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Anharmonic quantum nuclear densities from
full dimensional vibrational eigenfunctions
with application to protonated glycine
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The interpretation of molecular vibrational spectroscopic signals in terms of atomic motion is

essential to understand molecular mechanisms and for chemical characterization. The signals

are usually assigned after harmonic normal mode analysis, even if molecular vibrations are

known to be anharmonic. Here we obtain the quantum anharmonic vibrational eigenfunctions

of the 11-atom protonated glycine molecule and we calculate the density distribution of its

nuclei and its geometry parameters, for both the ground and the O-H stretch excited states,

using our semiclassical method based on ab initio molecular dynamics trajectories. Our

quantum mechanical results describe a molecule elongated and more flexible with respect to

what previously thought. More importantly, our method is able to assign each spectral peak

in vibrational spectroscopy by showing quantitatively how normal modes involving different

functional groups cooperate to originate that spectroscopic signal. The method will possibly

allow for a better rationalization of experimental spectroscopy.
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Infrared and Raman vibrational spectroscopies are funda-
mental tools for chemists. In particular, the mid-infrared
region is traditionally interpreted by assigning the character-

istic vibration of functional groups to each band. These assign-
ments have been inferred from experiments1, and handbooks
have been compiled with characteristic group frequencies2,3. This
approach is indisputably useful for chemical analysis and very
appealing to chemical intuition. However, spectral features cor-
relates precisely with molecular structure only after appropriate
quantum mechanical theoretical modeling. Despite the impor-
tance of vibrational spectroscopy, theoretical chemistry approa-
ches may perform accurate simulations of quantum vibrational
spectra only for few-atom systems4–8.

The standard approach is normal-mode analysis. Normal modes
are linearly independent atomic displacements that describe
molecular vibrations in terms of harmonic forces. In other words, it
is assumed that the interaction of the infrared (IR) radiation with a
molecule results in a vibrational excitation confined to the small-
amplitude regime. More specifically, the Hessian matrix, whose
elements are the mass-weighted force constants, is diagonalized at
the molecule equilibrium geometry. The link of spectral peaks to
molecular motions is therefore provided by the correspondence
between Hessian matrix eigenvalues, which are directly related to
normal-mode frequencies, and the eigenvectors, which are sets of
nuclear displacements. The normal-mode approximation justifies
in part the traditional group frequency hypothesis. Indeed, it is true
that for small and symmetric molecules the normal-mode analysis
mostly results in motions of local groups. However, for larger non-
symmetric molecular systems, the eigenvector displacements are
necessarily spread all over the molecular structure, and the mode
assignment in terms of functional group frequencies must be
tentative1,9,10. Instead, chemical intuition is tempted to assert that a
given vibrational normal mode is only weakly coupled to other
modes in faraway parts of the molecule11–13, so that distance-based
truncation of couplings is a common view in chemistry. Conse-
quently, many methods have been proposed to localize normal
modes12,14–18, to help with the interpretation of spectra in terms of
chemically intuitive motions also for large systems.

A further problem is how to account for anharmonicity, which
is particularly relevant when molecules undergo large-amplitude
motions such as internal rotations. Classical molecular dynamics
(MD) offers a way to go beyond the harmonic approximation.
Specifically, trajectories that run on the actual nuclear potential
energy surface (PES) at different energies may span regions
far from the potential minimum surroundings. The Fourier
transform of the velocity autocorrelation function from MD
simulations yields at low temperature the same frequencies as the
normal-mode analysis, but in addition, anharmonic frequency
shifts can be estimated from high-temperature simulations19,20.
Systematic methods have been reported to decompose the whole
classical nuclear dynamics into an approximate sum of effective
mode contributions, which correspond to the peaks in the spec-
trum 11,21–26.

Nevertheless, features such as zero-point energies (ZPEs),
overtones, and tunneling splittings, require a quantum mechanical
treatment of vibrational spectroscopy. In the quantum framework,
spectral peaks correspond to transitions between vibrational states.
Exact quantum methods for spectroscopy involve a solution of the
nuclear Schrödinger equation to get the vibrational levels. How-
ever, peak assignment in quantum mechanics is more cumbersome
than in classical mechanics. In fact, the dimensionality of internal
coordinate eigenfunctions corresponding to eigenenergies for a
(linear) molecule containing N atoms is Nv= 3N− 6(5). Therefore,
differently from the classical picture which can be represented by
classical trajectories, the normal-mode displacements are not
directly interpreted as single point atom displacements in Cartesian

space. Moreover, as mentioned above4–8, the exact solution of the
quantum vibrational problem is in general limited to low-
dimensional systems. Specific methods have been devised to get
eigenenergies for higher molecular dimensions27–36, but the
eigenfunction estimates are usually accessible only for the ground
state 31,37.

The multiple coherent time averaging semiclassical initial value
representation (MC SCIVR)38–41 can successfully simulate
anharmonic vibrational spectra for large systems42–46, even in
extreme anharmonic cases47–49. MC SCIVR can be rigorously
derived from the stationary phase approximation of the exact
Feynman’s path integral, and expresses the quantum time-
evolution propagator in terms of a few classical trajectories,
whose energy is close to the vibrational eigenvalues of the system
(see Supplementary Methods). Moreover, MC SCIVR is also able
to recover a reliable approximation of the vibrational ground and
excited eigenstates by expanding the eigenfunction of each
vibrational eigenvalue as a combination of harmonic eigenfunc-
tions50–52. The combination coefficients are calculated by Fourier
transforming the semiclassical approximate quantum mechanical
time correlation function of each harmonic eigenfunction at the
vibrational eigenvalue obtained from a preliminary MC SCIVR
power spectrum calculation (see Supplementary Methods).

In this work, we introduce the calculation of one-nucleus
marginal densities by Monte Carlo integration of the anhar-
monic eigenfunctions obtained with MC SCIVR simulations.
Specifically, we employ the eigenfunction modulus square to
weight a Monte Carlo Cartesian space sampling at each mole-
cular conformation, and we obtain the final molecular nuclear
density as a direct sum of each nucleus contribution53, (see
Supplementary Methods). This quantity is the nuclear analogue
of electron density in Density Functional Theory for electronic
structure calculations. The Cartesian coordinate space repre-
sentation allows for the visualization of probability density
isosurfaces in 3D, as for the nuclear ground state distributions
obtained from Diffusion Monte Carlo calculations31,37,54–58,
and in a similar fashion as routinely done for electron
density59,60. We are therefore able to represent with nuclear
density differences the nuclear motion associated with each peak
in vibrational spectra in three-dimensional (3D) space, and to
visually spot couplings resulting in specific non-local nuclear
density patterns in a quantum mechanical framework. In
addition, we compute the anharmonic quantum density dis-
tributions of other observables, such as bond lengths, angles,
and dihedrals using the same procedure.

Results
Protonated glycine vibrational eigenfunctions. In this work,
we calculate the 27-dimensional vibrational eigenfunctions and
the one-nucleus marginal density for the protonated glycine
(GlyH+) molecule. Neutral glycine is the simplest amino-acid,
and it has been extensively studied with both theoretical and
experimental methods43,61–63. We choose to study its proto-
nated form, because it is a typical product during infrared
multiple photon dissociation (IRMPD) spectroscopy, one of the
most effective experimental approaches for structural investi-
gation of biomolecules64,65. Actually, in the gas phase, proto-
nation is the dominant ionization pathway when analyzing
peptides by mass spectrometry64. Among all possible vibrational
eigenfunctions, we focus on the ground state and on the O–H
stretch excited vibrational state with intake of one quantum of
excitation. We focus on this excitation because the O–H
stretching peak is usually very intense and it is employed as the
reference to scale the calculated harmonic vibrational spectra to
match the experimental ones66.
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Moreover, from the computational point of view, GlyH+ is an
ideal application to demonstrate the capabilities of MC SCIVR,
since neither pre-computed PES nor exact quantum vibrational
calculations have been reported with current state-of-the-art
methods for this 11-atom molecule. We evolve the needed
classical trajectories on-the-fly, and in this case we compute the
electronic potential along the dynamics at the DFT-B3LYP/aug-
cc-pVDZ level of theory (see the “Methods” section below).

In the harmonic case, the 27-dimensional vibrational Hamilto-
nian becomes separable in the normal-mode coordinates. Therefore,
the harmonic wavefunctions are the direct product of 27 one-
dimensional eigenfunctions, each one depending on a single normal-
mode coordinate. The degree of excitation of each one-dimensional
wavefunction defines the state. For instance, for the harmonic
ground state, all the eigenfunctions in the product are the ground
state solution of each separate one-dimensional Schrödinger
equation with harmonic potential. Instead, the harmonic O–H
stretch excited state is the same direct product as the ground state for
the first 26 DOFs, but with the eigenfunction depending on the 27th
normal-mode coordinate in the first excited state solution. For the
anharmonic case, we represent the wavefunction with a combination
of harmonic wavefunctions, as defined in Supplementary Eq. 14. The
combination coefficients are obtained with the semiclassical
procedure described in the Supplementary Methods51. The character
of the anharmonic wavefunction is determined by considering the
relative contribution of the different harmonic basis functions. In
particular, the ground state wavefunction has the largest coefficient
on the harmonic ground state (see Supplementary Table 1), while
the O–H stretch excited state has the largest coefficient on the
harmonic basis function with one quantum of excitation on the 27th
component which depends on the 27th normal mode and whose
displacement correspond to the stretching of the hydroxyl group (see
Supplementary Table 2). However, in the latter case, we find other
important contributions coming from other harmonic states that are
mixing with the fundamental O–H stretch one. For example, mode
26 which is the asymmetric N–H stretching at fundamental
frequency equal to 3504 cm−1, mode 25, which is the symmetric
N–H stretching at frequency 3445 cm−1, and modes 23 and 22
which are the C–H symmetric and asymmetric stretching with
harmonic frequencies equal to 3116 and 3105 cm−1 respectively
form combination states with low-frequency modes that have large
coefficients in the anharmonic wavefunction expansion. Also, there
is a contribution from the overtone of the O–H stretching with two
quanta of excitation.

Protonated glycine vibrational eigenvalues. We start from the
normal-mode analysis of GlyH+ at the potential global mini-
mum. Gas phase calculations have already been reported for this
structure, in which the protonated amino group presumably
forms an ionic intramolecular hydrogen bond with the carbonyl
oxygen67,68. Our DFT optimized structure displays Cs symmetry.

In a normal mode approach, we diagonalize the Hessian matrix
at this geometry, and with the frequencies and harmonic zero
point energy we build the stick power spectrum represented in
green dashed lines in Fig. 1a. The O–H stretch is the highest
frequency mode (3694 cm−1) and it belongs to the A0 irreducible
representation. More importantly for our discussion, the eigen-
vector displacements associated with this frequency result almost
exclusively in the variation of the O–H distance, thus indicating a
very localized O–H stretch motion, as pictorially highlighted in the
ball-and-stick molecule reported on the inset in Fig. 1a. We detail
the calculated Cartesian displacements along this normal mode
coordinate in Supplementary Table 3 and Supplementary Fig. 7.
To go beyond the harmonic approximation, we calculate the

semiclassical power spectrum with the red continuous line in the
same panel, where we have singled out the ZPE and the
fundamental O–H stretch peaks. The value of the ZPE energy
from the global molecular minimum is well above 20,000
wavenumbers, which is a huge amount of energy in comparison
with the harmonic vibrational level spacing. This quantum
quantity cannot be grasped by any classical simulation and
determines the physical behavior of the system as we will show in
the next section. Here, we look at the influence of the harmonic
approximation on the estimate of this key quantity. Figure 1b
pictorially represents the semiclassical and harmonic vibrational
energy level estimates. The red and the green arrows correspond
respectively to the semiclassical and harmonic O–H stretch
transition frequency. These frequencies can be directly compared
with the peak positions of the experimental IR spectrum (black
continuous line in Fig. 1a)69. The accuracy of our on-the-fly
semiclassical approach outperforms the normal mode approach.
The harmonic estimates of the ZPE and the O–H stretch do not
provide an accurate value for the IR fundamental transition
associated to the O–H stretch excitation. Actually, the harmonic
transition frequency is significantly worse than the semiclassical
prediction when compared to the experimental value, as shown in
the inset Table of Fig. 1b. This confirms that the semiclassical
treatment is remarkably able to describe precisely the actual
spectral decomposition of the nuclear vibrational Hamiltonian,
beyond the harmonic approximation.

Protonated glycine nuclear densities. In the previous paragraph
we showed the GlyH+ molecular system has a significant amount
of ZPE, which is overlooked by classical approaches. Therefore,
one may wonder to what extent the molecular average geometry
at the ZPE level differs from the classical geometry at the bottom
of the well (i.e., the position expectation value in the harmonic
approximation). To answer this question, we calculate the full
quantum distribution of the geometry parameters, using the
nuclear densities both in the harmonic and anharmonic case, as
described in details in the Supplementary Methods. Even if the
ground state vibrational eigenfunction is mainly peaked around
the classical minimum, we observe a slight elongation of almost
all the bond distances and angle distortions in the anharmonic
case with respect to the harmonic ones. Moreover, if we compare
the anharmonic quantum nuclear densities with the corre-
sponding harmonic ones, we can appreciate how the synergy of
these small effects results in specific deviations of the global
vibrational behavior. The actual nuclear harmonic ground state
density is displayed in Supplementary Figs. 6a1–4, while Sup-
plementary Figs. 6c1–4 shows the actual anharmonic ground state
density. To clearly visualize the differences between these two
nuclear densities, we report in Fig. 2b the difference between the
anharmonic and the harmonic nuclear densities for the ground
state, along with the atomic labeling to guide the discussion of the
results in Fig. 2a.

The most relevant differences are found in the densities of light
hydrogen atoms. Specifically, the three red lobes on the H1, H2,
and H3 nuclei indicate an enrichment of anharmonic density in
the inner part of the protonated amino group umbrella, which
offsets the density depletion represented by the blue lobes on the
outer part. This picture reveals that the effect of anharmonicity is
to drive the ammonium protons closer together with respect to
the harmonic picture (as highlighted in magenta in Fig. 2n, and as
also confirmed by the angle distributions in Fig. 2h). The nuclear
density shift on Hydrogen nuclei H4 and H5 determines an
elongation of the C2-H4/5 bonds, as confirmed by the bond
length distribution in Fig. 2f). Also, anharmonic effects lead to a
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displacement of the average position of the heavier O1, C1, C2,
and N nuclei, thus rendering the backbone of the molecule
slightly longer (as highlighted in green in Fig. 2n). This is
confirmed by the bond-length distribution calculation, where the
equilibrium distances C1–O1, C1–C2, and C2–N are longer for
the anharmonic ground state wavefunction (see Fig. 2c, d, g).
Also, the N–C2–C1–O1 anharmonic dihedral angle distribution
of Fig. 2e is broader than the harmonic one. From bond-length
distributions we also observe that both the N–H3 and the O2–H3
average distances are longer with anharmonicity inclusion
(see Fig. 2i, l), hinting at a weaker O2–H3 hydrogen bond.
However, the whole nuclear density picture of Fig. 2b shows that
multiple local density deformations cooperate to the change
of the H3 atom average position. Anharmonicity closes the
protonated amine umbrella while opening the O2–C1–C2 angle.
The combination of these two effects pushes the H3 atom farther
away from the center of the molecule.

We next turn to the excited vibrational state obtained when the
O–H stretch normal mode has acquired one quantum of
vibrational energy. Figure 3 shows for this eigenstate the density
difference between the anharmonic and the harmonic nuclear
densities. The actual excited harmonic O–H stretch nuclear
density is displayed in Supplementary Figs. 6b1–4, while
Supplementary Figs. 6d1–4 shows the actual excited anharmonic

O–H stretch state nuclear density. Also in this case, anharmonic
effects are distributed all over the molecule. In addition, we
observe a general elongation of bond lengths by comparing the
bond-length distributions obtained from the harmonic and the
anharmonic excited state wavefunctions, especially for the CH2 �
NH þ

3 part of the molecule (see Fig. 3b, e, f). Once more, looking
at the complete nuclear density picture in Fig. 3a, one can deduce
that these elongations balance the density distortion due to
anharmonicity along the O–H stretching direction. Remarkably,
an interesting lobe pattern appears along the O1–H6 stretching
direction, as can be rationalized with the inspection of bond-
length distributions in Fig. 3b. Here, the bond length analysis
confirms the global picture of anharmonicity obtained by visual
inspection of density differences in Fig. 3a. The unidimensional
plot reported in Fig. 3b compares the harmonic distribution
(black continuous line) with the semiclassical anharmonic one,
which presents the average shifted towards longer bond distances
and hence it is represented with the green continuous line. In the
harmonic picture, a node can be observed along the O–H stretch
direction. This means that the vibrational excitation can be
effectively approximated as the excitation of a harmonic one-
dimensional oscillator whose potential varies along this direction.
This agrees with the standard harmonic normal-mode picture
which shows the major displacement along the O–H stretch

492

20,000 20,800 21,600 22,400

3551

3694 143
3539 12

23,200

O–H stretch freq. (cm–1) Δ�

Experiment (EXP)
Semiclassic (SC)
Harmonic (Har)

24,400

O-H stretchZPE

E (cm–1)

0

1292

In
te

ns
ity

 (
A

rb
. u

ni
ts

)
O

-H
 s

tr
et

ch
 c

oo
rd

in
at

e

2092

� (cm–1)

�SC

�Har

�EXP

�Har

�SC

2892 3692

a

b

Fig. 1 Vibrational power spectrum of the protonated glycine molecule. a GlyH+ vibrational spectrum. Red continuous line is the semiclassical power
spectrum, and green dashed lines correspond to the stick spectrum in the harmonic normal mode approximation. The peak intensity of the power spectra
has been scaled to match the semiclassical ZPE peak one. Black continuous line is the experimental IR absorption spectrum69. In the same panel, ball-and-
stick molecular representation of GlyH+ at the equilibrium Cs geometry where the atoms involved in the O–H stretch normal mode displacements are
highlighted. b Pictorial representation of the potential well along the O–H stretch elongation. Red and green lines are respectively the semiclassical and the
harmonic ZPE and O–H stretch excitation vibrational levels. Red and green arrows are respectively the semiclassical and the harmonic normal mode O–H
stretch fundamental excitation frequencies. These values are reported in the inset table together with their deviations from the experimental value (Δν).
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direction in Cartesian coordinates, as reported in Supplementary
Table 3. Instead, after inclusion of anharmonicity, we can barely
detect a reminiscence of the node, and the density concentrates
closer to the equilibrium position, as can be also seen in Fig. 3c,
where the difference between the anharmonic and harmonic
distributions is reported. In the anharmonic picture, the O–H
stretch excitation can therefore not be regarded as the excitation
of a single bond oscillation, and it is not sufficient, for instance, to
consider a separable Morse potential along the O–H bond to
model this vibration. We stress that the anharmonic distribution
of Fig. 3b, which was obtained with the semiclassical approxima-
tion of the wavefunction, has a quantum nature even if the
calculation is based on classical information. This is evident when
we build a histogram by binning instantaneous bond lengths
along the quasi-classical trajectory employed for the semiclassical
calculation (i.e., the constant energy classical trajectory with
excited O–H stretch kinetic energy in harmonic approximation,
as described in the Supplementary Methods). The quasi-classical
distribution is peaked at the turning points. On the contrary, the

semiclassical distribution clearly shows quantum features, since it
extends beyond the classical turning points located at the
extremes of the histogram, and it displays higher probability in
the middle.

Normal mode vs. quantum anharmonic O–H stretch excita-
tion. Finally, in Fig. 4 we propose a 3D real-space representation
of the anharmonic motion which the molecule undergoes when it
is excited by IR radiation, using the observation of nuclear density
depletion and accumulation, as an improvement over the classical
harmonic normal-mode displacements. Specifically, we calculate
the difference between the anharmonic nuclear density of the
O–H stretch excited vibrational state and the ground-state one
(Fig. 4b, d). We also compare it to the corresponding quantum
harmonic estimate, reported in Fig. 4a, c.

Considering that the excitation linked to the vibrational spectra
signal at 3553 cm−1 in the experimental IR spectra is interpreted
as the O–H stretch, we first concentrate on the nuclear density
deformation by changing the vibrational state from the ground to
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Fig. 2 Comparison of harmonic and anharmonic nuclear densities for the vibrational ground state. a The Cs symmetry equilibrium geometry of GlyH+ at
DFT-B3LYP/aug-cc-pVDZ level of theory with the atomic labeling that we adopt as reference throughout the paper. b Two isosurfaces of the difference
between the anharmonic and the corresponding harmonic nuclear densities for the vibrational ground state. Red indicates positive contributions, where the
density concentrates due to anharmonicity, while blue stands for the negative contributions, where the density is depleted. The density isosurfaces are
respectively set to 0.15a.u. and −0.15a.u. In addition, we report the comparison of the maxima of relevant geometry parameter distributions. c, d, f, g, i, l Bond
lengths distributions. h, m bond angles distributions. e Dihedral distribution. The black curves are obtained from the harmonic approximation while the colored
ones are calculated from the full anharmonic wavefunction. Green curves present the maximum shifted towards longer bond lengths or wider angles
(Anharmonic increase), on the contrary red indicates contraction (Anharmonic decrease). Blue stands for broadening of the anharmonic distribution with
respect to the harmonic one, without maximum shift (Anharmonic broadening). n Pictorial representation of the overall effect of anharmonicity and couplings
on the quantum nuclear density which leads to specific nuclear density redistribution (indicated by the green arrows) giving two distinctive structural effects,
the backbone elongation (highlighted in green) and the closing of NHþ

3 umbrella (highlighted in magenta). These are deduced from the consideration of
geometrical parameters distributions reported in c–i, m and in the Supplementary Figs. 1, 2, 3.
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the excited one. We start with an analysis focused on the hydroxyl
group of the molecule (Fig. 4a, b). The harmonic case reported in
Fig. 4a provides lobes with perpendicular nodal planes with
respect to the O1–H6 bond. There is a minor density deformation
contribution on the O6 nucleus, while the bigger one is on the
lighter H6. Turning to the anharmonic picture shown in Fig. 4b,
we find a similar pattern but with the lobes that have no longer
parallel nodal planes. The lobes are in this case distributed along a
curved line. This is an effect of anharmonicity and vibrational
couplings which leads to a less symmetric oscillation of the
O–H bond.

By zooming out to the whole molecule structure in Fig. 4d, we
can appreciate how anharmonicity calls into play all the other
nuclei. The difference between the harmonic picture of Fig. 4c is
striking. The harmonic picture in panel c is compliant with the
chemical intuition and with the classical normal-mode displace-
ment picture. The excitation of the O–H stretch normal mode
results in a very localized density deformation, which causes a
depletion and a consequent increment of density exclusively for
the hydroxyl functional group, while in the other parts of the
molecule the ground state and the excited state densities cancels
perfectly upon subtraction. Instead, the quantum mechanical
anharmonic picture provided by the semiclassical vibrational

densities clearly indicates that all the nuclei are involved in the
excitation, even if the anharmonic density difference exhibits
(with distortions) the typical lobe pattern of the O1–H6 stretch
excitation. To give a quantitative assessment of the involvement
of each nucleus in the excitation in the harmonic and anharmonic
case we can also refer to the density standard deviation position
differences (see Supplementary Discussion) shown in Supple-
mentary Tables 4, 5. These data confirm what is clearly visible
from the nuclear density differences in Fig. 4c, d, i.e., that many
more atoms are involved in the O–H stretch excitation when the
anharmonic density is employed. More importantly, the anhar-
monic nuclear density picture highlights the relevant coupling of
the hydroxyl group with the far protonated amino group, which is
significantly involved in the O–H stretch vibrational excitation.
This is proved by the values of the harmonic basis set functions
reported in Supplementary Table 1, where the contribution of
each normal mode to the spectroscopic signal at 3553 cm−1 is
quantified. The vibrational coupling is therefore non-local in this
case, i.e., it is not confined to the nearest neighbor atoms as
shown in Fig. 4e for the harmonic approximation. In particular,
the anharmonic vibration of the hydroxyl functional group
triggers the vibration of the CH2NH

þ
3 groups, as pictorially

summarized by Fig. 4f.
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Fig. 3 Comparison of harmonic and anharmonic nuclear densities for the O-H stretch vibrational excited state. a The same as in Fig. 2b but for the O–H
stretch vibrational excited state. b–f Relevant geometry parameter distributions with the same color code as in Fig. 2. The solid black curves are obtained
from the harmonic approximation of the wavefunction, while the colored ones are calculated from the full anharmonic wavefunction. Green curves present
the maximum shifted towards longer bond lengths (Anharmonic increase), while the blue one stands for broadening of the anharmonic distribution with
respect to the harmonic one and without maximum shift (Anharmonic broadening). Specifically, b Bond-length distributions along the radial O1–H6 stretch
distance. The filled area is the histogram of the classical distribution obtained from the quasi-classical trajectory used to generate the semiclassical
wavefunction. The harmonic normal mode distribution is small but not equal to zero at equilibrium distance because the variation of O–H stretch normal
mode does involve, even if minimally, also other atom displacements. c Difference between anharmonic and harmonic curves of b. The statistical error bars
for the distributions are smaller than the line width. d C2–C1–N angle distribution. f, e enlargement of the distribution peaks for the C2–H4/5 and C2–N
bond distances. g Summary of the overall effect of anharmonicity and couplings on the quantum nuclear density which leads to specific nuclear density
redistribution (indicated by the green arrows) giving effects which counterbalance each other in two separate regions of the molecule, the hydroxyl
(highlighted in magenta) and the CH2NH

þ
3 (highlighted in green). These are deduced from the consideration of geometrical parameters distributions

reported in b, f, e, d, and in the Supplementary Figs. 4, 5.
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Discussion
In conclusion, the present method allows for the calculation of
high dimensional quantum eigenfunctions of vibrational ground
and excited states for molecules of moderate size, and provides an
immediately informative real space nuclear density representation
of molecular vibrations, overcoming the major limitations of the
normal-mode approach and going beyond the quantum harmo-
nic picture53.

The analysis of the quantum nuclear densities for a biologically
important and experimentally significant molecule, GlyH+,
shows that anharmonic contributions, that can be assessed thanks
to our semiclassical methodology, have a significant impact on
the interpretation of relevant vibrational excitations. Overall, our
anharmonic quantum simulation provides a flexible molecule
picture with a greater adaptability to the various binding situa-
tions than the harmonic approximation. As an example, we cal-
culate the eigenfunction corresponding to the free O–H stretch
energy peak and find that other modes, in addition to the O–H
stretch one, contribute to this spectroscopic signal. More speci-
fically, the amino group plays a significant synergistic role in the
O–H stretch excitation. Even if the mixing of normal modes is
the well known consequence of the introduction of couplings, the
determination of the amount of mixing as resulting from our
calculations is not trivial, also given the position of the two

functional groups in the molecule, and the normal mode picture
that we are accustomed to. Instead, our semiclassical method
provides a quantum mechanical anharmonic picture of molecular
vibrations which reveals quantitatively that more than one mode
can be responsible for a given fundamental excitation and how
much the modes are mixing. When we consider the complete
potential, which includes all the anharmonicities without any
other approximation apart from the level of electronic structure
theory adopted, our calculations quantitatively characterize the
involvement of other functional groups, also in the case of
spectral features which are usually assigned to very localized
normal modes, such as the O–H stretch one of the GlyH+.

Eventually, this method allows a more accurate, physically
sound assignment of fundamental and overtone vibrational
absorption bands. This approach should stimulate a better
rationalization of the experimental results, providing a reliable
tool to gauge the extent and importance of couplings for a
comprehensive understanding of anharmonic vibrational beha-
vior in molecules.

Methods
Computational details. The semiclassical calculation of GlyH+ eigenfunctions is
performed using on-the-fly classical trajectories at the DFT-B3LYP level of theory
using the aug-cc-pVDZ basis set with the NWChem package70. We employ one
trajectory for the ground state and another one for the O–H stretch excited state.
For each one, the Hessian matrix is calculated at each time-step. For our DFT
simulations the timing is: 16 h for the trajectory evolution and 552 h for the
Hessians employing the NWChem code on 20 CPUs with clock frequency of
2.6 GHz. We also point out that the calculation of the Hessian along the trajectory
is embarrassingly parallel, and the scaling with the number of cores employed is
linear. Each GlyH+ eigenfunction has been symmetrized so that it belongs to one of
the Cs irreducible representations and is given by a combination of 12,799 har-
monic functions, which are obtained from considering all possible single and
simultaneous excitations of two modes with maximum quantum number nα= 6.
However, only the coefficients greater than 10−3 are important for the eigen-
function shape. The excited eigenfunction is orthonormalized via Gram-Schmidt
with respect to the ground state one. The 3D histogram for the one-nucleus density
is composed of cubes whose edge is 0.049Å. We represent these histograms in the
standard cube file format, which can be read by any visualization software which
supports it. In particular, we used the VMD software to produce all the nuclear
density pictures in the present work71. Instead, the density space resolution of the
bond-length distributions in Fig. 3b is equal to 0.008Å, the one for angle and
dihedral distributions is 0.45 degrees. The evaluation of wavefunction coefficients
and the calculation of the densities takes few minutes on a personal computer and
it does not necessarily require many cores or large memory.

Data availability
Any data generated and analyzed for this study that are not included in this Article and
its Supplementary Information are available from the authors upon request.

Code availability
The computer code and the data files used to produce all the figures presented in this
study are available as Supplementary Code (zip file). The code is released under the GNU
General Public Licence v3.
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