific to AYX1.
The probe-analyte species were separated and detected
using capillary electrophoresis with laser-induced fluor-
escence and back-calculated to a matrix standard curve.
The assay allows detecting and quantifying N-1 to N-6
shortmer metabolites or shorter versions of AYX1 pro-
duced by nuclease-based nucleotide removal. Values
reported as ‘‘total AYX1’’ include full length plus short-
mer metabolites.

Spinal cord homogenate incubation

Rats were anesthetized, exsanguinated with ice cold 1X
PBS, spinal cords harvested, washed in ice cold 1X PBS,
weighed, cut in pieces, pooled into 500 mL of ice-cold
nuclease buffer (100mM tris-HCL and 1mMmagnesium
acetate, pH 8), and homogenized with a dounce hom-
ogenizer. AYX1-homogenate mixes were incubated at
37�C. Reactions were stopped with proteinase K
(100 mg/mL). For the EXOIII nuclease experiment, incu-
bations were made using the reaction buffer provided
with the enzyme (Promega, WI, catalogue # M1811)
and stopped with 20mM ethylene diamine tetraacetic
acid.

Histology

AYX1 was conjugated on the sense strand to an
ALEXA488 tag (50 ALEXA Fluor 488, NHS Ester,
IDTDNA, IL) and was injected IT as described
above. Thirty minutes following the injection, spinal
cord and DRG were collected in a dark room,
washed in saline, cryoprotected in sucrose, fixed in
4% paraformaldehyde at 4�C, embedded, frozen on
dry ice, and mounted for cryostat sectioning. Tissue
sections of 12 mm were made and observed under fluor-
escent microscope.

PK analysis

AYX1 and shortmers were analyzed by non-compart-
ment methods (no modeling); AUC was estimated by
the trapezoid method; terminal slope and T1/2 were esti-
mated by log-linear regression of 3þ points in the ter-
minal phase; and T1/2 were not reported if the coefficient
of regression R2 for the slope estimation was <0.8.

Statistical analysis

A non-parametric Student T-test, followed by a T-Welsh
analysis for uneven variance correction, was used to ana-
lyze individual conditions and whole data distribution
between experimental conditions (Excel 14.4.1). Dose-
dependent relationships were analyzed using analysis of
variance (GraphPad Prism 7.0a Software, La Jolla
California USA, www.graphpad.com). Data are pre-
sented throughout the article as Mean followed by
either a standard error (SE) or a standard error to the
mean.

Results

AYX1 dose-response profile

The AYX1 efficacy profile for reducing mechanical
hypersensitivity in rat models of acute and chronic
pain was first described in Mamet et al.11 During
AYX1 preclinical development, seven independent stu-
dies were conducted to measure the effect of ascending
doses of AYX1 on mechanical hypersensitivity following
a 20 mL IT injection at the time of an injury, including
the five studies described in Mamet et al. for which we
provide here a meta-analysis (Table 1).

The studies were performed at several US laboratories
and covered doses from �0.5mg up to the maximum
feasible dose of � 4mg based on AYX1 solubility limit
and volume of IT injection. The AYX1 efficacy profile
was similar across studies: efficacy appeared within 24 h
of injury and administration and lasted, at maximal effi-
cacy, until hypersensitivity was resolving in control ani-
mals regardless of whether pain was due to last a few
days or several weeks (see literature,11 Figure 1(a) and
(b) and Table 1). Across dose-levels, an increase of effi-
cacy was expressed as an increase in magnitude of pain
suppression compared to controls and as an increase in
the duration of that effect, i.e., the effect of sub-optimal
doses did not last until pain resolved in controls (see lit-
erature,11 Figure 1(a) and (b)).

To build up AYX1 dose-response in given study, the
efficacy of each tested dose-level was measured as a per-
centage of reduction of area-under-the curve of total von
Frey responses compared to controls from the time of IT
injection and injury until the last day of testing. The
meta-analysis dose-responses across studies and pain

Mamet et al. 3

www.graphpad.com


models were justified by the similarity of the AYX1 effi-
cacy profile observed across those studies and pain
models. To allow for a sensitive analysis, data were
normalized for each study on the maximum efficacy mea-
sured for that study. Both normalized and non-
normalized efficacy values for each tested dose and
study are presented in Table 1. Examining individual
studies, the magnitude of AYX1 efficacy rapidly
increases with dose until maximum efficacy is reached,
suggesting an exponential association relationship
followed by a plateau of efficacy (Figure 1(b) and

(c)). Interestingly, in four out of the seven studies
(ADY-SNI2, -SNI4, -INC5, -DOD1), one dose-level
produced a lower efficacy than predicted, an outlier in
the overall dose-response pattern and exponential fit
(Figure 1(b) and (c) and Table 1). The occurrence of
this observation across more than half of the studies in
complementary pain models and separate testing labora-
tories supports a real feature over the likelihood of a
random effect. This feature is not only observed in indi-
vidual studies but also conserved in the meta-analysis of
the combined seven studies which delineates the

Table 1. Dose-response across AYX1 pharmacology studies.

Pain model

Study

name

(ADY-) Testing site Study description

Study

duration

AYX1

dose (mg)

Efficacy

normed on

vehicle

Efficacy

normed

on max.

efficacy

Analysis of

variance, p

Spared nerve

injury model

SNI1 Stanford Uni. Mamet et al., 2014 �4 weeks 0.56 0.04 0.05 <0.001

1.40 0.78 1.00

SNI2 Uni. of KY Current publication 10 days 0.70 0.83 1.00 0.0001

1.05 0.40 0.48

1.40 0.70 0.84

2.80 0.83 1.00

SNI3 Uni. of AZ Mamet et al., 2014 10 days 0.70 0.50 0.67 0.001

1.40 0.67 0.90

2.80 0.75 1.00

SNI4 Uni. of KY Mamet et al., 2014 �4 weeks 0.56 0.44 0.73 0.004

0.84 0.33 0.55

1.12 0.39 0.65

1.40 0.60 1.00

2.80 0.52 0.88

4.20 0.23 0.38

Plantar

incisional

model

INC2 Uni. of IA Mamet et al., 2014 72 h 1.05 0.24 0.57 0.03

1.40 0.21 0.49

2.80 0.42 1.00

DOD1 Stanford Uni. Mamet et al., 2014 72 h 0.28 �0.12 �0.14 <0.001

0.56 0.33 0.39

0.84 0.47 0.55

1.12 0.85 1.00

1.40 0.25 0.29

1.68 0.36 0.42

INC5 Uni. of KY Current publication 48 h 0.56 0.11 0.35 all groups :0.25

0.84 0.18 0.58 veh/2.8/4.2: 0.04

1.12 0.23 0.72 veh/1.12/4.2: 0.052

1.40 0.13 0.40 veh/1.12/2.8/4.2: 0.08

2.80 0.07 0.22

4.20 0.32 1.00

Note: veh: vehicle; Uni: University; AZ: Arizona; IA: Iowa; KY: Kentucky.

Individual dose-efficacy levels for each pharmacology study of the AYX1 dose-response meta-analysis. Efficacy normalized on vehicle and on maximum

efficacy within a given study: 0¼ no difference from vehicle, 1¼ 100% suppression of mechanical hypersensitivity compared to vehicle; ANOVA was used to

assess the strength of the dose-response in each study including the vehicle groups.
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following pattern: efficacy rapidly increases from a min-
imum efficacy dose of �0.5mg, levels around 1mg and as
the dose is further increased, efficacy reduces by �30% in
average, and full efficacy can be recovered for higher
doses up to the maximum feasible dose of �4mg
(Figure 2). The general shape of the AYX1 dose-pattern
is consistent with its mechanism of action as a competitive
antagonist of EGR1 activity, with the exception of the

limited range of efficacy reduction. To understand this
pattern of dose-response, we characterized AYX1 metab-
olism and PK in the lumbar DRG, spinal cord, and CSF.

AYX1 metabolism in spinal cord homogenates

AYX1 metabolism was characterized in fresh spinal cord
homogenates using concentrations from �0.001 fold to
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Figure 1. (a) Effect of ascending AYX1 dose-levels on the development of pain measured as mechanical hypersensitivity in the spared

nerve injury model of chronic neuropathic pain in the ADY-SNI2 study. Total responses (number of paw withdrawals) to repetitive von Frey

stimulation in animals treated with vehicle (black circles), 0.7 mg (black squares), 1.05 mg (white squares), 1.4 mg (white circles), or 2.8 mg

(white lozenges) AYX1 are presented; T-test, different from vehicle at a given time-point: *p< 0.05, data distribution over the testing

period: p< 0.001 for all tested doses. Vehicle or AYX1 were administered once IT at the time of surgery, n¼ 4 to 5 per group; values are

presented as meanþ SEM. (b) Effect of ascending AYX1 dose-levels on the development of pain measured as mechanical hypersensitivity in

the plantar incisional model of acute pain in the ADY-INC5 study. The effect of AYX1 0.56, 0.84, 1.12, 1.40, 2.80, and 4.20 mg was tested

against vehicle. For clarity in light of the amount of tested groups, the vehicle (black circles), 1.12 (black triangles), 2.8 (white circles), and

4.2 mg (white squares) of AYX1 groups are displayed as representative responses observed during the study. The magnitude of effects of all

tested doses is presented in Table 1. T-test followed by a T-Welsh analysis: *p¼ 0.07, **p¼ 0.02, data distribution over the testing period,

vehicle versus 4.2 mg: p¼ 0.02; values are presented as meanþ SEM. Vehicle or AYX1 were administered once IT at the time of surgery,

n¼ 6 per group. (c) and (d) Dose-response patterns observed in the ADY-SNI2 and ADY-INC5 studies, respectively. The magnitude of

effect for each dose-level normalized on the maximum efficacy measured within each study is presented (black triangles). Connecting

curves are presented as dotted lines. Data are fitted with an exponential association fit (dashed line), excluding the outlier dose (circled).

For the ADY-SNI2 study, excluding the outlier dose shifts the coefficient of regression R2 of the exponential fit from 0.75 to 0.97 and from

0.44 to 0.85 in the ADY-INC5 study.
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Figure 2. (a) Meta-analysis of AYX1 dose-response profile including results from the ADY-SNI2, INC5, SN1,2-4 (Mamet et al., 2014),

-INC25 (Mamet et al., 2014), and -DOD1 (Mamet et al., 2014) studies testing AYX1 efficacy in either the spared nerve injury of

neuropathic pain or in the incisional model of post-surgical pain. Data are normalized internally for each study against the maximum

observed efficacy relative to vehicle-treated animals and presented as mean� SEM. The connecting curve is presented with a dotted line,

and data fitted with a polynomial equation of the fourth order are presented as a dashed line. A systematic series of potential dose-

response fits were tested. The highest coefficients of regression were R2
� 0.35 for the polynomial fit above and equivalent or lower for

various association equations, including one-phase exponential or hyperbolic fits. In absence of a robust coefficient of regression and

considering that the polynomial curve fits the meta-analysis and the results of the majority of individual studies, it was selected as the

closest representation of AYX1 dose-response over a hyperbolic or exponential plateauing curve. (b) Concentration of AYX1 shortmers in

the LCSF 30 min following injection of 1.1, 2.2, or 3.85 mg of AYX1; n¼ 5 per dose-level; results are presented as mean� SEM for each

dose-level. Data are fitted with a sigmoidal function (dotted line).
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�5 to 10 fold the maximum spinal cord concentration
observed in vivo following a maximum feasible IT dose
(�10–20 mg AYX1/mg of spinal cord, see Table 2). The
rate of AYX1 metabolism, measured after 5, 30, or
60min of incubation, appeared as a linear function of
AYX1 concentration (Figure 3(a)). Saturation of metab-
olism, defined as a plateau of metabolism rate despite an
increase in AYX1 concentration, was not attained even
at the highest tested concentration of 100 mg/mg of spinal
cord. Further, AYX1 rate of metabolism remained
slowed down over time (Figure 3(a)). This phenomenon
is common for oligonucleotides19–21 and has been
attributed to either a masking of oligonucleotides by
endogenous protein and/or by autoretardation due to
end-product inhibition.19,22,23 Incubation of AYX1
with a recombinant EXOIII nuclease showed a decrease

of metabolism similar to homogenates, suggesting AYX1
metabolism slows down via autoretardation versus non-
specific protein binding: 86,064, 19,258, and 8921 ng/
min, degradation rates were measured at 5, 30, and
60min with the EXOIII compared to 92,309, 17,416,
and 9518 ng/min with the equivalent homogenate condi-
tion of 25 mg AYX1/mg.

AYX1 lumbar exposure and in vivo metabolism

EGR1 induction is detectable within �30 to 60 min
following a noxious stimulation.12,13 The histologic
visualization of a fluorescent conjugate of AYX1 in
the lumbar spinal cord and DRG 30min following an
IT injection shows that AYX1 is already present in cell
nuclei (Figure 4), where it can compete with the newly

Table 2. LCSF, DRG, and spinal pharmacokinetic parameters of AYX1 and shortmers metabolites.

Tissue Variable

AYX1 (mg)/vol

(uL)

Cmax

(mg/mL)

T1/2

(min) Tmax (min)

AUC (0-T)

(min*mg/mL)

AUC 60–720 min

(min*mg/mL)

LCSF 1.1/10 3109 10.68 30 159,300 86,810

AYX1 2.2/20 6469 NR 30 230,000 46,770

3.85/35 9328 9.592 30 432,800 193,100

1.1/10 1430 205.1 30 101,400 156,200

shortmers 2.2/20 3830 NR 30 225,800 194,900

3.85/35 4688 686.6 60 370,400 502,100

1.1/10 4539 148.7 30 260,700 69,350

Total 2.2/20 10300 NR 30 463,000 141,000

3.85/35 13720 NR 30 803,300 309,000

Lumbar DRG 1.1/10 7.668 NR 30 414 243

AYX1 2.2/20 27.48 NR 30 879 65.57

3.85/35 26.72 74.03 30 1305 609.2

1.1/10 35.32 135.1 60 2743 2847

shortmers 2.2/20 57.08 51.33 30 4364 3299

3.85/35 73.66 101.4 120 10,750 10,370

1.1/10 39.24 161.1 60 3157 2604

Total 2.2/20 84.56 52.01 30 5365 3111

3.85/35 82.72 108.2 30 12,060 9761

Lumbar spinal cord 1.1/10 10.63 NR 30 651 441.4

AYX1 2.2/20 24.94 104.6 30 836 110.7

3.85/35 35.65 54.74 30 1784 868.2

1.1/10 26.73 189.2 30 2384 2348

shortmers 2.2/20 46.46 47.86 30 3632 2936

3.85/35 89.09 NR 120 12,760 12,190

1.1/10 37.36 207.3 30 3035 1906

Total 2.2/20 71.4 55.46 30 4546 2747

3.85/35 106.1 39.37 30 14,730 11,140

Note: SE: standard error; NR: not reported; LCSF: lumbar cerebrospinal fluid; DRG: dorsal root ganglia.

Comparison of LCSF, DRG, and spinal cord pharmacokinetic parameters following a single IT administration of ascending dose-levels of AYX1. Individual

AYX1 and shortmer values are presented in Tables 3 and 4, respectively. When appropriate, the mg/mL units in the LCSF listed in the Cmax, AUC, Mean, SE,

and/or Median columns correspond to mg/mg of tissue units for the DRG and spinal cord tissues; N¼ 4 to 5 rat per dose, time-point, and tissue.
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induced EGR1. EGR1 induction is known to continue
for at least 720min following the initial stimulation, as
illustrated in the spinal cord.12,13 AYX1 exposure and
metabolism in the LCSF, DRG, and spinal cord was
studied during the overall period of EGR1 induction
using doses across the broad range of AYX1 efficacious
dose-levels: 1.1, 2.2, and 3.85mg. LCSF, DRG, and

spinal cord were collected at 30, 60, 120, 240, 360,
and 720min post-injection. The presence of full-
length, intact AYX1 and N-1 to N-6 shortmer metab-
olites was measured using a CGEH method. The result-
ing PK parameters are shown in Table 2, and the
corresponding individual data-points are shown in
Tables 3 and 4.
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Figure 3. (a) Rate of AYX1 metabolism as a function of AYX1 concentration in fresh spinal cord homogenates. The rate of AYX1

metabolism is presented as the amount of full-length AYX1 degraded per minute as a function of AYX1 concentration introduced in the

homogenates. Data are presented for each measured time-point: 5 (circle), 30 (square), and 60 (triangle) min. Linear regression for each

data set are presented; coefficient of linear regression R2 is �0.99 for 5, 30, and 60 min; data are presented as meanþ SEM. (b) Metabolic

patterns of full-length AYX1 and individual N-1 to N-6 metabolites measured with the CGHE assay. For each analyzed sample, the relative

amount of AYX1 or individual metabolite species was normalized on the species found in largest amount. Each curve represents the

metabolite pattern observed for a dose-level, compartment, and time, and the corresponding concentration of total AYX1 is listed in the

legend. The amounts of N-4 to N-6 metabolites were pooled together due to the frequent fusion of their corresponding peaks in the

CGHE assay. Values are presented as meanþ SEM, n¼ 2 to 4 per condition, FL¼ full-length AYX1, N-x¼metabolite species. (c)

Illustration of electropherograms from the CGEH analytical method from the LCSF at 60 and 240 min following injection. Right arrows

show full-length AYX1 and the left arrows the extremity of the analyzable area. Peaks in between the two arrows represent AYX1

shortmers from N-1 to N-6.

LCSF: cerebrospinal fluid; DRG: dorsal root ganglia.

8 Molecular Pain



The maximal concentrations of AYX1 in the LCSF
increased with doses and were observed at 30min, the
first tested time-point and initial AYX1 concentrations
dropped by approximately 50-fold 120min following
injection. This timeframe of rapid decrease corresponds
to a period of elevated AYX1 metabolism. This is
illustrated by the similar and maximal concentrations
of AYX1 shortmer metabolites measured at 30 min for
the mid and high AYX1 doses: �4393 and �3829mg/
mL of shortmers in presence of 6468 and 9328 mg/mL
of intact AYX1, respectively (Table 4 and Figure 2(b)).
Maximal levels of shortmers further remained at
60min for the high dose: �4688 mg/mL in presence
of �2678mg/mL of intact AYX1, Table 4.
Subsequently, shortmer concentrations diminished and
leveled off while AYX1 concentrations continued to
drop in the low ng/mL range or below detection
limit. This is illustrated by the estimated T1/2, values
which were longer overall for the shortmers versus
AYX1 (Table 2).

The AYX1 exposure pattern in the DRG and spinal
cord was similar to that observed in the LCSF, with
concentrations largely dropping over the 120min

following injection. However, initial AYX1 concentra-
tions in the DRG and spinal cord after injection were
approximately three to four orders of magnitude lower
than the LCSF concentrations, and AYX1 was still pre-
sent at �1 to 30 ng/mg of tissue after 720min (Table 3).

The total exposure of AYX1 increased with doses
when calculated from the first measured time-point of
30min until the last time-point of 720min. However,
the exposure at the mid dose was approximately half
that of the low dose exposure in the LCSF, DRG, and
spinal cord during the 60min to 720min timeframe
(Table 2). This observation correlates to the fact that
the mid dose of AYX1 engages a near-saturating rate
of metabolism in the LCSF during the first 30 to
60min period, as measured by shortmer concentrations,
while the low dose only produced a low metabolism rate
(Figure 2(b) and Tables 3 and 4).

Specificity of AYX1 metabolite patterns

The comparison of oligonucleotide shortmer metabolite
patterns, defined as N-minus metabolite species and their
relative amounts, provides important clues as to the

Figure 4. AYX1 presence in lumbar DRG (a) and spinal cord (b) cells was observed 30 min following an IT injection of 1.7 mg of AYX1

conjugated to an ALEX488 tag (green). Tissue auto-fluorescence was controlled using non-injected rats (c). Areas identified in the top

panels with white rectangles are magnified in the bottom panels. One example of AYX1-positive cell nuclei is pointed out for the DRG and

spinal cord with a vertical arrow. A few cells show AYX1 present in the cytoplasm, and one example is pointed out in both tissues by a

horizontal arrow. This observation is consistent with independent experiments showing the presence of decoys in the nucleus and/or

cytoplasm of cells following various administration methods47–49; Top panel scale bar¼ 100 mm, bottom panel scale bar¼ 25mm, and n¼ 2

rats per condition.
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Table 3. LCSF, DRG, and spinal AYX1 concentrations for each AYX1 dose-level and at each measured time-point.

Tissue AYX1 (mg)/vol (mL) Time (min) N Mean (mg/mL) SE (mg/mL) Median (mg/mL)

LCSF 1.1/10 30 5 3108.77196 255.6169484 3023.6482

1.1/10 60 4 1384.3966 259.9501099 1464.5843

1.1/10 120 4 41.587725 19.92784122 34.548

1.1/10 240 4 0.0126 0.0126 0

1.1/10 360 4 0 0 0

1.1/10 720 4 0 0 0

2.2/20 30 5 6468.74928 1180.29521 6613.3316

2.2/20 60 4 720.017725 253.2146364 653.3905

2.2/20 120 4 118.908725 19.25506945 114.92505

2.2/20 240 3 0 0 0

2.2/20 360 4 0 0 0

2.2/20 720 4 0 0 0

3.85/35 30 5 9328.4782 1351.11685 8870.9908

3.85/35 60 4 2678.3156 460.5476851 2908.1875

3.85/35 120 4 360.532875 59.06257237 346.7795

3.85/35 240 4 0.009575 0.002292878 0.00765

3.85/35 360 4 0 0 0

3.85/35 720 4 0 0 0

DRG 1.1/10 30 5 7.667657941 1.568782709 6.755526589

1.1/10 60 4 3.920219497 1.149641096 4.280427501

1.1/10 120 4 0.007363318 0.004430156 0.005836822

1.1/10 240 4 0.004046355 0.002597334 0.002656131

1.1/10 360 4 0.001809653 0.001809653 0

1.1/10 720 4 0.034634755 0.009110736 0.036514832

2.2/20 30 5 27.47877045 6.124114177 22.77076212

2.2/20 60 4 0.753794535 0.300554058 0.818188664

2.2/20 120 4 0.217325199 0.20848275 0.013328716

2.2/20 240 4 0.000818852 0.000818852 0

2.2/20 360 5 0 0 0

2.2/20 720 3 0.003778745 0.001988417 0.004594702

3.85/35 30 5 26.71598671 3.90767435 30.57879113

3.85/35 60 4 7.017266029 4.018598467 7.005950316

3.85/35 120 4 2.069117621 1.055901619 1.63809148

3.85/35 240 4 0 0 0

3.85/35 360 5 0 0 0

3.85/35 720 3 0.01096018 0.01096018 0

Spinal cord 1.1/10 30 5 10.63232418 1.836208772 11.60045935

1.1/10 60 4 7.284382244 1.089622801 7.462844897

1.1/10 120 4 0.006860178 0.003963512 0.006678209

1.1/10 240 4 0 0 0

1.1/10 360 4 0 0 0

1.1/10 720 4 0.020483504 0.005724716 0.02144515

2.2/20 30 5 24.93761384 2.884383132 22.12447694

2.2/20 60 4 1.517023367 0.588309906 1.463704766

2.2/20 120 4 0.180800152 0.163416839 0.022397921

2.2/20 240 4 0 0 0

(continued)
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Table 3. Continued

Tissue AYX1 (mg)/vol (mL) Time (min) N Mean (mg/mL) SE (mg/mL) Median (mg/mL)

2.2/20 360 5 0.012175677 0.012175677 0

2.2/20 720 3 0.00295173 0.001746952 0.002808648

3.85/35 30 5 35.65144157 4.030442652 34.63588399

3.85/35 60 4 10.22149446 5.645387362 9.30448375

3.85/35 120 4 2.828536182 0.807271349 3.299263821

3.85/35 240 4 0 0 0

3.85/35 360 5 0 0 0

3.85/35 720 3 0.001916241 0.001916241 0

Note: LCSF: lumbar cerebrospinal fluid; DRG: dorsal root ganglia. Individual AYX1 concentration values over time following a single IT administration of

ascending dose-levels of AYX1. When appropriate, the mg/mL units in the LCSF section correspond to mg/mg of tissue units for the DRG and spinal cord

tissues sections.

Table 4. LCSF, DRG, and spinal shortmers concentrations for each AYX1 dose-level and at each measured time-point of AYX1.

Tissue AYX1 (mg)/vol (mL) Time (min) N Mean (mg/mL) SE (mg/mL) Median (mg/mL)

LCSF 1.1/10 30 5 1430.47892 457.7562697 997.2347

1.1/10 60 4 722.375275 138.4167534 637.53445

1.1/10 120 4 115.585075 5.6510067 119.2657

1.1/10 240 4 104.324925 5.841458069 100.1125

1.1/10 360 4 51.365275 22.46068157 54.9664

1.1/10 720 4 0 0 0

2.2/20 30 5 3829.55538 420.6962055 3382.6167

2.2/20 60 4 2007.303575 675.1989776 1944.99885

2.2/20 120 4 100.853425 6.898455803 101.55215

2.2/20 240 3 60.56093333 2.884681372 62.9528

2.2/20 360 4 71.01635 11.75351275 81.4557

2.2/20 720 4 0 0 0

3.85/35 30 5 4393.03844 228.2484032 4279.0878

3.85/35 60 4 4687.99725 518.3306593 4636.88145

3.85/35 120 4 116.8175 10.05737843 113.8372

3.85/35 240 4 97.2008 14.20149944 95.5283

3.85/35 360 4 91.68185 5.90782032 92.64975

3.85/35 720 4 0 0 0

DRG 1.1/10 30 5 22.31426526 7.072593559 19.08379438

1.1/10 60 4 35.32217034 3.163014365 33.69677409

1.1/10 120 4 2.732933554 1.658890882 1.265015581

1.1/10 240 4 0.897248086 0.058065924 0.915116254

1.1/10 360 4 0.486917073 0.249071141 0.491545206

1.1/10 720 4 0.076550053 0.026227013 0.073519484

2.2/20 30 5 57.08351415 4.243203582 57.22032106

2.2/20 60 4 30.66970954 14.66248569 24.27906899

2.2/20 120 4 12.41389241 11.36510465 1.342176242

2.2/20 240 4 0.939187865 0.338137454 1.09900073

2.2/20 360 5 0.68192968 0.169358434 0.689466667

2.2/20 720 3 0 0 0

3.85/35 30 5 56.00011489 16.31611509 45.61231783

(continued)
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nuclease environments.20 The quantification of N-1 to
N-6 AYX1 metabolites in the lumbar DRG, spinal
cord, and CSF at 60 and 240min highlights specific pat-
terns across overlapping concentrations of intact AYX1
plus shortmer metabolites, or total AYX1. DRG and
spinal cord patterns were similar at each measured
level of total AYX1 concentrations while LCSF patterns
varied from those with concentrations. DRG and LCSF
patterns are illustrated Figure 3(b) and (c). A high rela-
tive presence of AYX1 with decreasing amounts of indi-
vidual metabolites of shorter length is observed in the
LCSF at 60min with elevated concentrations of total
AYX1. At the same time-point in the DRG and spinal
cord, a low relative presence of AYX1 with increasing
amounts of shorter length metabolites is observed for
concentrations of total AYX1 that are approximately
two orders of magnitude lower. At 240min, total
AYX1 concentrations are still two orders of magnitude
higher in the LCSF compared to local tissues, but the
same pattern of metabolites is now observed: a low rela-
tive presence of AYX1 with elevated N-2 and N-3
metabolites.

Discussion

AYX1 dose-response profile

AYX1 is a DNA-decoy administered once by the IT
route to prevent pain and its chronification following
surgery or trauma. Its pharmacology for reducing mech-
anical hypersensitivity was characterized in multiple stu-
dies in the incisional (three studies) and spared nerve
injury (four studies) models of acute and chronic pain.
Across those studies, the average maximum effect of
AYX1 measured as a reduction of area-under-the-curve
during the entire study period compared to controls was
�65% � 7.9% (SE), with a minimum efficacy of �32%,
and a maximum efficacy of �80% (Table 1). The asso-
ciated dose-response pattern initially shows a rapid
increase of efficacy from the minimally efficacious dose
up to a maximum efficacy with only a two-fold dose
increase. As doses further increase toward the maximum
feasible dose, a reduction of efficacy followed by a recov-
ery phase are observed in the majority of the individual
studies (Table 1) as well as in their meta-analyses. The
average peak dose found to reduce efficacy across studies

Table 4. Continued

Tissue AYX1 (mg)/vol (mL) Time (min) N Mean (mg/mL) SE (mg/mL) Median (mg/mL)

3.85/35 60 4 46.00893874 26.07303081 42.59521031

3.85/35 120 4 73.66395684 21.06033945 62.82752407

3.85/35 240 4 1.186606863 0.086580168 1.144297059

3.85/35 360 5 0.912439333 0.038355346 0.933503571

3.85/35 720 3 0.052341893 0.052341893 0

Spinal cord 1.1/10 30 5 26.72917591 1.243865375 25.68212152

1.1/10 60 4 21.61584808 9.123270579 17.85150049

1.1/10 120 4 4.363497293 3.022585718 1.393005601

1.1/10 240 4 0.896101046 0.084782621 0.872365

1.1/10 360 4 0.354115198 0.182547597 0.27566035

1.1/10 720 4 0.134327203 0.077281886 0.099909523

2.2/20 30 5 46.45905314 13.54314857 46.82376256

2.2/20 60 4 33.94819926 9.294673064 32.78052733

2.2/20 120 4 6.627302761 5.294443044 1.38740579

2.2/20 240 4 0.729129583 0.306484997 0.615999167

2.2/20 360 5 0.435677476 0.224379814 0.234685714

2.2/20 720 3 0 0 0

3.85/35 30 5 70.43102964 19.07231587 57.94835537

3.85/35 60 4 32.68070379 19.29570307 23.29563893

3.85/35 120 4 89.08738192 14.96980246 92.04840256

3.85/35 240 4 9.125419048 8.069128587 1.059888095

3.85/35 360 5 1.035981222 0.117330072 1.0491

3.85/35 720 3 0 0 0

Note: LCSF: lumbar cerebrospinal fluid; DRG: dorsal root ganglia. Individual AYX1 shortmer metabolites concentration values over time following a single IT

administration of ascending dose-levels of AYX1. When appropriate, the mg/mL units in the LCSF section correspond to mg/mg of tissue units for the DRG

and spinal cord tissues sections.
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was 1.52mg� 0.44mg (SE). Concurrently, the polyno-
mial fit of the dose-response meta-analysis places that
peak dose on the high end of that range at �2mg.
Note that in one study (ADY-SNI4), a reduction of effi-
cacy was also observed at the maximum feasible dose,
based on AYX1 solubility limit and volume of IT injec-
tion. This result could be explained by AYX1 increased
viscosity at this concentration (i.e., 40 times higher than
water), which could lead to a variable distribution in the
LCSF across animals and studies. Of note, AYX1 dose-
response and its landmark features occur over a narrow
range of doses. This is similar to antisense oligonucleo-
tides, with dose-response curves that often span within a
only 10-fold factor.24

AYX1 exposure in the LCSF, DRG, and spinal cord

To be effective, AYX1 must inhibit EGR1 activity in
the DRG and/or spinal cord during EGR1 induction,11

from �30 to 60min up to �12 h after a noxious stimu-
lation.12,13 An increase of local AYX1 exposure dur-
ing that timeframe is anticipated to increase efficacy up
to an exposure level that exceeds what is required for a
complete inhibition of EGR1, which seems to occur for
doses �1mg. The exposure of �2mg AYX1 is two fold
lower in the LCSF and four times lower in the DRG and
spinal cord than that of �1mg dose during that same
period. This likely results in a lower opposition to EGR1
action and could explain the paradoxical reduction of
efficacy observed in the dose-response curve.

The paradoxical reduction in exposure appears to be
driven by the level of nuclease activity engaged in the
LCSF during the first 30 to 60min following injection:
the �2mg dose was sufficient to trigger a rapid, near-
saturation of AYX1 metabolism while the �1 mg dose
only triggered a slow, basal metabolism. Consequently,
AYX1 concentration from the �2mg dose (�720 mg/
mL) was lower in the LCSF at 60min compared to
the �1mg dose (�1400 mg/mL). At that time-point,
the concentrations of shortmers were �100 mg/mL for
both doses, suggesting that both doses were now asso-
ciated with a similar and basal metabolism rate that
maintained their relative exposures onward. By direct
diffusion from the LCSF to the local tissues, the relative
positioning of exposure of the two doses appeared dir-
ectly transferred to the DRG and spinal cord where
AYX1 exerts its pharmacological activity. For the
higher �4mg dose, which also triggers a saturating
metabolism during the initial period following dosing,
the ‘‘excess’’ of AYX1 over the 2mg dose appeared to
offset an abrupt impact of the metabolism and its
exposure remained above that of the �1mg dose after
60min.

Those combined data suggest that the reduction in
efficacy in the AYX1 dose-response pattern occurs for

the range of doses triggering near-saturation of metab-
olism in the LCSF upon injection: �1.5 to �2mg AYX1.

Cerebrospinal fluid (CSF) nuclease environment

The CSF nuclease environment influences the AYX1
dose-response profile. Our data suggest that it is a
multi-nuclease system with an elevated Km, hence with
a low affinity of CSF nucleases for AYX1, and is rapidly
saturable. Indeed, the detection of several AYX1
metabolic patterns suggests that an increasing range of
nucleases metabolizes AYX1 as a function of concentra-
tion. Also, the presence of the same pattern of metabol-
ites in the CSF and tissues at 240min while total AYX1
concentrations are �2 order of magnitude higher sug-
gests similar nucleases metabolize AYX1 but that in
the CSF, their affinity for AYX1 is lower. This may
reflect the significant influence of the composition of dif-
ferent environments (e.g., pH, metal ions, and salts) on
nuclease Km.25–27

Prior studies applying oligonucleotides to the CSF
reported an absence or a low nuclease activity in the
CSF while the analysis of the CSF proteome confirms
the presence of several nucleases.28–30 The data from this
work provide a possible link between those apparently
contradictory observations: the CSF contains active
nucleases but their activity was not readily detected in
prior studies likely due the low oligonucleotide concen-
trations used (e.g., �0.1mg/mL of CSF) compared to
AYX1 (i.e., �3–4mg/mL).28,30 Lastly, the fact that the
metabolism remains saturated at 60 min for the high
dose in presence of concentrations of full-length AYX1
lower than metabolite concentrations suggests an hyster-
esis of the nucleases in the CSF, a phenomenon in
enzymology referring to enzymes which kinetics
responds slowly to rapid changes of substrate
concentrations.31

AYX1 tissue concentrations

During most of the EGR1 induction period, AYX1 con-
centrations in the DRG and spinal cord after injection of
efficacious doses were in the low ng/mg of tissue range.
To understand the meaning of such concentrations, one
can estimate the number of AYX1 molecules per DRG
cell relative to the estimated number of EGR1 molecules
and EGR1 binding sites in the genome for an AYX1
concentration �10 ng/mg. Based on an average mea-
sured DRG weight of �1.79mg (i.e., weight of a DRG
used in the PK work described above), �10 ng AYX1/mg
of DRG corresponds to �4.6 million AYX1 molecules
per cell (assuming �15,000 neurons32 and �10 satellite
cells per neuron per DRG and a negligible extracellular
space). The number of copies of a transcription factor
varies per cell from �5000 to �4,000,00033 and there are

Mamet et al. 13



�1000 to 1500 EGR1 binding sites per genome.34 Thus,
AYX1 concentrations in the ng/mg range represent bio-
logically active concentrations as the corresponding, esti-
mated amount of AYX1 molecules per cell within that
range can be in excess of the number of genomic EGR1
binding sites and potential EGR1 molecules.

AYX1, EGR1, and neurons

EGR1 can be expressed in a variety of cells including
neurons, glial, or immune cells to carry out complemen-
tary functions. In a nociceptive context, EGR1 induction
in the DRG and spinal cord appears specific to neurons
rather than glial cells as observed after peripheral nerve
injury, inflammation, thermal or mechanical noxious sti-
muli, and electrically induced-long term potenti-
ation.12,13,35–37 This expression pattern directly
correlates to EGR1 core function of inducer of long-
term neuronal sensitization.12,38 While macrophages
and other immune cells penetrate the spinal cord and
DRG to modulate pain signals in neuropathic pain situ-
ations, this happens significantly after one or more days
post-injury,39–42 which is past the time of residence of
AYX1 in the LCSF and local neuronal tissues.
Altogether, EGR1 expression profile and AYX1 PK sup-
port AYX1 focused action within EGR1-expressing neu-
rons in the DRG and spinal cord rather than an action in
other cell types that can also express EGR1. The micro-
scopic visualization of an AYX1-fluorescent conjugate in
cells nuclei 30min following an IT administration shows
that AYX1 penetrates cells rapidly. While the type of
cells taking up AYX1 cannot be determined from this
experiment, it is assumed that AYX1 enters neurons but
an entry in non-neural cells cannot be excluded. This
latter possibility is illustrated with the finding that anti-
sense oligonucleotides can penetrate both neurons and
glia in the spinal cord.43 In terms of uptake mechanism,
AYX1 likely enters these cells via endocytic pathways,
which are common as well as saturable mechanisms of
entry for oligonucleotides.44,45

Conclusion

AYX1 is a DNA-decoy drug candidate that inhibits the
transcription factor EGR1 in the DRG-spinal cord net-
work at the time of injury to reduce acute pain and its
chronification. We show that AYX1 efficacy increases
overall with dose. For doses that trigger a near-satura-
tion of metabolism in the LCSF, however, local exposure
at AYX1 site of action can be reduced and associated to
a lowering of efficacy. Additional mechanisms related to
the excess of metabolites associated with near-saturating
metabolism could also be at play. Since oligonucleotide
transport into cells is saturable and can be inhibited by
high oligonucleotide concentrations,45,46 it is possible

that the excess of rapidly produced AYX1 metabolites
associated with the mid range doses competitively inhibit
cellular uptake while the level of full-length AYX1 is
already low, further supporting a reduction of efficacy.
This hypothesis would require experimental confirm-
ation. Altogether, these data show that AYX1 pharma-
cology is directly tied to its mechanism of action
(inhibiting EGR1 over a period of time following
trauma), route of administration (local exposure in the
LCSF, DRG, and spinal cord), and its chemistry (an
unmodified oligonucleotide sensitive to nuclease
degradation).
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