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Abstract: The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral popula-
tions, among which lactic acid bacteria (LAB) are majority components with a prominent role during
manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial
biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors.
Cooperative and competitive interactions between distinct members of the microbiota may occur,
with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic
details of these interactions, and their functional consequences, are largely unknown. Acquiring such
knowledge is important if we are to predict when fermentations will be successful and understand
the causes of technological failures. The experimental use of “synthetic” microbial communities
might help throw light on the dynamics of different cheese microbiota components and the interplay
between them. Although synthetic communities cannot reproduce entirely the natural microbial di-
versity in cheese, they could help reveal basic principles governing the interactions between microbial
types and perhaps allow multi-species microbial communities to be developed as functional starters.
By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might
be expected to be more resilient and efficient than conventional starters in the development of unique
sensorial properties.

Keywords: cheese; cheese microbiota; lactic acid bacteria; starters; adjunct cultures; cheese quality;
cheese safety; high throughput sequencing; microbial interactions; community assembly

1. General Introduction

Cheese is a fermented milk product that dates back to Neolithic times. Traditionally,
cheese was a milk-derived food that served as a means of preserving milk and its remark-
able nutritive properties. Currently, the Codex Alimentarius defines cheese as “a ripened
or unripened, soft, semi-hard, hard, or extra-hard, dehydrated milk-derived product in which the
whey protein/casein ratio does not exceed that of milk” [1]. Thus, cheese is the generic name
for a group of milk-derived food products that come in a great variety of forms, sizes,
textures, aromas, and tastes. The use of milk from distinct species (cows, sheep, goats,
yaks, buffalos, moose, llamas) or their mixtures and the different technological operations
employed in coagulation (e.g., acidification or the addition of animal rennet- or microbial-
and plant-derived coagulants), the cutting of the coagulum (from rice grain to walnut size),
whey drainage, washing, heating (from 30 ◦C to 55 ◦C), pressing, salting (between 1%
and 5% NaCl), ripening, dehydration, immersion (in oil, wine or brine), wrapping (with
ash or flour, etc.), and the addition of spices (pepper, cumin, clover, rosemary, aromatic
herbs, garlic, etc.) or colorants (chlorophylls, paprika, annatto) make cheese one of the
most diverse of all foodstuffs [2,3] (Figure 1).
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Figure 1. Schematic diagram of the cheese manufacturing processes and types of the resulting cheese varieties. 
Figure 1. Schematic diagram of the cheese manufacturing processes and types of the resulting cheese varieties.
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The sensorial properties of cheese depend on the milk type used, the feed given to
the providing animal, the manufacturing practices involved, the ripening environment,
the duration of ripening, and the type, numbers and activity of the microorganisms in the
forming product [4,5]. Microorganisms are responsible for the fermentation of milk and for
the many biochemical reactions occurring during manufacturing and ripening, which give
rise to the distinctive cheese-associated textures and flavors.

In the wake of the booming amount of microbial data obtained through state-of-the-art
molecular methods, this review presents updated knowledge on the composition of the
cheese microbiota and summarizes the microbial interactions taking place in the cheese
ecosystems. The review shows a strong focus on the biotic and abiotic factors driving the
development and succession of the microbial populations and points out the potential use
of this knowledge to improve the sensorial properties and safety concerns of cheese.

2. Cheese Starters and Adjunct Cultures

Milk can be coagulated by heating, by the formation or addition of acid, by the use
of a natural coagulant (such as rennet), or a combination of these treatments (Figure 1).
Spontaneous acidification is caused by the growth of lactic acid bacteria (LAB), a diverse
bacterial group the members of which generate lactic acid as the main end-product of
lactose fermentation. The typical LAB are arranged into the genera Lactococcus, Lactobacillus,
Leuconostoc, and Pediococcus [6,7]. Via the action of complex anabolic and catabolic systems,
the growth of LAB modifies the constituents of the milk (carbohydrates, proteins and
lipids) [8]. These modifications do not involve nutritional or sensorial losses; rather, they in-
crease the bioavailability and diversity of nutrients and improve the quality and complexity
of flavor profiles [9]. LAB naturally present in milk or on manufacturing tools and in the en-
vironment [10–16] are still relied upon in many traditional fermentations [17–28]. However,
improvement in milk hygiene (mainly by refrigeration and pasteurization practices) and the
need for standardization have promoted the generalized use of starters [11,13], i.e., selected
strains of different LAB species deliberately added to the milk to control the fermentation
and standardize the quality of the fermented product (Table 1). Not surprisingly, in the
search for improved starters, most microbial studies of cheese have focused on the isolation
and characterization of new LAB strains of species such as Streptococcus (S.) thermophilus,
Lactococcus (Lc.) lactis, Lactobacillus (Lb.) sp., and Leuconostoc (Leuc.) sp. [24,29–38]. In the
industry, however, the term “starter” refers to all microorganisms added to the milk with
a technological purpose, e.g., for improving the appearance, texture, and/or flavor of
the final product, and thus also covers LAB species not involved in acidification, the
so-called non-starter LAB (NSLAB) [39,40]. In certain cheeses, it also covers bacteria of
the genera Propionibacterium (Emmental, Gruyère), Brevibacterium, and Corynebacterium
(smear-ripened cheeses), molds and yeasts such as Penicillium (P.) roqueforti (blue-veined va-
rieties), P. camemberti (white moldy varieties), Geotrichum (G.) candidum, Debaryomyces (D.)
hansenii (moldy and smear-ripened cheeses), and others [39,40]. These secondary types of
microorganisms are usually referred to as adjunct and/or ripening cultures (Table 1).

Table 1. Current common species used as “starters” in industrial dairy fermentations.

Microbial Group/Species Cheese Type of Starter Main Role/s

Lactic acid bacteria

Lc. lactis subsp. lactis
Lc. lactis subsp. cremoris Most cheeses Primary Acidification, flavor development

S. thermophilus
Lb. delbrueckii subsp. lactis Italian and Swiss types Primary Acidification, flavor development

Leuc. mesenteroides subsp.
cremoris

Leuc. lactis
Soft and semi-hard Secondary/adjunct Flavor development, CO2 production

Lb. helveticus Semi-hard, hard Secondary/adjunct Flavor development, health benefits
Lb. casei/Lb. paracasei Artisanal Secondary/adjunct Flavor development

Lb. plantarum Artisanal Secondary/adjunct Flavor development



Foods 2021, 10, 602 4 of 28

Table 1. Cont.

Microbial Group/Species Cheese Type of Starter Main Role/s

Propionibacteria

Propionibacterium freudenreichii Swiss-type Secondary/ripening Hole formation, flavor development

Other bacteria

Brevibacterium linens Smear-ripened Secondary/ripening Color, flavor development
Corynebacterium casei Smear-ripened Secondary/ripening Flavor development

Fungi

P. camemberti White moldy Secondary/ripening Aspect, texture,
and flavor developmentP. roqueforti Blue-veined Secondary/ripening

G. candidum Smear-ripened Secondary/ripening

Compiled and modified from Fox et al. [39] and Parente and Cogan [40].

3. Cheese Microbiology

The microbial composition of cheese and the microbial succession of the microorganisms
in the cheese matrix have traditionally been assessed by culturing methods [25,26,41–49]. These
rely on the isolation and cultivation of microorganisms before their identification and
typing. However, culturing has repeatedly been shown unreliable for the exhaustive
microbial characterization of many food ecosystems [50–52]. For example, the selective
isolation of certain microbial taxa may require unknown growth factors and/or growth
conditions that are not reproduced in the laboratory media [53]. Besides, cheese can
have a low pH, a reduced aw, and is commonly kept under harsh storage conditions
(e.g., at low temperatures or in strong brine), all of which might leave certain microbes
in a physiologically viable but non-cultivable state [54]. Further, microbes present in
low numbers can be outcompeted in culture by numerically abundant species, impeding
the effective detection of the former [45,55–57]. The culture techniques can therefore
underestimate the microbial diversity present and sometimes even fail to detect some
majority microbial groups.

Helping to overcome the problems of culturing, numerous culture-independent,
molecular methods based on the amplification of nucleic acids by polymerase chain
reaction (PCR) have been developed, such as denaturing gradient gel electrophoresis
(DGGE) [23,57–61], temporal temperature gradient electrophoresis (TTGE) [45,62], real-time
quantitative PCR (qPCR) [63,64], single strand conformation polymorphism (SSCP) [65,66], the
construction and analysis of gene libraries [46,66], and others [67]. The basis, similarities,
differences and main outputs of such techniques, all of which have been extensively used
to investigate the microbiology of cheese and dairy systems, are schematically depicted in
Figure 2. As an example of the value of using such molecular techniques, Leuc. lactis and
Mycoplasma agalactiae, constituting subdominant populations in two farmhouse goats’ milk
cheeses and detected by PCR-TTGE, could never be recovered from cultures [45]. Similarly,
although many Arthrobacter and Brevibacterium species were detected by PCR-DGGE in
the smear-ripened Limburger cheese, only strains of Arthrobacter (Arthr.) arilaitensis and
Brevibacterium (Brev.) aurantiacum have been retrieved by culturing [42]. Further, during the
microbial typing of natural whey cultures for water-buffalo Mozzarella cheese production,
Lb. fermentum, a majority population as judging by PCR-DGGE, was not recovered in
culture [58]. Nonetheless, different LAB species have been found dominant in most cheeses
both by culturing and molecular techniques, but only the latter were able to associate cheese
ecosystems with occasional subdominant populations and minority microorganisms such
as Agrococcus and Leucobacter [56], Massilia sp. [57], and Bifidobacterium sp. [68].
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Figure 2. Flow chart of different microbial culture-independent molecular methods, including the main steps and final
outputs, applied in cheese microbiology.

More recently, the advent of high throughput sequencing (HTS) of DNA has promoted
the emergence of new, culture-independent technologies [69–73]. For metagenomics pur-
poses, HTS can be used in two distinct ways: gene-specific sequencing (targeted sequenc-
ing) and the sequencing of all the microbial nucleic acids present (shotgun sequencing)
(Figure 2). Compared to earlier molecular methods, HTS techniques analyze a vastly greater
number of nucleic acid molecules, allowing for a much more comprehensive description
of a cheese’s microbial constituents. After a pioneering use of pyrosequencing [68,74–77],
Ilumina [73,78] and PacBio [79,80] technologies are currently the gold standard HTS tech-
niques. Surprisingly, HTS has uncovered an unprecedented microbial diversity in cheeses.
For example, 132 genera of the Bacteria and Archaea domains have been identified on
the surface of a Swiss smear-ripened cheese [81]. Also, 238 species belonging to 14 phyla
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and 140 genera were recently identified in a Kazakh cheese [80], and up to 574 operational
taxonomic units (OTUs) have been reported in traditional Mexican Cotija cheese [82].

LAB reads usually account for > 90% of the sequences (Lactobacillus, Leuconostoc,
Weissella, Enterococcus, and Lactococcus) detected within the inner part of the cheese, but
only less than 30% of reads from certain surfaces [83]. The HTS-based discovery of se-
quences belonging to microbes previously undetected in the dairy environment [84,85]
may allow for the isolation and characterization of new biotypes by conventional [86] and
novel cultivation techniques (“culturomics”) [53,87]. Further, the integration of data from
culturing and culture-independent techniques (including genomics, metagenomics, meta-
transcriptomics, and metabolomics) is expected to provide insights into the cause–effect
relationships between microbes and the metabolites that shape the sensorial descriptors
of cheese, such as organic acids, fatty acids, amino acids, volatile compounds, etc. [88,89].
Certainly, while the inventory and succession of bacteria, yeasts, and molds in some cheeses
are known, the functional features of the different populations are yet to be understood.
By and large, most studies have been descriptive, and relatively little is known about the
mechanisms that govern the architecture and dynamics of microbial populations or the
molecular interactions between their members. Indeed, the activity in the cheese matrix
of some uncultured/uncharacterized microbes may have a huge impact on the overall
quality and safety of some cheeses [90,91]. However, understanding the technological
importance and biological significance of such phenotypic microbial diversity and the
genetic redundancy in cheese remains a challenge.

4. The Cheese Microbiota

Whether fermented in a natural manner, or with the aid of starter and/or adjunct
cultures, most cheeses contain a complex mixture of microbial populations—including
technologically-relevant, spoilage, opportunistic and pathogenic organisms—that develops
and changes throughout manufacturing and ripening [11,92,93]. All these microbes consti-
tute the microbiota of the cheeses (Table 2). Both intrinsic (substrates, vitamins, cofactors,
the presence of inhibitory/activator compounds, pH, redox potential) and extrinsic factors
(oxygen availability, temperature, salt, relative humidity) drive the numbers and spatial
and temporal distribution of the members of the microbiota [89,94]. The populations
of the microbiota are composed of prokaryotic Archaea and Bacteria, eukaryotic yeasts
and fungi [74,81,82,95,96], and viruses (mainly bacteriophages) [97–99]. The microbiota
of cheese can be as simple as that of yogurt and other kinds of fermented milks, with
perhaps just one or a very small number of LAB species present, such as in Petit-Suisse
(S. thermophilus and Lb. delbrueckii subsp. bulgaricus) [100] and Quark (Lc. lactis subsp.
lactis and Lc. lactis subsp. cremoris) [101]. More often, however, the cheese microbiota is
composed of a consortium of diverse microorganisms and varies widely from one variety
to another, although the dominant microbial types for each cheese type (soft, hard, natural
rind, smear-ripened, blue-veined, etc.) are usually similar [42,102–104]. The microbiota
becomes particularly complex in blue-veined and smear-ripened varieties (Table 2). As in
other ecosystems, the diversity of the microbiota in cheese is governed by classical ecologi-
cal processes, such as dispersion, diversification, environmental selection, and ecological
drift (Figure 3). Microbial diversity and numbers are also influenced by the environmental
interaction of biotic (natural fermentation, use or not of starters, presence of contaminat-
ing microbes and microbial metabolites) and abiotic factors (technological processes and
environmental conditions), which modulate the implantation, development and, more
importantly, the activity of the different microbes (Figure 3). Together, these variables
determine the growth and function of the microorganisms and, therefore, some of the key
biochemical changes they drive during ripening that lead to the unique appearance, texture,
aroma and taste properties of each cheese variety, as well as their safety quality [4,8,105].
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Table 2. Non-exhaustive compilation of microbial studies of traditional cheeses, technologies applied, and dominant populations identified or detected.

Cheese/Type, Country
(Milk Type) Technique Microbial Target No. of Specimens Main Families/Genera/Species (Relative Abundance);

Sampling Point Reference

Culturing

Bryndza/soft Feta-type,
Slovakia (Sheep) Culturing Fungi 5 species Geotrichum candidum > Kluyveromyces marxianus > Pichia

fermentans > Candida inconspicua > Trichosporon cutaneum Laurencík et al. [106]

Cabrales/blue-veined, Spain
(Cow, sheep, and goat) Culturing LAB 15 species Lc. lactis subsp. lactis > Lb. plantarum > Leuc. mesenteroides

> Leuc. citreum > Enterococcus > Lb. paracasei Flórez et al. [107]

Gubbeen/smear-ripened,
Ireland (Cow) Culturing Corynebacteria 39 species

Corynebacterium casei (50.2%) > Corynebacterium
mooreparkense (26%) > Microbacterium gubbeenense (12.8%);

cheese rind
Brennan et al. [48]

May bryndza/soft, Slovakia
(Sheep) Culturing Bacteria

Fungi
5 species

17 species

Lc. lactis subsp. cremoris > Lc. lactis subsp. lactis >
Mannheimia glucosida

G. candidum > Penicillium > Beauveria brongniartii >
Alternaria alternata

Pangallo et al. [108]

Rinds of
33 cheeses/smear-ripened,

various countries
(Cow, sheep, or goat)

Culturing,
sequencing Microbes 104 bacterial genera,

39 fungal genera

Staphylococcus (78%) > Brevibacterium (75%) >
Corynebacterium (75%) > Arthrobacter (66%) >

Lactococcus (50%) > Enterococcus (41%) >
Brachybacterium (38%) > Microbacterium (38%) >

Psychrobacter (33%) > Halomonas (31%) >
Lactobacillus (25%) > Streptococcus (22%) >

Marinilactibacillus (22%) > Pseudoalteromonas (22%) >
Agrococcus (19%) > Micrococcus (19%) > Vibrio (19%) >

Vagococcus (16%) > Facklamia (16%)
Debaryomyces (86%) > Yarrowia (57%) > Candida (54%) >

Geotrichum (49%) > Kluyveromyces (32%) > Pichia (22%) >
Penicillium (19%) > Scopulariopsis (8%) > Fusarium (8%)

Irlinger et al. [12]

Scamorza Altamurana/pasta
filata, Italy (Cow) Culturing LAB 10 species Lb. delbrueckii > Streptococcus macedonicus > S. thermophilus >

Enterococcus durans > Lb. fermentum > Lb. paracasei Baruzzi et al. [28]

Culturing and molecular methods

Casín/kneaded, Spain (Cow) Culturing
DGGE

Bacteria 14 species Lc. lactis subsp. lactis > Lactococcus garvieae >
Staphylococcus saprophyticus > Klebsiella > Lb. plantarum

Alegría et al. [25]Bacteria
(V1-V2 16S rDNA) 14 OTUs

Lc. lactis, Streptococcus parauberis, S. thermophilus,
Lc. garvieae, Lb. plantarum, Enterobacter, Corynebacterium

variabile, Lb. paracasei, Macrococcus caseolyticus
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Table 2. Cont.

Cheese/Type, Country
(Milk Type) Technique Microbial Target No. of Specimens Main Families/Genera/Species (Relative Abundance);

Sampling Point Reference

Castelmagno/semi-hard, Italy
(Cow)

Culturing
PCR-DGGE

LAB
Bacteria (V1 16S

rDNA)

11 species
7 OTUs

Lc. lactis subsp. lactis > Lb. plantarum > Lc. paracasei
>Enterococcus faecium >E. durans

Lb. plantarum, Lb. kefiranofaciens, Lactobacillus, Lc. lactis,
Streptococcus agalactiae, M. caseolyticus

Dolci et al. [44]

Cueva de la Magahá/hard,
Spain (Goat)

Culturing
PCR-TTGE

Bacteria
Bacteria

(V3 16S rDNA)

10 species
8 species

Lb. paracasei > Lb. plantarum > Lb. brevis > Lactobacillus >
Enterococcus

Lb. plantarum, Lb. brevis, Lc. Lactis, S. thermophilus,
Staphylococcus equorum, Lb. curvatus, Lb. paracasei

Martín-Platero et al.
[45]

Grana Padano/hard, Italy
(Cow) LH-PCR LAB 6 species Lb. rhamnosus > Lb. paracasei > Lb. delbrueckii >

Pediococcus acidilactici Santarelli et al. [22]

Livarot/smear-ripened, France
(Cow)

Culturing
Cloning

Bacteria/yeasts
Bacteria

(V4 16S rDNA)

8 bacteria, 5 yeasts species
8 species

M. gubbeenense > Leucobacter komagatae > Halomonas;
cheese rind

Candida catenulata > Candida intermedia > G. candidum >
Geotrichum > Yarrowia lipolytica; cheese rindHalomonas >

L. komagatae > M. gubbeenense; cheese rind

Mounier et al. [43]

Nottinghamshire/blue-veined,
UK (Cow)

Culturing
PCR-DGGE

Bacteria
Bacteria (V3, V4-V5,
V6-V8 16S rDNA)

12 species
11 OTUs

Lc. lactis subsp. lactis > E. faecalis > Kokuria > Lactobacillus
Lc. lactis, Lb. plantarum, Staph. equorum Yunita and Dodd [55]

Ragusano/pasta filata, Italy
(Cow) PCR-DGGE

Bacteria (V6-V8,
V1-V3 16S rDNA or

rRNA)
12 species S. thermophilus, Lb. fermentum, Lb. delbrueckii, Lc. lactis,

Leuc. mesenteroides, Lb. casei, Enterococcus hirae > E. faecalis Randazzo et al. [61]

Salers/semi-hard, France (Cow) PCR-SSCP Bacteria
(V2 16S rDNA) 9 OTUs

E. faecium, Leuconostoc, Enterobacteriaceae, Bacillus
thuringiensis, S. thermophilus, Leuc. pseudomesenteroides, Lb.

pentosus, Corynebacterium variabilis,
Brachybacterium nesterenkovii

Duthoit et al. [66]
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Table 2. Cont.

Cheese/Type, Country
(Milk Type) Technique Microbial Target No. of Specimens Main Families/Genera/Species (Relative Abundance);

Sampling Point Reference

Saint Nectaire/smear-ripened,
France (Cow)

Culturing
SSCP-PCR

Bacteria
Bacteria

21 species
12 OTUs

Lc. lactis > Staphylococcus fleurettii > E. faecalis > S.
thermophilus > Marinilactibacillus psychrotolerans >

Chryseobacterium > Klebsiella
Lc. lactis, S. thermophilus, Clostridium confusum,

Nocardioides dubius, Arthrobacter psychrolactophilus,
Enterobacter agglomerans

Delbès et al. [46]

Molecular methods/high throughput sequencing

Artisan cheeses/various, Ireland
(Cow, goat, or sheep) Pyrosequencing Bacteria

(V4 16S rDNA)
5 phyla

21 genera

Lactococcus (50–90%) > Lactobacillus > Leuconostoc >
Pseudomonas > Psychrobacter > Staphylococcus >

Arthrobacter > Faecalibacterium; common to 62 cheeses
Quigley et al. [76]

Buryatian/soft, Kazakhstan
(Cow) PacBio sequencing Microbes 7 phyla, 82 genera,

145 species

Lactococcus (51.46%) > Streptococcus (17.81%) >
Pseudomonas (5.48%) > Acetobacter (4.83%) >

Klebsiella (3.36%) > Lactobacillus (2.36%) > Acinetobacter
(1.84%) > Raoultella (1.63%)

Jin et al. [79]

Canestrato Pugliese/hard, Italy
(Sheep) Pyrosequencing Bacteria

(V1-V3 16S rDNA) 28 genera Lactococcus (87.2%) > Lactobacillus (4.8%; mainly
Lb. plantarum and Lb. sakei) > Leuconostoc (3.9%)

De Pasquale et al.
[109]

Cheddar/semi-hard, UK (Cow) Illumina sequencing Bacteria
(V4 16S rDNA) 159 OTUs Streptococcus > Lactococcus > Lactobacillus >

Staphylococcus (70%); interior Afshari et al. [110]

Gouda-like cheese/semi-hard,
USA (Cow) Illumina sequencing Bacteria

(V4 16S rDNA) 36 genera Bacillaceae > Lactococcus > Lactobacillus > Streptococcus >
Staphylococcus Salazar et al. [111]

Cotija/hard, Mexico (Cow) Illumina sequencing Microbes 31 phyla, 574 genera

Lb. plantarum > Leuc. mesenteroides >
Weissella paramesenteroides (>80%)

Aerococcus > Enterococcus > Lactococcus >
Staphylococcus (<10%)

Escobar-Zepeda et al.
[82]

Grana/hard, Italy (Cow) RT-PCR-DGGE
Pyrosequencing

Bacteria
(V1 16S rDNA)

Bacteria
(V1-V3 16S rDNA)

16 OTUs
25 genera

Lb. helveticus, Lb. delbrueckii, S. thermophilus, Lb.
acidophilus, Lb. rhamnosus, Acetobacter baumanii,

Propionibacterium
Lb. helveticus > Propionibacterium > Lb. delbrueckiii > Lb.

casei > Lb. rhamnosus > S. thermophilus > Staphylococcus >
Lb. brevis

Alessandria et al.
[95]
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Table 2. Cont.

Cheese/Type, Country
(Milk Type) Technique Microbial Target No. of Specimens Main Families/Genera/Species (Relative Abundance);

Sampling Point Reference

Artisanal cheeses/soft,
Kazakhstan (Cow) PacBio sequencing Microbes 14 phyla, 140 genera,

238 species
Lc. lactis (28.93%) > Lb. helveticus (26.43%) >

S. thermophilus (12.18%) > Lb. delbrueckii (12.15%) Li et al. [80]

Ocosingo/semi-hard, Mexico
(Cow) Pyrosequencing Bacteria

(V1 16S rDNA) 162 OTUs S. thermophilus > Lc. lactis > Lb. helveticus > Lb. delbrueckii
> Lb. plantarum (70%); interior

Aldrete-Tapia et al.
[17]

Tomme d’Orchies/semi-hard,
France (Cow) Illumina sequencing Bacteria

(V1-V3 16S rDNA)
10 species core,

21 species surface

Lactococcuss > Streptococcus (66%); interior
Lactobacillus > Lactococcus > Corynebacterium >

Micrococcales > Psychrobacter (80%); surface
Ceugniez et al. [83]

Tomme d’Orchies/semi-hard,
France (Cow) Illumina sequencing Fungi 5.8S-ITS2 30 OTUs

Y. lipolytica > G. candidum/
Galactomyces geotrichum (99%); interior

Y. lipolytica > G. candidum/
Galactomyces geotrichum (98%); surface

Ceugniez et al. [112]
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Cheese bacteria belong mainly to the phyla Firmicutes (LAB, enterococci, staphylo-
cocci), Actinobacteria (corynebacteria, propionibacteria, bifidobacteria), and Proteobacte-
ria (enterobacteria) [55,56,83,104,107]. The archaeal taxa include members of Thermocla-
dium, Sulfurisphaera, Methanohalobium, and others; these are minority populations (< 0.5%
relative abundance) and have only ever been detected by molecular methods [57,81,82].
Among the eukaryotes, the dominant yeasts belong to the genera Geotrichum, Debaryomyces,
Kluyveromyces, Candida, and Yarrowia, and the filamentous fungi are molds such as P. camemberti,
P. roqueforti and other Penicillium species, which are abundant in mold-ripened cheese vari-
eties [12,47,106,112,113]. Other filamentous fungi such as Fusarium domesticum, Scopular-
iopsis (Sc.) flava and Sc. casei are also found in low numbers on the surface of most
cheeses [12,14,96]. Except for P. roqueforti, all these other mold species are only known
from cheese, suggesting they are adapted (“domesticated”) to this particular habitat. In
particular, P. camemberti derives from the wild ancestor Penicillium commune in a quick
adaptation process that involves reduced reproductive output, reduced mycotoxin produc-
tion, reduced pigmentation and, significantly, a change in the volatile compound profile
from earthy to cheesy [114]. The genetic basis of this rapid “evolution” has proven to be
through gene regulation instead of genome changes [114]. Lc. lactis subpopulations of
the lactis and cremoris subspecies in dairy environments are also thought to be adapted
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through domestication processes [115,116]. These, and the domesticated strains of other
LAB species found only in milk and dairy products, seem to have emerged recently due to
the selective pressure imposed by the dairy technologies [117].

Though highly variable between varieties, the concentration of bacteria in ripened
cheese may exceed 109 colony forming units (cfu)/g [5,25,108,118], while those of yeasts
and filamentous fungi range widely between 102 and 107 cfu/g [5,28,96,106,113,119]. De-
pending on the microbial taxon, maximum numbers are reached by the end of the fer-
mentation (e.g., Lc. lactis), between day 7 to 17 (e.g., Lactobacillus spp.) after one to two
months of ripening (e.g., filamentous fungi). Once the highest level is reached, numbers
are declining slightly but consistently afterward. Variations in the composition and/or
dynamics of the microbial communities making up the typical microbiota of a given cheese
can lead to serious technological and sensorial defects [84,85,120–122] and even pose food
safety risks [123,124].

5. Microbial Interactions in Cheese

In nature, microorganisms live in complex communities, in which different direct and
indirect, cooperative and competitive microbial interactions can occur (Figure 3). Microbial
interactions are mediated through a variety of molecular and physiological mechanisms, of
which trophic interactions (cross-feeding) and the exchange of metabolites are the most
typical. Trophic food chains enable multiple groups of organisms to survive on limited
resources, increasing community diversity [125,126]. Conversely, some microbes can be
inhibited or killed by metabolic substances or antimicrobial compounds produced by other
components of the microbiota [127–129]. In general, the interactions between the different
microorganisms impact the final composition and diversity of the cheese microbiota, but
particularly its functionality [130,131]. In the context of milk fermentation, direct interac-
tions refer to parasitism and apply mostly to phage-bacteria predation [132]. Under the
changing environmental conditions throughout manufacture and ripening, bacteriophages
are considered key players in the dynamics of the cheese microbial communities [133].
Phage predation ensures bacterial diversity by suppressing abundant strains (by the “kill
the winner” theory), stabilizing the overall functionality of the host community [134].
Phages may have a tremendous effect on the fermentation, in which LAB populations
need to attain high cell numbers in a very short time [132]. A fermentation failure leads
usually to a subsequent improper ripening process downgrading the sensory properties
of the final product. Regardless of this importance, due to the inanimate living nature
of the phages, the direct bacteriophage–bacteria interactions are outside the scope of this
review. Many different types of indirect interactions between the other microbial types
exist [135,136], although, as in other ecosystems, the four main types in cheese involve
competition, amensalism, commensalism, and mutualism [137–140].

5.1. Competition

In competition, two or more microorganisms compete for nutrient and energy re-
sources in a manner that negatively affects both. The success of LAB in milk is due to
their efficient use of the nutrients found in this medium, which include lactose (a rare
sugar outside milk, the utilization of which requires specific transport and degradation
machinery [141]), and the ability to degrade milk proteins (caseins) and efficiently take up
the released amino acids and peptides [140]. Other organisms are limited by the inability of
using lactose and/or the small amounts of freely available nitrogenous substrates [142,143].
Iron and zinc are also thought to be limiting micronutrients in dairy products [84]. Some
microorganisms, such as Arthrobacter, Corynebacterium, yeasts, etc., produce siderophores to
help take up these essential trace elements, while siderophore-deficient bacteria such as
Brevibacterium and Microbacterium, etc., have molecular systems that help them to “steal”
siderophores from their producers [84,144]. Understanding these interactions is essential,
for instance, to selecting starter species and strains (or mixtures of strains) with efficient
metal acquisition systems [145,146], which will allow them to strive for growth in dairy systems.
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5.2. Amensalism

Amensalism involves interactions in which one type of microorganism negatively
affects another without being affected itself. This type of relationship is commonly seen
in dairy fermentations, where strains of many LAB species produce organic acids (lactic
and acetic acids) that are effective inhibitors of susceptible microorganisms [128,129]. In
addition to reducing the pH when released into the surrounding medium, they also have
a direct inhibitory effect resulting from their undissociated forms by diffusing through
the cell membranes and releasing H+ ions that acidify the cell cytoplasm [147]. Some
other LAB antimicrobials, such as bacteriocins, H2O2, and fatty acids, are also thought
to inhibit the growth of some organisms [148]. Bacteriocin-producing strains typically
synthesize dedicated systems that protect them from these products’ harmful effects. In
practice, bacteriocin-producing strains are used as “protective cultures” [149] to inhibit the
development of pathogens and spoilage microorganisms in cheese. Indeed, they have been
tested as inhibitors of Listeria (L.) monocytogenes [150–156], Staph. aureus [157,158], Salmonella
sp. [159], Clostridium sp. [160–162], and other undesirable microbes [163]. Despite their
technological use, bacteriocins may have physiological functions beyond their inhibitory
activity [164,165]. Some authors [166] have suggested that subinhibitory levels may play
subtle roles in guiding the succession of microbes in food fermentations.

Occasionally, the antimicrobial activity is associated with a microbial consortium rather
than any single strain. For example, strong antilisterial activity exerted by some undefined
consortia from the rind of smear-ripened cheeses has been repeatedly reported [167–171].
Via addition and erosion experiments (i.e., adding or removing one strain at a time from
a mixture), attempts have been made to establish the “minimum community” showing
an inhibitory property [169]. Interestingly, some minimal communities have been shown
to exert greater antilisterial activity than the initial complex smear. After partial purifica-
tion, an antimicrobial produced by one such minimum community proved to be a small,
extremely thermo- and protease-stable molecule [168].

Certain LAB also have antifungal activity [147]. The nature and quantity of antifungal
compounds produced are species- and strain-dependent. Organic acids (phenyllactic,
hydroxyphenyllactic), fatty acids (decanoic, coriolic), cyclopeptides, hydrogen peroxide,
and diacetyl have all been found to inhibit certain fungi [128]. The production of antifungal
compounds, however, is not limited to bacteria. As such, the yeast Williopsis saturnus (with
the killer phenotype) has been reported to inhibit the galactose-fermenting spoilage yeasts
Saccharomyces (Sc.) cerevisiae and Kluyveromyces (K.) marxianus [172]. Negative yeast–yeast
interactions unrelated to antimicrobials, but rather of a metabolic nature, have also been
reported. In co-cultures of D. hansenii and Yarrowia (Y.) lipolytica, the latter yeast causes a
shift from respiratory to fermentative metabolism in the former [173].

5.3. Commensalism

Commensalism occurs when a microorganism in a mixture is favored by the interac-
tions that occur in that mixture, while other organisms experience neither negative nor
positive effects. It has long been recognized that the proteolytic activity of proteinase-
positive LAB cultures enables non-proteolytic species and strains to grow in milk [174,175].
The same interaction has also been reported between the LAB components of the traditional
Dutch starter culture known as Ur [133]. In this starter, culturing and typing techniques
have identified eight genetic lineages as the microbial components, including five strains
of Lc. lactis subsp. cremoris, two of Lc. lactis subsp. lactis biovar diacetylactis, and one of
Leuc. mesenteroides. Genome analysis and in silico reconstruction of metabolic maps of the
different species and strains of the consortium suggested that γ-aminobutyric acid (GABA)
excreted by Lc. lactis as part of its acid stress response might serve as a substrate for succi-
nate formation by Leuc. mesenteroides. In contrast, this species did not appear to contribute
to the growth of Lc. lactis strains [133]. Likewise, in Swiss-type cheeses, propionic acid
bacteria (PAB) utilize the lactate produced by LAB, generating the typical “eyes” of these
cheeses [2,4], without any apparent benefit for the latter population. The presence of lactate
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alone, however, cannot explain all the beneficial effects of LAB on PAB. The growth of
the latter bacteria might also be enhanced by amino acids and peptides released by the
LAB proteolytic system [176]. Similarly, the stimulation of LAB growth by yeasts without
apparent profit of the eukaryotic microorganisms has also been reported [177–179]. In
French Cantalet cheese, the use of yeasts as adjunct cultures has been found to promote the
survival of Lc. lactis cells during ripening, and to enhance the formation of the cheese’s
aroma [180]. This relationship might not be strictly commensal, however, since the yeasts
might also benefit from LAB growth by using the glucose and/or galactose sugars released
by some LAB species [177].

The regulation of color development in cheese rinds of a Muenster-type cheese by
Brevibacterium (Brev.) linens via the activity of accompanying yeast species may, however,
be understood as an outcome of true commensalism [181].

5.4. Mutualism

Mutualism is the relationship in which all the microorganisms involved benefit from
their interactions. The most typical mutualistic interplay between LAB bacteria in dairy
products is the so-called “protocooperation” that takes place in yogurt between S. ther-
mophilus and Lb. delbrueckii subsp. bulgaricus [140,166]. This relies on casein proteolysis by
Lb. delbrueckii subsp. bulgaricus via its surface caseinolytic proteinase PrtB, whose activity
supplies amino acids to S. thermophilus. This latter bacterium, in turn, provides formic acid
and carbon dioxide to the former organism [182]. Recently, it has been shown that urease
activity in S. thermophilus is also essential in this cooperation [183]. Urease deficiency causes
a shortage of ammonium and CO2, compounds that affect the growth of S. thermophilus
and Lb. delbrueckii subsp. bulgaricus, respectively. Additional interactions between the two
microbes might include the supply of purine precursors (xanthine, uracil) by Lb. delbrueckii
subsp. bulgaricus to S. thermophilus, and a reduction in the formation of reactive oxygen
species (ROS) by S. thermophilus in response to H2O2 production by Lb. delbrueckii subsp.
bulgaricus via the Fenton reaction [166]. Cooperation between other LAB species, such as
that seen between Lc. lactis and Lb. casei in the proteolysis of milk proteins during cheese
ripening, has also been reported [184].

Cooperative cross-feeding between LAB and yeast species isolated from cheese has
been abundantly described [185,186]. Yeasts can provide LAB with essential vitamins [180]
or with carbon (2-oxoglutarate) and nitrogen (amino acids) sources, while LAB can pro-
vide lactic acid to non-lactose fermenting yeasts as a preferred energy substrate [187,188].
A better understanding of the metabolic activities of yeasts and LAB species and their
possible interactions in cheese rind has recently been gained by combining the results
of metagenomic, metatranscriptomic, and metabolomic analyses [189]. In the rind of a
cheese model involving a synthetic microbiota composed of Lc. lactis, Brev. aurantiacum,
Glutamicibacter (G.) arilaitensis (formerly Arthr. arilaitensis), Corynebacterium casei, Hafnia
(H.) alvei and Staph. equorum, plus the yeasts D. hansenii, G. candidum and K. lactis, several
mutualistic interactions were observed [188]. Lc. lactis and the yeast K. lactis, the most
active species on day one, enabled the rapid fermentation of lactose, and the lactate pro-
duced was rapidly consumed by the yeast species D. hansenii and G. candidum. The ensuing
deacidification of the matrix by the yeasts allowed the ensuing development of all five
acid-sensitive bacteria [189].

The biotic interactions between D. hansenii and strains of the acid-sensitive species
Brev. aurantiacum and H. alvei have also been recently assessed in a mini-cheese model [190].
Transcriptomic profiling of the cheeses produced with different combinations of these
three species revealed potential mechanisms of interaction involving iron acquisition,
proteolysis, lipolysis, sulfur metabolism, and D-galactonate catabolism. Confirming the
previous results by Dugat-Bony et al. [189], the growth of D. hansenii increased the pH,
allowing for the development of Brev. aurantiacum and H. alvei [190]. Further, strong
mutualistic interactions between the two bacteria were also observed. Brev. aurantiacum
benefited from the production of siderophores by H. alvei, while H. alvei growth was
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stimulated by sulfur amino acids and other energy compounds released from casein and
triglycerides via the proteases and lipases secreted by Brev. aurantiacum [190]. Some of these
interactions are of industrial interest since proteolysis increases the pool of methionine,
the substrate for the formation of volatile sulfur compounds by H. alvei, which increase
cheese flavor.

None of the above microbial interactions rules out others occurring [135,136]. Indeed,
many and complex interactions between and within the different components of the cheese
microbiota surely take place at the same time throughout manufacturing and ripening.
For example, commensalistic and amensalistic interactions have been observed during the
investigation of the interactions between the cheese microbes Lc. lactis, Y. lipolytica, and
Staph. xylosus [191]. The numbers of Y. lipolytica were dramatically reduced by the presence
of Staph. xylosus, whereas, although some changes in gene expression were observed, the
growth of the lactic acid bacterium was not affected by the presence of either Staph. xylosus
or Y. lipolytica [191]. Similarly, LAB and adventitious non-starter organisms may compete
for citrate in cheese, while cooperation in terms of proteolysis and lipolysis may occur; all
these interactions can lead to increased flavor formation [192–194]. Growth-detrimental
interactions between S. thermophilus and Lb. delbrueckii subsp. bulgaricus in yogurt have
also been reported. Strains of either species can produce bacteriocins that inhibit those of
their partner [195,196].

6. Dynamics of Microbial Communities in Cheese

Microbial interactions determine the development, dynamics and activity of the
microbial communities that compose the cheese microbiota, which may also influence
cheese quality and safety [63,192,197,198]. Microbial communities often express emer-
gent properties that cannot be predicted based on their individual members [199]. The
robustness of microbiota may also be promoted by the taxonomic, genetic and functional
redundancy seen in complex microbial communities [200]. To understand the causes
and consequences of the microbial interactions affecting community dynamics and func-
tionality, strategies are required that will help identify the patterns of microorganisms
that determine the processes shaping the outcomes of the microbial interactions. These
strategies must also assist in unraveling the molecular mechanisms underlying the in-
teractions [201]. In this regard, the assistance of a vast array of state-of-the-art “omic”
techniques is crucial [61,202]. For example, metagenomic surveys of the microbiota of
cheeses [17,74,80,82,83,95,103,107,117,118,203–205] can help uncover patterns of commu-
nity composition, while transcriptomic profiling [173,184,189–191,198,206] can be used
to study microorganisms in a pairwise fashion and thus dissect interaction mechanisms.
Besides, metabolomic techniques [115,116,207] can be used to identify the actual chemical
mediators of these interactions [85,166,189,190,208,209]. The knowledge gathered through
all these techniques may provide tools for managing and manipulating the microbiota and,
consequently, can contribute to cheese quality and safety [210].

It has been consistently noted that the dominant microbial populations in different
cheese varieties remain the same irrespective of whether the cheese is made from raw or
pasteurized milk [42,102,103,211]. This suggests that cheese-specific environmental factors
allow the consistent assembly of certain microbes in each particular cheese type [201,212].
Recently, the rind microbiota of a large set of cheeses with natural, smear, and bloomy
rinds, although varied and complex, has been reported to be composed of easily tractable
microbial communities [205]. Intensive sampling of cheeses from Europe and the USA
made at different times of year has shown the assemblage of rind microbial communities
to be very consistent. More importantly, in a simple in vitro system (10% cheese curd agar),
Wolfe et al. [205] demonstrated that the different patterns of community composition and
succession in cheese rinds can be easily reconstructed from a small pool of the commonest
abundant taxa (seven bacteria and four fungal species) simply by changing the inocu-
lum size and the rind washing and drying processes followed. Moisture was found to
be the best predictor of the cheese rind community’s composition. In bloomy rinds, the
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numbers of Galactomyces and four genera of highly abundant Proteobacteria species were
found to positively correlate with the moisture level [205], while molds, Actinobacteria,
and Staphylococcus species, which are all abundant in dry, natural rinds, were negatively
associated with this parameter. The same research group also showed that motile bacteria
from rind microbial communities (Serratia, Halomonas, Vibrio, Psychrobacter, and others)
use the humidity associated with the physical networks created by the co-occurring fil-
amentous fungi for dispersal [208]. The latter study highlights how fungal-mediated
bacterial dispersal can promote the growth of motile organisms over that of non-motile
community members. In addition to shaping the composition of the cheese rind microbiota,
this interaction could have quality and safety implications, depending on whether motile
microbes are of technological relevance (H. alvei, Psychrobacter sp., etc.) or are pathogens
(L. monocytogenes) [208].

By analyzing the spread of three closely related Staphylococcus species in cheese rind
biofilms, it has been shown that biotic interactions can drive the patterns of microbial
species distribution [209]. Surprisingly, based on growth and competition assays in the
laboratory, Staph. equorum (the most abundant Staphylococcus in cheese) proved to be a
slower colonizer and weaker competitor than Staph. xylosus and Staph. saprophyticus [208].
However, Staph. equorum was shown to be promoted by fungi, particularly by those of the
genus Scopulariopsis [209]. Comparative genomic and transcriptomic experiments indicated
that the potential mechanism underlying this bacterium–fungus interaction was based on
iron utilization. Filamentous fungi release siderophores into the cheese matrix, and the
bacterium responds by overexpressing siderophore-binding proteins [209]. This reaction
provides Staph. equorum with an exclusive and inexpensive iron source.

Nine synthetic microbial communities consisting of different strains of three bacterial
species (Staph. equorum, Brev. aurantiacum, and Brachybacterium alimentarium) have been
reported to show different responses to abiotic (high salt) and biotic (the presence of
the fungus Penicillium) disturbances [213]. Some combinations of strains showed no
response, while others showed a substantial shift in community composition. These
differing responses were shown to correlate with differences in pigment production (light
yellow to orange) and with the volatile organic compounds emitted from the rinds (nutty
to sulfury) [213]. This suggests that taxonomic profiling alone may not predict well
the assembly, dynamics, and functions of cheese microbiomes. However, the results
stress the importance of the microbial interactions in the flavor formation in the cheese
rind. Chemicals triggering the assemblage of a community do not necessarily need to be
physically close to the microbial responder. Indeed, volatile compounds produced by fungi
have recently been found to stimulate the growth of Vibrio casei [214]. The latter study
showed how volatile compounds may affect the development of a microbial community
in cheese and demonstrated the feasibility of using airborne chemicals to control the
composition (and thus activity) of the cheese microbiota.

Together, the above studies highlight how easily tractable microbial communities
within the cheese microbiota can link the results of in vitro experiments with in situ obser-
vations [215]. Such associations might help determine the ecological processes contributing
to species distribution and the abundance of microorganisms in cheese. A difficulty in
inferring hypotheses regarding the relationships of ecological processes and microbial
communities and in testing them experimentally is the inability to mirror accurately un-
der laboratory settings the natural conditions encountered during cheese manufacturing
and ripening [84,189,190,208,210]. However, understanding the mechanisms behind these
interactions, and the environmental conditions that induce them, is a prerequisite for
engineering communities for applied purposes [197,216]. The knowledge obtained in this
regard might serve to support cheesemakers’ empirical observations, such as that the use
of fresh milk with low levels of psychrotrophs prevents the development of the spoilage
fungus Mucor during ripening [217], and that lowering the humidity of the curd favors the
growth of G. candidum while inhibiting that of Mucor [218]. An advantage might also be
taken of biotic interactions between the typical members of the cheese microbiota to inhibit
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the dynamics of cheese-borne pathogens such as L. monocytogenes and enteropathogenic
Escherichia coli [219].

7. Microbiota-Based Starters

Despite the enormous advances made in resolving microbial safety hazards and
spoilage issues, the dairy industry still faces important technological challenges beyond the
phage infection, such as the need for improved science-based strategies to control cheese de-
fects including the formation of splits associated with secondary fermentation [10,121,220],
the appearance of calcium lactate crystals [122], and discolorations [84,120,221]. Reducing
the presence of pathogens in raw milk-made cheeses [123,221], controlling spore-formers
in cheeses made from pasteurized milk [11,13,138], and reducing the production and ac-
cumulation of biogenic amines in cheese [124] also need to be pursued. However, as has
been repeatedly reported [207,222,223], the outcomes produced by the raw milk microbiota
in cheeses during ripening cannot be reproduced by simply adding starter and ripening
cultures. One solution for developing multipurpose functional starters would be to identify,
isolate and characterize competitive microorganisms within dominant and key functional
populations (the so-called “core microbiota”) in each cheese type, and return them in a
synthetic mixture for cheese manufacture and ripening [215,224].

Multi-species synthetic microbial communities are widely used in several biotechno-
logical processes, as these may have properties that a single species or microbial strain
alone could never show [225]. The main aim of a multi-species community culture is
to occupy the ecosystem from a taxonomic viewpoint, but especially from a functional
perspective [88,226]. This idea has proven successful in the inhibition of pathogens in plant
roots, where, as shown above for the antilisterial activity of some cheese rind smears, the
inhibition induced is deemed to be a property that emerges at the microbial community
level [227]. The use of multispecies communities also shows promise for the treatment of
intestinal disorders associated with microbial dysbiosis [228]; synthetic communities might
soon be able to replace the unappealing treatments of fecal transplantation. To these ends,
metagenomic data of the concerned ecosystem of interest can be examined by software
tools [229] and in-network analyses [230,231] to search the samples for interactions between
taxonomic units and biological samples. The relative abundance of biotypes, occurrence
and exclusion patterns could also be scrutinized via correlation with the presence and
concentration of key taste and aroma compounds [88,118]. Such analyses can help identify
the core microbiota and key environmental factors that influence microbial colonization,
development and activity. Using this strategy, Wang et al. [88] identified five genera as the
core microbiota—Lactobacillus, Saccharomyces, Pichia, Geotrichum, and Candida—involved
in the fermentation of a sorghum-derived liquor. Four yeast species (Pichia kudriavzevii,
G. candidum, Candida vini, and Sc. cerevisiae) and one bacterium (Lb. acetotolerans) were
then employed as representatives of each genus in experimental liquor manufacture. Af-
ter fermentation, the synthetic mix was shown to have a flavor dynamics similar to that
produced under standard conditions [88].

Synthetic microbial communities from cheese rinds containing various types of bacte-
ria and fungi have already been used as smearing starters for the manufacture of smear-
ripened cheeses [12,42,56,206]. Traditional smearing, in fact, involves an “old to young
smearing” procedure, in which smears from mature cheeses dispersed in water or a
saline solution are used to inoculate—as an undefined rind starter—the surface of young
cheeses [39]. Some synthetic smear starters have been conceived [232] and typically contain
three to six strains of deacidifying fungal species (usually D. hansenii and G. candidum) and
acid-susceptible bacteria (G. arilaitensis, Brev. aurantiacum, Brev. linens, and/or C. casei).
Occasionally, Gram-negative bacteria such as H. alvei, Proteus vulgaris or Psychrobacter
celer can also be included, aiming at enhancing the production of volatile sulfur com-
pounds [233,234]. At present, the design of such cultures is mostly empirical, and neither
the biotic interactions between the different taxa involved nor the effects of abiotic factors
are currently taken into account, which very commonly results in a colonization fail-
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ure [145,235,236]. Scientifically sound, microbiota-based, multi-species starters composed
of LAB and non-LAB species, and, if required, of eukaryotic organisms, would provide
enzymatic activities that LAB alone do not possess, thus contributing to expanding the
textural and flavor patterns of the cheeses produced with them. These starters might
more easily resist the phage attack and reduce colonization by adventitious spoilage and
pathogenic organisms.

8. Conclusions and Prospects

Abundant knowledge on the composition, diversity, and structure of the microbial
communities in cheese has been accrued over recent decades via the use of HTS techniques.
The diversity and number of species present within the microbial communities of different
cheese varieties create the potential for a multitude of inter- and intra-species interactions,
most of which, however, are currently unknown. Indeed, the interactions that have already
been studied are limited to a few community members and a small number of exchanged
metabolites. Even less is known about the molecular bases facilitating and regulating these
exchanges. Neither do we have much knowledge regarding the conditions that allow the
cheese microbiota to form and develop under the influence of biotic and abiotic factors, nor
of how any of this translates into the improvement of cheese manufacture and ripening.
As a consequence, successful cheese fermentations cannot be predicted, and technological
failures of microbial origin are commonly inexplicable. In this regard, establishing chemical
and/or microbial biomarkers to trace the milk fermentation would certainly be a valuable
tool, which might contribute to enhancing cheese quality.

To get the most out of the omics revolution in cheesemaking, computational pipelines
have to be developed to infer putative mechanisms of interaction between the many
microbial populations. Constructing and using simple microbial communities in model
systems might help unravel how microorganisms from complex consortia interact in
their communities, and what influence they imprint on the sensorial properties of cheese.
Confirmation is also required that the processes and mechanisms identified in model
systems also work at the natural ecosystem scale, that is, at the cheese level. To that end,
model communities should mimic natural populations as closely as possible; this will
help throw light on the mechanisms involved in microbial colonization, functioning, and
endurance of the different biotypes. Understanding microbial interactions of the biotypes
with biotic and abiotic factors in cheese could help design strain mixtures as improved
starter cultures. Knowledge of how microbes assemble into communities and the practical
implications of these in cheesemaking could ultimately be used to improve the overall
cheese quality and safety.
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