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Abstract. Correct assembly and function of the mitotic 
spindle during cell division is essential for the accurate 
partitioning of the duplicated genome to daughter cells. 
Protein phosphorylation has long been implicated in 
controlling spindle function and chromosome segrega- 
tion, and genetic studies have identified several protein 
kinases and phosphatases that are likely to regulate 
these processes. In particular, mutations in the serine/ 
threonine-specific Drosophila kinase polo, and the 
structurally related kinase Cdc5p of Saccharomyces cer- 
evisae, result in abnormal mitotic and meiotic divisions. 
Here, we describe a detailed analysis of the cell cycle- 
dependent activity and subcellular localization of Plkl, 
a recently identified human protein kinase with exten- 
sive sequence similarity to both Drosophila polo and S. 
cerevisiae Cdc5p. With the aid of recombinant baculo- 
viruses, we have established a reliable in vitro assay for 
Plkl kinase activity. We show that the activity of hu- 

man Plkl is cell cycle regulated, Plkl activity being low 
during interphase but high during mitosis. We further 
show, by immunofluorescent confocal laser scanning 
microscopy, that human Plkl binds to components of 
the mitotic spindle at all stages of mitosis, but under- 
goes a striking redistribution as cells progress from 
metaphase to anaphase. Specifically, Plkl associates 
with spindle poles up to metaphase, but relocalizes to 
the equatorial plane, where spindle microtubules over- 
lap (the midzone), as cells go through anaphase. These 
results indicate that the association of Plkl with the 
spindle is highly dynamic and that Plkl may function at 
multiple stages of mitotic progression. Taken together, 
our data strengthen the notion that human Plkl may 
represent a functional homolog of polo and Cdc5p, and 
they suggest that this kinase plays an important role in 
the dynamic function of the mitotic spindle during 
chromosome segregation. 

URING mitosis, replicated chromosomes (sister chro- 
matids) segregate such that each daughter cell re- 
ceives one complete copy of the genome. Chromo- 

some segregation is a highly complex and dynamic process 
that relies on the assembly and function of a microtubule- 
based mitotic spindle apparatus (for reviews see Mclntosh 
and Koonce, 1989; Mclntosh and Hering, 1991; Karsenti, 
1991; Hyman and Mitchison, 1992; Gorbsky, 1993; Wad- 
sworth, 1993; Rieder and Salmon, 1994; Koshland, 1994). 
Biochemical, immunocytochemical, and genetic studies 
concur to demonstrate that phosphorylation plays an im- 
portant role in controlling spindle assembly and function. 
For instance, biochemical studies have revealed that mitosis 
is accompanied by a substantial increase in protein phos- 
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phorylation (Karsenti et al., 1987), and inhibitors of protein 
kinases block the formation of taxol-stabilized microtubule 
asters (Verde et al., 1991), as well as chromosome-spindle 
interactions (Nicklas et al., 1993). Furthermore, phosphory- 
lation was shown to control both the rate of nucleation of 
microtubules at the centrosome and their dynamic behavior 
(Verde et al., 1990, 1992; Gotoh et al., 1991; Buendia et al., 
1992). Most recent studies indicate that reversible phospho- 
rylation may control the mitotic function of microtubule- 
based motor proteins (Liao et al., 1994; Blangy, A., H. 
Lane, M. Kress, and E. A. Nigg, manuscript in preparation), 
and it is possible that phosphorylation of kinetochore-asso- 
ciated motors may determine the orientation of chromo- 
some movements (Hyman and Mitchison, 1991). Immuno- 
cytochemical data also provide support for a role of protein 
phosphorylation in the regulation of spindle function. In 
fact, antibodies directed against phosphorylated epitopes, 
such as MPM-2 (Davis et al., 1983) or 3F3/2 (Cyert et al., 
1988), strongly stain components of the mitotic spindle 
(Vandr6 et al., 1984; Vandr6 and Burry, 1992; Gorbsky and 
Ricketts, 1993). Finally, genetic studies performed with 
fungi and flies have identified multiple protein kinases 
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and phosphatases with a possible role in spindle function 
and chromosome segregation (e.g., Ohkura et al., 1989; 
Doonan and Morris, 1989; Axton et al., 1990; Llamazares et 
al., 1991; Stone et al., 1993; Mayer-Jaekel et al., 1993; Toyn 
and Johnston, 1994). 

One prominent protein kinase implicated in controlling 
spindle function is the p34CdC2/cyclin B complex (for review 
see Nurse, 1990; Nigg, 1993). This kinase is partly localized 
to the mitotic spindle (Bailly et al., 1989; Pines and Hunter, 
1991; Rattner et al., 1992; Gallant and Nigg, 1992), and it is 
able to stimulate microtubule dynamics in Xenopus cell- 
free extracts (Verde et al., 1990, 1992; Buendia et al., 
1992). The most direct evidence in support of a role of 
p34Cdc2/cyclin B in the regulation of spindle function stems 
from the recent identification of spindle-associated, kine- 
sin-related motor proteins as likely physiological sub- 
strates of p34~¢2/cyclin B (Liao et al., 1994; Blangy, A., H. 
Lane, M. Kress, and E. A. Nigg, manuscript in prepara- 
tion). However, it would a priori seem very unlikely that 
the regulation of all mitotic transitions could be attributed 
uniquely to changes in the activity of the p34 ¢~¢2 kinase, 
and, as mentioned above, genetic analyses have identified 
numerous protein kinases and phosphatases that are re- 
quired for progression through mitosis (for reviews see 
Forsburg and Nurse, 1991; Glover, 1991; Kinoshita et al., 
1991; Yanagida et al., 1992). 

Among the protein kinases implicated in controlling 
spindle function and chromosome segregation is polo, a 
serine/threonine-specific enzyme first identified in Dro- 
sophila (Llamazares et al., 1991). Drosophila embryos 
harboring mutant polo alleles show a broad range of spin- 
dle abnormalities including monopolar spindles, highly 
branched bipolar spindles, and overcondensed chromo- 
somes (Sunkel and Glover, 1988; Llamazares et al., 1991). 
The activity of wild-type polo kinase was measured during 
the rapid cell cycles of syncytial Drosophila embryos and 
reported to be maximal during late anaphase and early te- 
lophase (Fenton and Glover, 1993). Interestingly, recent 
studies have revealed that the CDC5 gene of Saccharomy- 
ces cerevisiae encodes a protein kinase with a high degree 
of sequence similarity to Drosophila polo (Kitada et al., 
1993). When yeast cells harboring a cdc5 ts mutant allele 
are cultured at the nonpermissive temperature, they arrest 
as large budded cells with partially segregated nuclei (By- 
ers and Goetsch, 1974; Sharon and Simchem, 1990; Kitada 
et al., 1993), and spindle abnormalities have been ob- 
served in homozygous diploids undergoing meiosis (Schild 
and Byers, 1980). Although it is difficult to directly com- 
pare phenotypes of mutants in very different organisms, 
these findings raise the possibility that Drosophila polo 
and S. cerevisiae CDC5 may encode functional homologs. 

Using an approach based on the PCR (Schultz and Nigg, 
1993), we have recently identified a human protein kinase 
that displays a substantial degree of sequence identity with 
Drosophila polo and budding yeast Cdc5p and hence was 
termed polo-like kinase 1 (Plkl) 1 (Golsteyn et al., 1994). 
Independently, cDNAs encoding human and murine Plkl 
(Clay et al., 1993; Lake and Jelinek, 1993; Hamanaka et 
al., 1994; Holtrich et al., 1994), as well as Plkl-related pro- 

1. Abbreviation used in this paper: Plkl, polo-like kinase 1. 

tein kinases (Simmons et al., 1992; Fode et al., 1994), have 
been cloned in other laboratories. Northern blot analyses 
revealed that Plkl mRNA levels are highest in tissues with 
a sizeable proportion of proliferating cells, consistent with 
a role of Plkl in mitosis (Clay et al., 1993; Lake and Jel- 
inek, 1993; Golsteyn et al., 1994). In cultured cells, both 
Plkl mRNA (Lake and Jelinek, 1993) and protein levels 
(Golsteyn et al., 1994) were low during G1 phase, but in- 
creased during S phase and reached maximal levels during 
G2 and M phases. By immunofluorescent staining with 
monoclonal antibodies, Plkl was found to be diffusely dis- 
tributed throughout interphase cells; in dividing cells, 
however, a striking association with postmitotic bridges 
was noted, suggesting that Plkl might be discarded at the 
end of mitosis through shedding of the midbody into the 
culture medium (Golsteyn et al., 1994). 

Further progress towards understanding the function of 
human Plkl had been hampered by a lack of biochemical 
information on the activity of this kinase. In this study, we 
have used recombinant Plkl to establish a reliable assay 
for measuring Plkl activity, and have then carried out a 
detailed study of Plkl activity during the cell cycle. The ac- 
tivity of Plkl isolated from synchronized HeLa cells was 
found to be low at all interphase stages of the cell cycle but 
high during mitosis. Using a novel, highly specific anti- 
body, we have also reexamined the subcellular distribution 
of human Plkl. We found that Plkl localizes to distinct el- 
ements of the mitotic spindle at all stages of mitosis, but 
undergoes a remarkable redistribution as cells progress 
from metaphase to anaphase. Taken together, these re- 
suits suggest that Plkl functions in mammalian mitotic 
cells to control spindle dynamics and chromosome segre- 
gation. 

Materials and Methods 

Cell Culture and Synchronization 

HeLa cells were grown in DMEM (GIBCO BRL, Gaithersburg, MD) 
supplemented with 5% heat-inactivated FCS and penicillin-streptomycin 
(100 i.u./ml and I00 p.g/ml, respectively) in a 7% CO2 atmosphere. For 
metabolic labeling of mitotic cells with [35S]methioninelcysteine, HeLa 
cells were cultured for 12 h in normal growth medium containing nocoda- 
zole (100 ng/ml) and then washed with PBS (8.1 mM Na2HPO4, 1.5 mM 
KH2PO4,137 mM NaCI, 2.7 mM KC1, pH 7.2), and incubated for 30 min in 
methionine-free MEM (Gibco) supplemented with 10% FCS (previously 
dialyzed against 100 mM NaCI), nocodazole (100 ng/ml), 1% glutamine 
and penicillin-streptomycin. Finally, they were cultured for 4 h in the 
above methionine-free MEM containing 80 ixCi/ml of Trans35S-label (ICN 
Biomedicals, Inc., Costa Mesa, CA). 

Cells were synchronized at the G1/S boundary by a double thymidine- 
aphidicolin block, as described by Heintz et al. (1983). In brief, cells were 
plated onto multiple 10-cm dishes and cultured in the presence of thymi- 
dine (2 mM; Sigma Chem. Co., St. Louis, MO) for 14 h; then they were 
washed three times with normal growth medium, incubated for an addi- 
tional 14 h under normal growth conditions, and finally arrested by the ad- 
dition of aphidicolin (1 ixg/ml, Sigma) for 14 h. At time zero, cells were 
washed three times with normal growth medium and placed under normal 
growth conditions. At regular intervals, ceils were collected by trypsiniza- 
tion. Aliquots were subjected to flow cytometric analysis as described by 
Draetta and Beach (1988), using a FACS II (fluorescence-activated cell 
sorter) instrument (Becton-Dickinson Immunocytometry Sys., Mountain 
View, CA). The remaining cells were used for the preparation of whole 
cell extracts, as described below. 

To arrest exponentially growing HeLa cells at prometaphase, nocoda- 
zole was added to final concentration of 100 ng/ml for 14 h. Mitotic cells 

The Journal of Cell Biology, Volume 129, 1995 1618 



were collected by mechanical shake-off, rinsed twice in prewarmed 
growth medium, and replated into normal growth medium. Immediately 
before (time zero) or at various intervals after the removal of nocodazole, 
cells were collected and extracted as described below. To synchronize cells 
in the absence of cell cycle arresting drugs, HeLa suspension cells were 
size-fractionated by centrifugal elutriation as described previously (Dra- 
etta and Beach, 1988; Golsteyn et al., 1994). All fractions were then used 
for flow cytometric analysis and for the preparation of whole cell extracts. 

Site-directed Mutagenesis and Expression of 
Recombinant PlkI in Insect Cells 
To prepare a catalytically inactive Plkl mutant, codon 82 (AAG, coding 
for lysine) was mutated to A G G  (coding for arginine), using reagents and 
instructions supplied in the Transformer Site-Directed Mutagenesis Kit 
(Clontech Laboratories, Palo Alto, CA), and the oligonucleotides GCG- 
G G C A G G A T T G T G C C T A A G  and A A T T C G A G C T C A G T A C C C G G  
as mutagenesis and selection primers, respectively. To ensure that no ad- 
ditional mutations were unintentionally introduced, a 352 bp BglII frag- 
ment encompassing this mutation was sequenced and replaced into the 
original Plkl-pGEM plasmid (Golsteyn et al., 1994), The mutated plasmid 
was named Plkl-K82R-pGEM. 

A baculovirus encoding wild-type human Plkl was constructed by sub- 
cloning an EcoRI fragment excised from Plkl-pGEM into the pBlueBac 
transfer vector (Invitrogen, San Diego, CA). In the resulting construct 
(Plkl-pBlueBac), the authentic Plkl ATG is used for initiation of transla- 
tion. Recombinant virus was then generated by homologous recombina- 
tion in vivo, following cotransfection of Sf9 insect cells with Plkl-pBlue- 
Bae and baculovirus DNA. The transfection supernatant was used to 
infect Sf9 cells for standard plaque assays, and recombinant virus was pu- 
rified by three rounds of plaque assays. Purity of the recombinant virus 
was confirmed by the absence of polyhedrin occlusion bodies. A baculovi- 
rus encoding the K82R mutant  of Plkl was generated by subcloning Plkl- 
K82R into the transfer vector pVL1392, cotransfection of this DNA 
(Plkl-K82R-pVL1392) together with Baculogold DNA (Pharmingen, San 
Diego, CA), and subsequent amplification of viral DNA according to the 
manufacturer 's instructions (Pharmingen). All procedures relating to Sf9 
cell growth and baculovirus handling were performed as described in 
O'Reilly et al. (1992). 

Immunochemical Techniques 
A polyhistidine-tagged 25-kD fusion protein (termed C-termPlkl) coding 
for the COOH terminus of Plkl (residues 402-603) was expressed in E. 
coli and purified as described previously (Golsteyn et al., 1994). Rabbits 
were immunized with C-termPlkl according to standard protocols (Krek 
and Nigg, 1991), until an adequate titer was obtained. The immune serum 
of rabbit 32 (R32) was used for immunoprecipitation experiments, and the 
preimmune serum obtained from the same rabbit was used for controls. 
For affinity purification of anti-Plkl immunoglobulins (AR32) from se- 
rum R32, C-termPlkl protein was isolated from bacteria by the prepara- 
tion of inclusion bodies (Harlow and Lane, 1988), before nickel column 
chromatography (Qiagen). 1 mg of purified C-termPlkl protein was then 
bound to CNBr-activated Sepharose 4B, as described by the manufacturer 
(Pharmacia LKB Biotechnology, Piscataway, N J). Antibodies were puri- 
fied on this affinity matrix as described by Harlow and Lane (1988), and 
AR32 immunoglobulins were used at 350 ng/ml for immunoblotting and 
at 3.5 ixg/ml for immunofluorescent staining. 

Immunoprecipitation experiments were performed by adding R32 se- 
rum (at 1:100; vol/vol) or AR32 immunoglobulins (to a final concentration 
of 7.5 Ixg/ml) to whole cell lysates and incubating the samples on ice for 1 h. 
After a 5-min centrifugation at 10,000 g, supernatants were transferred to 
new tubes, and immune complexes were collected by incubation for 30 
rain with protein A-Sepharose beads (Pharmacia LKB Biotechnology). 
Beads were washed three times in Bead Buffer (50 mM Tris pH 7.5, 0.1% 
NP-40, 250 mM NaC1, 5 mM NaF, 5 mM EDTA, 5 mM EGTA, 1 mM phe- 
nylmethylsulfonyl phosphate, 1 p.g/ml each of soybean trypsin inhibitor, 
leupeptin and pepstatin), as described by Meijer et al. (1989). For analysis 
of immune complexes by SDS-PAGE, washed beads were again trans- 
ferred to new tubes, gel sample buffer was added, and samples were 
heated for 5 min to 95°C. For protein kinase assays, beads were also trans- 
ferred to new tubes, washed once in the appropriate kinase assay buffer 
(see below), and stored on ice until used. 

Preparation of Cell Extracts and Protein Kinase Assays 
HeLa or Sf9 insect cells were collected and washed twice in PBS. Then, 
they were resuspended to a density of 5,000 cells/p,l and incubated for 30 
min on ice, in either NP-40 lysis buffer or historic H1 kinase buffer (see 
below), depending on the assay to be performed: since Plkl was equally 
active under both lysis conditions, cells were lysed in historic HI kinase 
buffer when both Plkl and cyclin-dependent kinase (CDK) activities were 
to be determined. NP-40 lysis buffer was 50 mM Hepes pH 7.4,1% NP-40, 
100 mM NaCI, 25 mM NaF, 25 mM sodium 13-glycerophosphate, 1 ~g/ml 
each of soybean trypsin inhibitor, leupeptin and pepstatin, and 30 ~Lg/ml of 
DNase I and RNase A. Histone H1 kinase buffer was 1% NP-40, 60 mM 
13-glycerophosphate, 10 mM MgCI2, 10 mM EGTA, 1 mM ATP, 1 mM 
phenylmethylsulfonyl phosphate, 1 p,g/ml each of soybean trypsin inhibi- 
tor, leupeptin and pepstatin, and 30 ~g/ml of DNase I and RNase A. Sub- 
sequently, samples were passed five times through a 27-gauge needle and 
centrifuged for 5 min at 10,000 g (4°C). Supernatants were stored at 
-80°C until used for kinase assays. 

To measure Plkl activity, Plkl immunoprecipitates were washed once 
in Plkl wash buffer (20 mM Hepes, pH 7.4, 150 mM KC1, 10 mM MC12, 1 
mM EGTA, 0.5 mM DTr ,  and 5 mM NaF) and stored on ice. To start the 
reaction, 20 ~1 of Plkl assay buffer was added to the beads and samples 
were incubated for 15 rain at 30°C. Plkl assay buffer was Plkl wash buffer 
supplemented with 10 ~M ATP, 4 p~Ci of [7-32p]ATP (10 mCi/ml), and 0.5 
mg/ml of dephosphorylated casein (Sigma). In some experiments, casein 
was substituted by different exogenous substrates, notably enolase, his- 
tone H1, myelin basic protein, phosvitin, or MAP-2, each used at 0.5 mg/ 
ml. Also, to determine the ability of Plkl to use GTP as a phosphate do- 
nor, experiments were carried out in the presence of 10 p,M GTP and 4 IxCi 
of [~-32p]GTP (10 mCi/ml) instead of ATP. Reactions were stopped by 
the addition of an equal volume of 2.5 x gel sample buffer. Then samples 
were heated for 5 min to 95°C before analysis by SDS-PAGE and autora- 
diography. 

To assay CDK-associated histone H1 kinase activity, CDK/cyclin com- 
plexes were collected using p9 ~ucl beads, as described previously (Maridor 
et al., 1993). They were washed once with CDK wash buffer (50 M 13-glyc- 
erophosphate, pH 7.5, 10 mM MgC12, 10 mM NaF, and 1 mM D T r )  and 
stored on ice. To start the reaction, 20 i~1 CDK assay buffer was added and 
samples were processed further as described above for Plkl assays. CDK 
assay buffer was CDK wash buffer supplemented with 10 ~M ATP, 0.2 
mCi/ml of [~-32p]ATP, and 0.4 mg/ml of histone H1 (Boehringer Mann- 
heim Corp., Indianapolis, IN). 

Quantitations of Plkl and CDK activities were performed using a 
Phosphorlmager and ImageQuant software (Molecular Dynamics, Sunny- 
vale, CA) and a CCD camera and Bio-Print software (Vilber Lourmat, 
France). For Plkl assays, exposure times for autoradiography or phos- 
phorimaging were usually ~10 times longer than those required for opti- 
mal visualization of CDK assays. 

Miscellaneous Techniques 
Confocal laser scanning microscopy was performed on an MRC 600 in- 
strument (BioRad Labs., Hercules, CA), as described by Palladino et al. 
(1993). AR32 antibody was detected with biotinylated goat anti-rabbit/ 
streptavidin Texas red, as described by the manufacturer (Amersham Life 
Sciences, UK). In vitro transcription-translation experiments were carried 
out in the presence of [35S]methionine/cysteine, using the TnT rabbit retie- 
ulocyte lysate system (Promega Corp., Madison, WI). Transient transfec- 
tions of HeLa cells with Plkl-CMV and myc-tagged Plkl-CMV (Golsteyn 
et al., 1994) were carried out as described by Krek and Nigg (1991). 

Results 

Characterization of Anti-Plkl Antibody 

All results reported here were obtained using a novel rab- 
bit antibody (R32) raised against the COOH-terminal 201 
amino acids of human Plkl. Fig. 1 illustrates the specificity 
of this reagent. When used for immunoprecipitation ex- 
periments (Fig. 1 A), the anti-Plkl antibody precipitated a 
major 68-kD protein from 35S-labeled mitotic cell lysates 
(lanes 2 and 3). This protein comigrated exactly with the 
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Figure 1. Characterization of R32 anti-Plkl antibodies. (A) Deter- 
mination of antibody specificity by immunoprecipitation. HeLa 
cells were cultured in the presence of nocodazole and [35S]me- 
thionine/cysteine. A total cell lysate was then prepared and all- 
quots were incubated with either preimmune serum (Pre; lane 1), 
anti-Plkl immune serum (R32, lane 2) or affinity-purified anti-Plkl 
antibodies (AR32, lane 3). Immune complexes were collected and 
analyzed by SDS-PAGE and autoradiography. For comparison, 
35S-labeled Plkl was also prepared by in vitro transcription/transla- 
tion of the PIkl-pGEM plasmid in a rabbit reticulocyte lysate and 
loaded onto the same gel (IVT, lane 4). The 68-kD Plkl protein is 
indicated by an arrowhead, and the molecular masses markers are 
indicated in kD. The 40-kD protein visible in lane 4 may arise from 
proteolysis or from internal initiation. (B) Determination of anti- 
body specificity by immunoblotting. Total cell lysates were pre- 
pared from exponentially growing HeLa cells (Expo, lane 1), and 
from HeLa cells transfected with cDNAs encoding either Plkl (wt, 
lane 2) or MycPlkl (Myc, lane 3). Extracts were then analyzed by 
immunoblotting, using the affinity-purified anti-Plkl antibody 
AR32. Note the comigration of the endogenous protein detected 
in lanes 1 and 3 with the overexpressed Plkl protein in lane 2 
(lower arrowhead). The decreased mobility of the MycPlkl protein 
detected in lane 3 is consistent with the presence of the 20-amino 
acid myc-tag at the NH 2 terminus of Plkl. Equal amounts of total 
cellular protein were loaded in each lane. We note that ectopically 
expressed Plkl proteins were not detectable by Coomassie blue 
staining (not shown). 

product obtained by in vitro translation of RNA tran- 
scribed from the human plkl cDNA (lane 4), and it was 
not recognized by the preimmune serum (lane 1). Like- 
wise, when used for immunoblotting on a total cell lysate 
prepared from exponentially growing HeLa cells (Fig. 1 
B), the anti-Plkl antibody reacted with a single 68-kD pro- 
tein (lane 1). The identity of this protein was confirmed by 
transient transfection experiments: overexpression of the 
full-length Plkl protein resulted in a markedly increased 
signal intensity (lane 2), whereas expression of an myc- 
epitope tagged Plkl protein resulted in the expected ap- 
pearance of a second immunoreactive protein with a 
slightly increased molecular weight (lane 3). In contrast to 
the anti-Plkl monoclonal antibodies used previously (Gol- 
steyn et al., 1994), the R32 antibodies did not cross-react 
with an unidentified l l0 -kD protein, and hence may be 
considered as monospecific for Plkl. 

Recombinant Human Plkl  Is Active as a Casein Kinase 

Previously, we had been unable to detect specific protein 
kinase activity associated with Plkl immunoprecipitates 
(Golsteyn et al., 1994). A priori these negative results 
might have been due to the choice of inappropriate in 
vitro substrates or assay conditions, an inhibitory action of 
the anti-Plkl antibodies, or a narrow window of activity of 
Plkl during the cell cycle. To overcome this difficulty and 
make Plkl amenable to a biochemical characterization, we 
constructed a recombinant baculovirus coding for wild- 
type Plkl. As a control, a virus coding for a catalytically in- 
active mutant Plkl (K82R) was also made. Corresponding 
arginine for lysine substitutions in other protein kinases 
have previously been shown to interfere with phosphate 
transfer to the substrate without drastically altering the 
three-dimensional structure of the kinase (Taylor et al., 
1992). Expression of human Plkl in Sf9 insect cells could 
readily be visualized by immunoblotting, and maximal ex- 
pression occurred at 30--40 h postinfection (Fig. 2 A). 
Wild-type and mutant Plkl were expressed to comparable 
levels (Fig. 2 B, compare lanes 1 and 2), and no signal was 
observed in control lysates (Fig. 2 B, lane 3). 

To determine whether recombinant Plkl displayed pro- 
tein kinase activity, immunoprecipitates were prepared 
from infected Sf9 insect cell lysates, washed extensively, 
and then incubated in vitro with [-y-32p]ATP as a phos- 
phate donor and casein as an exogenous substrate (Fig. 2 
C). Casein was chosen as a substrate since both Dro- 
sophila polo and yeast Cdc5p have been reported to phos- 
phorylate casein (Fenton and Glover, 1993; Kitada et al., 
1993). Under the above conditions, kinase activity could 
readily be demonstrated for wild-type Plkl (lane 4), and 
phosphoamino acid analysis revealed that phosphoryla- 
tion occurred on both serine and threonine residues (data 
not shown). Attesting to the specificity of the observed re- 
action, no casein kinase activity was seen in immunopre- 
cipitates of the catalytically inactive mutant (lane 2), or 
when immunoprecipitations were performed with the cor- 
responding preimmune serum (lanes 1 and 3). A phos- 
phorylated protein migrating at the size of Plkl was also 
detected, but, interestingly, this phosphoprotein was seen 
only in immunoprecipitates of wild-type Plkl (lane 4, ar- 
row), suggesting that Plkl may be able to undergo auto- 
phosphorylation. Using the above assay, several additional 
proteins were tested as potential substrates of Plkl. Where- 
as histone H1, enolase, and phosvitin were not phosphory- 
lated to any significant extent, myelin basic protein and 
the microtubule-associated protein MAP-2 could be phos- 
phorylated by Plkl, albeit to a much lower degree than 
casein (data not shown). 

Since casein is a good in vitro substrate not only for 
Plkl, but also for other protein kinases, notably casein ki- 
nase II  (Pinna, 1990) and p34cdc2/cyclin B (Brizuela et al., 
1989), we considered it important to compare the biochem- 
ical properties of these different casein kinases. To this end, 
we first tested the ability of Plkl to use GTP as a phosphate 
donor. As shown in Fig. 3 A, Plkl could use ['y-a2p]ATP (lane 
1) but not [~/-32p]GTP (lane 3), and the use of [~/-32p]ATP 
was not inhibited by the presence of an excess of unla- 
beled GTP (lane 2). In contrast, casein kinase II was able 
to use [~,-32p]GTP as efficiently as [~-32p]ATP (compare 
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Figure 2. Production of recombinant Plkl and 
K82R-Plk1 in baculovirus-infected Sf9 cells, and 
demonstration of Plkl kinase activity. (A) Insect Sf9 
cells were infected with recombinant baculovirus 
encoding Plkl. At the indicated intervals, extracts 
were prepared for analysis of Plkl expression by 
immunoblotting with AR32 antibodies. Equal 
amounts of protein were loaded in each lane, and 
the position of molecular mass markers are indi- 
cated in kD. (B) lnsect Sf9 cells were infected with 
either Plkl baculovirus (wt, lane 1), K82R-baculovi- 
rus (K82R, lane 2) or a control baculovirus encoding 
a nonrelated protein (Contr, lane 3). At 30 h post- 
infection, extracts were prepared and analyzed by 
immunoblotting with anti-Plkl antibody AR32. (C) 
Insect Sf9 ceils were infected with baculoviruses 
encoding either K82R-Plk1 (lanes 1 and 2) or wild- 
type Plkl (lanes 3 and 4). At 30 h postinfection, 
extracts were prepared and incubated with either 
preimmune serum (Pre, lanes 1 and 3) or anti-Plkl 
immune serum (Imm, lanes 2 and 4). The immune 

complexes were collected with protein A beads, washed three times with Bead buffer and once with kinase assay buffer, transferred to 
new tubes, and incubated in the presence of ["/-32p]ATP and casein. The phosphorylated reaction products were analyzed by SDS- 
PAGE and autoradiography. The arrowhead marks the position of phosphorylated casein, whereas the arrow points to a phosphopro- 
tein comigrating with Plkl. 

lanes 4 and 6), and excess GTP interfered with the use of  
['y-aEp]ATP (lane 5). Hence, on the basis of a differential 
use of  GTP, it is possible to distinguish Plkl  from casein 
kinase II. Also, in further experiments (data not shown), 
we found that Plkl  was unable to phosphorylate the pep- 
tide R R R E E E T E E E ,  a preferred substrate of  casein ki- 
nase II  (Kuenzel et al., 1987), and that Plkl was not inhib- 
ited by heparin (up to 500 ~g/ml), a potent  inhibitor of  
casein kinase II  (Pinna, 1990). Fig. 3 B shows that the 
casein kinase activity of Plkl  could also readily be distin- 
guished from that associated with p34~¢2/cyclin B: whereas 
Plkl  phosphorylated almost exclusively a-casein (lane 2) 
p34cdcE/cyclin B acted preferentially on [3-casein (lane 1). 

Plk l  Activity Peaks during Mitosis 

Having optimized experimental conditions for assaying 
Plkl  activity, we proceeded to carry out a detailed analysis 
of Plkl kinase activity during the cell cycle. HeLa  cells 
were either synchronized using drug arrest-release proto- 
cols (Figs. 4 and 5) or fractionated according to size by 
centrifugal elutriation (Fig. 6), and Plkl casein kinase ac- 
tivity was measured in immunoprecipitates. To provide a 
marker  for the timing of mitosis, the histone H1 kinase ac- 
tivity of  CDKs (particularly p34 edc2) was also determined 
for each sample. In these experiments, it was convenient 
to use p9 sue1 beads for the isolation of p34 cdc2 (Meijer et al., 

Figure 3. Comparison of Plkl with casein ki- 
nase II and p34 cdc2. (A) The use of GTP pro- 
vides a means to distinguish Plkl activity 
from casein kinase II activity. Plkl was immu- 
noprecipitated from an extract of Plkl-bacu- 
lovirus-infected Sf9 cells, and immune com- 
plexes were used for phosphorylating casein 
in the presence of the phosphate donors indi- 
cated above each lane (lanes 1-3). In parallel, 
the ability of casein kinase II (Promega) to 
phosphorylate casein was assayed under iden- 
tical conditions (lanes 4-6). [~-32p]ATP or 
[~-32P]GTP were provided at 4 ixCi, in the 
presence of 10 tzM unlabeled nucleotide 
triphosphate, whereas excess unlabeled GTP 
was added at 1 raM. The reaction products 
were analyzed by SDS-PAGE and autora- 
diography. The positions of molecular mass 
markers are indicated in kD. (B) Plkl prefer- 

entially phosphorylates o~-casein, whereas p34CdC2/cyclin B prefers [3-casein. The casein kinase activities of p34CdC2/cyclin B (lane 1) and 
Plkl (lane 2) were assayed in parallel and analyzed by SDS-PAGE and autoradiography. The positions of ~t- and [3-casein were deter- 
mined by Coomassie blue staining of the gel before autoradiography. The p34°d~2/cyclin B complex used in these experiments was iso- 
lated from mitotically arrested HeLa cells, using p9 sud beads (Maridor et al., 1993; Golsteyn et al., 1994). 
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Figure 4. Cell cycle-dependent activation of Plkl after release from a thymidine/aphidicolin block at G1/S. (A) HeLa cells were cul- 
tured for 14 h in the presence of 2 mM thymidine, and then for 14 h in fresh medium without thymidine, and finally, for 14 h in the pres- 
ence of 1 ixg/ml of aphidicolin. At time 0, cells were washed and replaced into fresh medium. Extracts were prepared from aphidicolin- 
arrested cells (time 0, lane 2), and at 2-h intervals after release from the aphidicolin block (lanes 3-11). For comparison, an extract was 
prepared also from exponentially growing cells (Expo, lane 1). Plkl and CDKs were isolated from all extracts by immunoprecipitation 
and absorption on p9 sue1 beads, respectively. Immunoprecipitated Plkl activity was assayed using casein as a substrate (top panel), 
whereas CDK activity associated with p9 sue1 beads was determined using histone H1 as a substrate (bottom panel). The reaction prod- 
ucts were analyzed by SDS-PAGE and autoradiography. Only the relevant portions of each autoradiogram are shown. (B) The amounts 
of [32p] incorporated into casein and histone H1, reflecting the activities of Plkl and CDKs, respectively, were quantitated by using a 
phosphorimager. They were plotted as a function of time after release from the aphidicolin block; for both substrates, values were nor- 
malized relative to the maximal phosphorylation (100%) observed at 14 h after release. The Plkl-associated casein kinase activity is rep- 
resented using filled symbols, whereas the CDK-associated histone H1 kinase activity is shown using open circles. (C) In parallel to the 
preparation of extracts for obtaining the data shown in panels A and B, a fraction of each cell population was used for FACS analysis. 
For each sample, the positions of the G1 phase peak and the G2/M phase peak are marked by small arrows. 

1989; Maridor et al., 1993; Golsteyn et al., 1994). These 
beads bind also to other members of the CDK family, but 
it appears safe to attribute the bulk of the measured activ- 
ity to p34 ~c2. During the cell cycle, complexes between 
this kinase and mitotic cyclins show at least tenfold higher 
histone HI  kinase activity than any other CDK/cyclin 
complex (Gabrielli et al., 1992). Furthermore, qualita- 
tively very similar results were obtained when histone H1 
kinase activities were measured in p34 cdc2 immunoprecipi- 
tates (data not shown). 

In a first experiment (Fig. 4), HeLa cells were synchro- 
nized at the G1/S boundary, using a thymidine/aphidicolin 
double block procedure adapted from Heintz et al. (1983). 
After release from drug arrest, ceils were collected at reg- 
ular intervals, and Plkl and CDK activities were mea- 
sured, using casein and histone H1 as substrates, respec- 
tively (Fig. 4, A and B). In parallel, the DNA content of 
each sample was analyzed by flow cytometry (Fig. 4 C). 
This experiment allowed us to survey a period correspond- 
ing to nearly one complete cell cycle. It revealed that the 
Plkl-associated casein kinase and the CDK-associated his- 

tone H1 kinase displayed a very similar cell cycle depen- 
dency. Both activities were low in cells at early stages of 
the cell cycle (0-8 h after release from the G1/S block), but 
increased drastically to reach maximal levels as cells 
passed through mitosis (12-16 h after release from the G1/S 
block). By 18 h after release, when the bulk of the cell pop- 
ulation had completed mitosis and reentered G1 phase, 
both Plkl and CDK activities decreased again. 

To corroborate the above results, Plkl and CDK activ- 
ities were also measured following release of cells from 
a prometaphase block imposed by nocodazole (Fig. 5). 
Under the experimental conditions used here, cells tra- 
versed mitosis within ~2 h, and daughter cells flattened 
onto the substratum by ~3-4 h (data not shown). As shown 
in Fig. 5, both Plkl-associated casein kinase and CDK- 
associated histone H1 kinase activities were high in no- 
codazole-arrested cells (lane 2), stayed high for ~60 min 
after removal of the drug (lanes 3-5), and declined with 
similar kinetics as cells exited from mitosis (lanes 6-8). We 
note that three proteins coprecipitating with Plkl (labeled 
a, b, and c) were reproducibly phosphorylated in these as- 
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Figure 5. Cell cycle~lependent inactivation of Plkl after release 
from a nocodazole block at prometaphase. HeLa cells were cul- 
tured for 14 h in the presence of nocodazole and mitotic cells 
were collected by mechanical shake-off. Extracts were prepared 
at time 0 (lane 2), as well as at the indicated times (in minutes) af- 
ter the release from the nocodazole block (lanes 3--8). For com- 
parison, an extract was prepared also from exponentially growing 
cells (Expo, lane 1). The casein kinase activity of immunoprecip- 
itated Plkl (top panel) and the histone H1 kinase activity of 
p9SUCl-absorbed CDKs (bottom panel) were then determined as 
described in the legend to Fig. 4, and the reaction products were 
analyzed by SDS-PAGE and autoradiography. The positions of 
molecular mass markers are indicated in kD. Arrows a, b, and c 
point to potential substrates coprecipitating with Plkl. 

says. One of these (protein c) may correspond to Plkl  it- 
self, but it will be interesting to identify the others and 
determine whether they are physiologically relevant sub- 
strates of Plkl.  

To exclude potential artefacts arising from the use of 
drugs for synchronization, HeLa  cells were subjected to 
size fractionation by centrifugal elutriation (Fig. 6). Each 
sample was then used for assaying the activities of immu- 
noprecipitated Plkl  and p9SUCl-adsorbed CDKs (Fig. 6 A, 
top and middle panel, respectively), and analyzed for 
D N A  content by flow cytometry (Fig. 6 B). In addition, 
the amount  of Plkl  protein in each fraction was deter- 
mined by immunoblott ing (Fig. 6 A, bottom panel). Con- 
sistent with the data shown in Figs. 4 and 5, we found that 
both Plkl  and C D K  activities were low in cell populations 
consisting predominantly of G1 and S phase cells (Frac- 
tions 1-3), but increased substantially as more and more 
cells progressed to the G2 and M phases of  the cell cycle 
(fractions 4-7). On  the basis of  these results we conclude 
that the human protein kinase Plkl is maximally active 
during mitosis. 

We have shown previously that Plkl  protein levels fluc- 
tuate during the cell cycle, being low during G1, and in- 
creasing progressively to reach a peak during mitosis (Gol- 
steyn et al., 1994). This finding is confirmed by the 
immunoblott ing data shown in Fig. 6 A (bottom panel). In- 
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Figure 6. Cell cycle--dependent activity of Plkl in cells synchro- 
nized by centrifugal elutriation. (A) Exponentially growing HeLa 
ceils were synchronized by centrifugal elutriation, as described 
previously (Draetta and Beach, 1988; Golsteyn et al., 1994). Plkl 
and CDKs were then isolated from each sample, as well as from 
exponentially growing ceils, and the activities of these kinases 
were assayed as described in the legend to Fig. 4, using casein as a 
substrate for Plkl (top panel) and histone H1 as a substrate for 
CDKs (middle panel). To determine the abundance of Plkl in 
each sample, each extract was also probed by immunoblotting 
with AR32 anti-Plkl antibodies (bottom panel). Only the rele- 
vant parts of the autoradiograms and the immunoblot are shown. 
(B) In parallel to the preparation of extracts for obtaining the 
data shown in A, a fraction of each cell population was used for 
FACS analysis. For each sample, the positions of the G1 phase 
peak and the G2/M phase peak are marked by small arrows. 

terestingly, however, a quantitative analysis of these data 
revealed that the increase in Plkl  protein cannot fully ac- 
count for the increase in kinase activity (data not shown). 
This suggests that posttranslational events may be re- 
quired for maximal activation of  Plkl.  

Association of  Plk l with the Mitotic Spindle Apparatus 

Previous immunolocalization studies carried out with mono- 
clonal antibodies against Plkl  had revealed that this kinase 
is diffusely distributed in both cytoplasm and nucleus dur- 
ing interphase stages of the cell cycle, but concentrated 
within postmitotic bridges in dividing cells (Golsteyn et al., 
1994). Prompted by the exquisite specificity of the R32 
rabbit anti-Plkl antibody described here (see Fig. 1), we 
reexamined the subcellular localization of  Plkl  using con- 
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Figure 7. Subcellular localization of Plkl in mitotic HeLa cells. HeLa cells were cultured on glass coverslips. Exponentially growing 
cells were treated, at room temperature, for 5 min with 3% paraformaldehyde, 2% sucrose in PBS, and then for 5 rain in 0.5% Triton 
X-100 in 20 mM Hepes, pH 7.4, 3 mM MgCI2, 50 mM NaCI, 300 mM sucrose, 0.02% NAN3, and finally, at -20°C, for 5 min with metha- 
nol. Then, they were washed with PBS, and sequentially incubated with the rat monoclonal anti-tubulin antibody YOL1/34 (Serotec, 
Oxford, UK), followed by fluorescein-conjugated goat anti-rat IgG antibody, and with AR32 anti-Plkl antibody, followed by biotiny- 
lated goat anti-rabbit IgG antibody and Texas red--conjugated streptavidin. Confocal microscopy was performed with an MRC 600 in- 
strument (BioRad Labs). In each panel, tubulin staining is shown on the left, and Plkl staining on the right. A, interphase cell with single 
centrosome; B, prophase cell with duplicated centrosomes; C, metaphase cell; D, anaphase cell; E, telophase cell; F, daughter cell pair in 
late telophase-early G1 phase. Bar in A indicates the magnification for panels A, B, C, and D and represents 10 ~m. Bar in F represents 
5 ~m. 

focal laser scanning microscopy. Exponentially growing 
HeLa cells were stained with affinity-purified rabbit R32 
anti-Plkl antibodies (Fig. 7; right hand panels), and, in par- 
allel, with the rat monoclonal anti-tubulin antibody YOL/34 
(Fig. 7; left hand panels). These experiments confirmed 
that Plkl is diffusely distributed throughout interphase 
cells (A) and associated with postmitotic bridges in divid- 
ing cells (F). More interestingly, however, they also re- 
vealed that Plkl undergoes a remarkable redistribution as 
cells progress through mitosis. In particular, we observed a 
prominent association of Plkl with centrosomes and spindle 

poles at early stages of mitosis (A-C), followed by a con- 
centration of Plkl in the equatorial region of the spindle 
and in the cleavage plane at later stages of mitosis (D-F). 
Plkl was detected at centrosomes already in interphase 
cells (A), and it persisted at spindle poles during prophase 
(B) and metaphase (C). During anaphase, however, Plkl 
immunoreactivity disappeared completely from the spin- 
dle poles (D). Instead, intense staining for Plkl arose in an 
equatorial plane corresponding to the spindle microtubule 
overlap zone (D). Plkl then persisted in a region corre- 
sponding to the cleavage plane throughout telophase (E), 
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and concentrated close to the midbody in the postmitotic 
bridges connecting the dividing cells (F; see also Golsteyn 
et al., 1994). At this time, staining of Plkl in the surround- 
ing cytoplasm was barely detectable, suggesting that either 
all Plkl had accumulated close to the midbody or that cy- 
toplasmic Plkl had been degraded. In additional experi- 
ments, cells were extracted with detergent before fixation 
with methanol and acetone (Nislow et al., 1993), with very 
similar results (data not shown). Attesting to the specific- 
ity of the R32 anti-Plkl antibody, we also note that very 
similar staining patterns were observed after transfection 
of HeLa cells with myc-epitope tagged Plkl, and subse- 
quent visualization of the ectopically expressed protein 
with anti-myc antibodies (data not shown). 

Discuss ion  

A Novel Protein Kinase Family Implicated in Cell 
Cycle Progression 

Human Plkl is a member of a newly emerging family of 
protein kinases. The founding member of this family is en- 
coded by polo, a Drosophila gene identified in the course of 
studies on mutants displaying mitotic arrest phenotypes 
(Sunkel and Glover, 1988; Llamazares et al., 1991). More 
recently, the S. cerevisiae gene CDC5 was found to encode a 
polo-related protein kinase (Kitada et al., 1993), and muta- 
tions in this gene cause yeast cells to arrest during late mi- 
totic division (Byers and Goetsch, 1974; Schild and Byers, 
1980; Kitada et al., 1993). Furthermore, when diploid cells 
homozygous for a temperature-sensitive cdc5 mutant allele 
were subjected to the restrictive temperature during meio- 
sis, they arrested at a stage following spindle pole body du- 
plication with an aberrant meiosis I spindle (Schild and 
Byers, 1980). Hence, genetic evidence suggests that polo- 
related kinases are required for both mitotic and meiotic 
divisions. 

Several laboratories have independently isolated cDNAs 
encoding a mammalian protein kinase, Plkl, that may rep- 
resent a functional homolog of the Drosophila polo and 
yeast Cdc5p (Clay et al., 1993; Lake and Jelinek, 1993; 
Golsteyn et al., 1994; Hamanaka et al., 1994; Holtrich et 
al., 1994). Over the entire protein, Plkl displays 52% se- 
quence identity with Drosophila polo, and sequence con- 
servation is not confined to the catalytic domain (65% 
identity) but extends to several motifs within the noncata- 
lytic COOH-terminal domain. Other mammalian polo- 
related protein kinases displaying a lower degree of se- 
quence similarity have also been described, notably the 
murine kinases Snk (Simmons et al., 1992) and Sak-a and 
Sak-b (Fode et al., 1994). Interestingly, the expression of 
Snk is strongly induced upon mitogenic stimulation of 
cells, suggesting that this kinase might play a role at early 
stages of the cell cycle (Simmons et al., 1992). Hence, it is 
possible that different members of the polo-like kinase 
family may all function in relation to cell proliferation, but 
may carry out distinct roles during the cell cycle, some- 
what reminiscent of the functional specialization of cyclin- 
dependent protein kinases. 

Recombinant Plkl  Is Active as a Casein Kinase 

No data have so far been available on the biochemical 

properties of any of the polo-related kinases identified in 
mammals. To obtain this indispensable information, we 
have raised a rabbit antibody (R32) that is exquisitely spe- 
cific for Plkl, and have constructed recombinant baculovi- 
ruses for expressing both wild-type and catalytically inac- 
tive Plkl in insect cells. Using these tools, we were then 
able to develop an in vitro kinase assay that allows us to 
reliably measure Plkl activity. When several commonly 
used protein kinase substrates were tested for their ability 
to be phosphorylated by Plkl, casein was found to be a 
preferred substrate. This result falls in line with previous 
studies showing that Drosophila polo and yeast Cdc5p also 
phosphorylate casein preferentially over histone H1 (Fen- 
ton and Glover, 1993; Kitada et al., 1993). More importantly, 
it provides the first biochemical evidence for a functional 
relationship between mammalian Plks and structurally re- 
lated kinases from lower eukaryotes. 

Human Plkl  Is Maximally Active during Mitosis 

Using both drug-arrest release protocols for cell cycle syn- 
chronization and centrifugal elutriation for size-fraction- 
ation of HeLa cells, we found that Plkl activity was low 
during interphase, but high as cells progressed through mi- 
tosis. We emphasize that possible contamination of Plkl 
immunoprecipitates by casein kinase II or p34 cdc2 cannot 
be invoked to explain these results: casein kinase II activ- 
ity has previously been shown to be virtually constant 
throughout the cell cycle (Litchfield et al., 1992; Krek, W., 
and E. A. Nigg, unpublished results) and p34 cdc2 phosphor- 
ylates 13-casein rather than et-casein (see Fig. 3 B). Parallel 
measurements of Plkl and p34 cdc2 kinase activities indicate 
that these two kinases display a very similar pattern of cell 
cycle-dependent activation and inactivation, at least 
within the temporal resolution afforded by our cell syn- 
chronization protocols. 

Our findings raise the question of how Plkl activity is 
regulated. Although nuclear run-off experiments suggested 
that Plkl transcription rates may be fairly constant, mRNA 
levels were shown to fluctuate during the cell cycle, reach- 
ing a peak at the G2/M transition (Lake and Jelinek, 
1993). In line with these results, we have shown previously 
(Golsteyn et al., 1994) and confirmed here (Fig. 6), that 
Plkl protein levels increase as cells progress from G1 to M 
phase. Interestingly however, this increased expression 
cannot fully account for the increased activity of Plkl dur- 
ing mitosis. In fact, we found that Plkl isolated from mi- 
totically arrested cells was ~4-6 times more active than an 
equivalent amount of Plkl from interphase cells (data not 
shown, but see Fig. 6). Thus, the activity of Plkl may be 
regulated by posttranslational mechanisms, and prelimi- 
nary results indicate that Plkl is phosphorylated during 
mitosis (Mundt, K. E., R. M. Golsteyn, and E. A. Nigg, un- 
published results). In this context, it is noteworthy also 
that when recombinant Plkl was immunoprecipitated from 
insect cells, the wild-type protein was phosphorylated in 
vitro, whereas the catalytically inactive K82R mutant was 
not (Fig. 2 C). Similarly, a phosphorylated protein of ~68 
kD was observed after performing protein kinase assays 
with Plkl isolated from mitotic human cells (Fig. 5, arrow 
c). These data suggest that Plkl might undergo autophos- 
phorylation. 
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On the basis of studies performed with Drosophila early 
syncytia embryos, which undergo synchronous and very 
rapid nuclear divisions, Drosophila polo was reported to 
be maximally active during late anaphase and telophase 
(Fenton and Glover, 1993). Hence, we were surprised to 
find that human Plkl was activated already at the G2/M 
transition (Figs. 4 and 6). In fact, the kinetics of activation of 
Plkl at the onset of mitosis were indistinguishable from 
those determined for the p34 cdc2 protein kinase. Likewise, 
upon release of cells from a prometaphase block Plkl and 
p34 cd~2 displayed very similar patterns of inactivation (Fig. 
5). No synchronization protocol presently available for 
cultured cells affords a degree of cell cycle synchrony that 
would match the synchrony observed in the early embryos 
of species such as Drosophila. Hence, we cannot exclude 
that a sharp spike of Plkl activity at the anaphase-telo- 
phase transition might have gone undetected in our studies. 
On the other hand considering the very similar activation 
patterns observed for Plkl and p34 cdc2, it appears difficult 
to escape the conclusion that Plkl is active before the on- 
set of anaphase. At present, we cannot readily reconcile 
our data with those reported for Drosophila polo, and it 
would clearly be interesting to study Plkl activity in other 
organisms displaying natural cell cycle synchrony, e.g., sea 
urchins (Meijer et al., 1989). This, however, will have to 
await the generation of appropriate tools. 

Plkl Associates with Multiple Components of the 
Mitotic Spindle 

The intracellular localization of Plkl suggests that this ki- 
nase may control processes related to spindle organization 
and chromosome segregation. Using monospecific anti- 
Plkl antibodies for confocal laser scanning immunofluores- 
cence microscopy, we observed that Plkl associated with 
centrosomes already in interphase cells. The kinase then 
remained associated with duplicating centrosomes during 
prophase and with spindle poles during metaphase. How- 
ever, at anaphase all Plkl immunoreactivity disappeared 
from the spindle poles and instead, strong Plkl staining was 
observed in the equatorial region of the cell where spindle 
microtubules emanating from opposite poles overlap. Fi- 
nally, at the end of telophase intense Plkl staining was seen 
within postmitotic bridges, where Plkl protein became 
concentrated on both sides of the midbody. 

Thus, during the period of its maximal activity, Plkl un- 
dergoes multiple transient associations with different ele- 
ments of the mitotic spindle. With present technologies, it 
is not possible to assay protein kinase activities in situ, and 
hence we do not know at which of the various described 
locations Plkl is active. However, our data are consistent 
with the possibility that Plkl may act upon as yet unidenti- 
fied substrates already at the onset of mitosis, when it is 
associated with the centrosomes, and then later during 
metaphase, when it is bound to spindle poles. In this con- 
text, it is interesting that mutations in Drosophila polo 
resulted in a disruption of centrosome organization, as 
visualized by a loss of staining by an anti-centrosomal anti- 
body (Llamazares et al., 1991). Thus, Drosophila polo may 
also be required not only during anaphase and telophase, 
when it was reported to be maximally active (Fenton and 
Glover, 1993), but already at earlier stages of mitosis. 

With the onset of anaphase, centrosome staining by anti- 
Plkl antibodies disappeared and was replaced by strong 
staining in the spindle midzone area. We cannot formally 
exclude that these results simply reflect a concomitant 
masking and unmasking of Plkl epitopes, but the most 
straightforward interpretation of our data is that the Plkl 
protein undergoes a profound redistribution at the meta- 
phase to anaphase transition. Other proteins that ulti- 
mately collect in postmitotic bridges are also recruited to 
the spindle midzone at the metaphase to anaphase transi- 
tion, but it is interesting that several of these proteins first 
localize to chromosome arms or kinetochores (Rattner, 
1992; Nislow et al., 1992; Earnshaw and Pluta, 1994). Ex- 
amples of this are provided by CENP-E (Yen et al., 1991), 
CENP-F (Rattner et al., 1993), and the inner centromere 
proteins (INCEPs; Cooke et al., 1987; Earnshaw and 
Cooke, 1991). In contrast, there is presently no evidence 
that Plkl would associate with chromosomes at any stage 
of mitosis. Hence, it will be interesting to determine with 
what components of the mitotic spindle Plkl associates, 
and what mechanisms control the observed redistribution 
from spindle poles to midzone. To approach this issue, we 
have constructed several Plkl mutants for use in both 
transfection experiments and yeast two-hybrid screens. 

Concerning the function of the redistribution of Plkl 
from spindle poles to spindle midzone, two alternative, but 
not mutually exclusive, possibilities come to mind. On the 
one hand, Plkl may continue to be active during anaphase 
and telophase, and hence may phosphorylate substrates in 
the vicinity of the equatorial spindle microtubules. On the 
other hand, it is possible also that Plkl translocates to the 
miotic spindle in preparation for its own destruction. We 
have argued previously that Plkl protein levels might be 
reduced at the end of cell division, simply by shedding of 
postmitotic bridges (Golsteyn et al., 1994). Alternatively, 
or in addition, it is possible that Plkl protein may be sub- 
ject to degradation at the end of mitosis. Plkl levels drop 
later in mitosis than those of cyclins A and B (Murray and 
Hunt, 1993), but this does not exclude that Plkl might be 
degraded by a similar type of proteolytic mechanism. In 
support of this possibility, it has recently been proposed 
that the motor protein CENP-E is specifically destroyed at 
the end of mitosis (Brown et al., 1994). 

In future studies, it will be interesting to determine how 
Plkl activity is regulated during the cell cycle, and to es- 
tablish possible links between Plkl and known regulatory 
elements of mitotic control, particularly the CDK/cyclin 
complexes. Furthermore, it will be important to identify 
the physiological substrates of Plkl, Drosophila polo, and 
yeast Cdc5p. In this regard, the information on the activity 
and subcellular localization of Plkl, as well as the avail- 
ability of active recombinant Plkl, should be very helpful. 
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