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Computational fluid dynamics 
model and flow resistance 
characteristics of Jatropha curcas L 
xylem vessel
Tianyu Xu, Lixiang Zhang & Ze Li*

Xylem vessels are the channels used for water transport in Jatropha curcas L. Vessel complexity 
has a great influence on water transport. Therefore, using anatomical experiments and numerical 
simulations, the water transport characteristics of J. curcas L xylem vessels with perforation plate 
and secondary wall thickening (pit structures) were analyzed. The results showed that the xylem 
vessel in J. curcas provided a low resistance path. The xylem vessel resistance was composed of three 
elements: smooth vessels, secondary wall thickening and perforation plate. The proportion of smooth 
vessel resistance was the largest, accounting for 66.20% of the total resistance. Then the secondary 
wall thickening resistance accounted for 30.20% of the total resistance, and finally the perforation 
plate resistance accounted for 3.60% of the total resistance. The total resistance of the vessel model 
was positively correlated with the pit depth, perforation plate height and perforation plate width 
and negatively correlated with the vessel inner diameter and pit membrane permeability. The vessel 
inner diameter and the pit depth had a great influence on the total resistance. The total resistance of 
the vessel inner diameter of 52 µm was 89.15% higher than that of 61 µm, the total resistance of the 
pit depth of 5.6 µm was 21.98% higher than that of 2.6 µm. The pit structure in the secondary wall 
thickening caused the vessel to be transported radially, and the radial transmission efficiency of the 
vessel was positively correlated with the pit depth and pit membrane permeability and negatively 
correlated with the vessel inner diameter. The pit membrane permeability had the greatest influence 
on the radial transmission efficiency, and its radial transmission efficiency was 0–5.09%.

Jatropha curcas L trees are widely distributed in tropical and dry hot  valleys1. Its seeds possess high oil content 
and can be easily converted into biodiesel. The lack of water resources has become one of the main limitations of 
J. curcas growth. Water transport from the roots to the leaves depends on the  xylem2,3, while the water transport 
of xylem depends on the  vessels4,5. During the growth and development of a xylem vessel, various shapes of 
wall thickening are formed, including annular thickening, helical thickening, reticulated thickening and pitted 
 thickening6,7. The wall thickening structure has a great influence on the water transport of the xylem  vessel8,9. 
In addition to the wall thickening structure of the vessel, there are several perforations on the end of the vessel, 
that is perforation  plate10, and water must pass through these perforation plates during  transport11.

In previous studies, water transport in plant xylem vessels was mainly used in botany observation experi-
ments to explore flow  characteristics12.  Jeje13 measured the flow velocity of water in helical thickening ves-
sels with different structures using a high-speed microscopy camera and analyzed the relationship between 
the helical thickening structure and the flow resistance of the vessel. Subsequently,  Jeje14 created an enlarged 
secondary thickening model with plexiglass for experimental verification. The small size of the xylem vessels, 
the various types of structures and the complex internal flow phenomena lead to considerable difficulties for 
making botanical  observations2. To compensate for the lack of experimental methods, some scholars have used 
computational fluid dynamics (CFD) methods to construct a fluid model of a plant’s xylem vessels, revealing 
the flow mechanism inside the xylem vessel.  Roth4 established a two-dimensional simplified model of the vessel, 
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analyzed the flow characteristics of the annular thickening, and concluded that the flow state was related to the 
distance and height between adjacent rings.  Chen8 used an SST k–ε model to numerically simulate the annular 
thickening and helical thickening of the vessel. It was concluded that the vessel inner diameter and the thicken-
ing height had significant influence on the flow resistance and that the thickening width and inclination angle 
of thickening had less effects on the flow resistance. Ai  QL11 simulated the pressure and velocity distribution of 
a scalariform perforation plate based on the k-ε model and found that the number of holes in the perforation 
plate was positively correlated with the total pressure drop.

These numerous experiments and numerical simulations obtain the conclusion that secondary wall thicken-
ing and perforation plates play important roles in xylem water transport. However, current studies have mainly 
focused on axial transmission within the  vessel8,9. It has been observed under field emission scanning electron 
microscopy (FSEM)15 that the xylem vessels of J. curcas contain perforation plates and secondary wall thickening 
(pit structures) and that the presence of pit structures on the wall of the vessel result in radial water transport. 
In this paper, the method of combining anatomical experiments and numerical simulations was used to (1) 
obtain the resistance composition of different structures of the J. curcas vessel, (2) evaluate the total resistance 
of the change of the structural parameters of the vessel, and (3) analyze the radial transmission efficiency of the 
vessel. The results will provide a reference for the flow characteristics of the J. curcas vessel and obtain a deeper 
understanding of water transport in plant xylem.

Methods
Plant materials. In our study, trees (J. curcas) were collected by author at the Kunming University of Sci-
ence and Technology in Yunnan, Southwest China (24° 84′ 50″ N, 102° 86′ 49″ E, 1,860  m above sea level) 
and were planted in a greenhouse by Faculty of Modern Agricultural Engineering. Our lab has identified plant 
materials used in research. The samples were deposited in Computer Key Laboratory of Kunming University of 
Science and Technology. Due to the samples are universal, no permit is required to collect such samples in part 
areas of Yunnan. The samples were taken from the 4-year-old J. curcas L. To ensure that the branches could be 
taken from the upper third of the tree crown, they were collected from heights of 1.5 m to 1.8 m. The samples 
were sliced within 3–4 days and analyzed by scanning electron microscopy.

Slice preparation. Sawing the branches blocks. Taking the branches blocks of the J. curcas 
(0.7 cm × 0.7 cm × 0.7 cm), the cross section, tangential section and radial section were repaired under the dis-
secting microscope. The cross section was perpendicular to the longitudinal axis, and the tangential and radial 
sections were perpendicular to the wood ray.

Wood softening. The boiling method was used to soften the branches blocks of the J. curcas. The repaired blocks 
were put into a beaker filled with distilled water, and the beaker was vacuumed in a vacuum pump until the 
blocks sank to the bottom. The blocks were taken out and put into a pressure cooker for approximately 3–5 h 
until they were fully softened.

Slicing. The slicing knife was mounted on the microtome, tightened and the knife was slightly inclined. The 
degree of inclination depended on the hardness of the wood. The angle of the side of the experimental knife and 
the surface of the wooden block was approximately 10°. The thickness of the slice was generally 10 to 20 μm. 
After the sectioning was completed, the section was removed from the sectioning knife with a brush and trans-
ferred to a petri dish containing water. Three pieces of each side were cut for spares.

Packaging. The cover glass and glass slide were washed with alcohol before the cover, the slices were placed on 
the glass slide, and a layer of transparent agent was evenly applied on the slices (alcohol–glycerol 1:1). The cover 
glass was gently pressed onto the glass slide, and the bubbles were pushed out slowly.

Labeling. The label was pasted on the left side of the glass, which was then put it in the slice box for storage.

FSEM observation and structure parameters. The sealed samples were soaked in distilled water and 
the glycerin was dislodged by multiple cleanings, then the samples were put into 30%, 50%, 70% and 90% ethanol 
solutions (30 min) to dislodge the moisture. Finally, the samples were put into a 100% ethanol solution for an 
hour, with metal spraying of the samples after air drying for at least 12 h. The samples were observed by using 
field emission scanning electron microscopy (FSEM) at the Analytic and Testing Research Center of Yunnan.

As observed from the micrographs of the tangential and cross sections, the xylem vessels contained perfora-
tion plate and secondary wall thickening (pit structures); the perforation plate had a single hole (arrow position), 
and the pit structure was a bordered pit (pentagram position). The tangential section and radial section of the 
sample were used to measure the parameters such as vessel length, pit diameter, pit aperture and perforation 
plate width (Fig. 1a). The cross section of the sample was used to observe the parameters such as inner diameter 
and perforation plate height (Fig. 1b). The detailed vessel structure parameters were used to analyze the water 
transfer characteristics. The dimensions and geometries of the xylem vessel are shown in Table 1.

In our study, secondary wall thickening was characterized as pitted thickening, which was part of the non-
thickening hole or depression left by the secondary wall during the thickening process. Figure 2 shows the ele-
ments of the vessel structure.
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Modeling approaches. A complete three-dimensional model of the vessel was established based in Solid-
Works. The pit membrane structure in the model was important, as it behaved as a safety valve for water trans-
port in plants. In this section, combining the anatomical observation and mathematical model, and consider-
ing the permeability of the pit membrane, the expression of the pit membrane was carried according to the 

Figure 1.  Field emission scanning electron microscopy of the J. curcas vessel (a) tangential section (b) cross 
section.

Table 1.  The patterns of the xylem vessel in the midribs of the branches of the Jatropha. 

Structure parameters J. curcas Structure parameters J. curcas

Cross section Circular Perforation plate width 3 μm

Vessel length 200 μm Perforation plate height 3 μm

Inner diameter 55 μm Pit diameter 8 μm

Pit type Bordered Pit aperture 2.6 μm

Perforation plate type Single Pit depth 4.6 μm

Perforation plate tilt angle 45°

Figure 2.  Schematic of the pit structure and perforation plate.
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 literature16,17 and the structure is shown in Fig. 3a. In our study, the pit membrane permeability was 15% by 
anatomical observation(Fig. 3b).

Therefore, 3D models with perforation plate and secondary wall thickening were built, as shown in Fig. 4, 
where the thickness of the pit membrane was 0.2 μm.

Calculation method and initial condition. In a general approach, the fluid flow relies on the steady-
state conservation equations for mass and momentum in a fluid, which are given by:

Continuity equation:

Momentum equation:

where u, v, w are the components of the velocity vector along the x, y, z-directions, respectively, ρ is the fluid 
density, P is the fluid pressure, µ is the dynamic viscosity.

The simulation of the model was a fluid domain, and the fluid was water. The SIMPLEC scheme was chosen to 
achieve the coupling solution for the pressure and velocity equations. For the boundary conditions, the pressure 
was zero at the model outlet, and the flow velocity was 0.3 mm s−1 at the model inlet. To avoid the effects of the 
entrance and exit, an extended smooth segment with a length of 25 μm was added at both ends of the microchan-
nels. Considering the irregularity of the vessel, grid generation was performed using tetrahedral and hexahedral 
nongrid structures. Based on the prediction accuracy of the inlet and outlet pressure drop, a grid independence 
test was performed. The predicted pressure drop difference was within 0.5%, the number of grids was consid-
ered to have no effect on the results. The total number of grids in the model was 10 million. The maximum and 
minimum unit sizes were 7.64 × 10–6 m and 3.82 × 10–8 m, respectively. PowerCube-S01 with a high-performance 
computing system was used for the simulation. Figure 5 shows the local mesh of the pit structure.
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Figure 3.  Schematic diagram of pit membrane (a) Pit membrane structure (b) porosity distribution.

Figure 4.  The 3D models of the vessel.
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Results
Flow velocity and pressure gradient on the vessel. The fluid velocity and pressure at all points in the 
model were not the absolute flow velocities in the J. curcas vessel, under any particular flow state, occurring in 
any whole plant in the greenhouse (Figs. 6, 7). However, the compared velocities within different components 
(perforation plate and secondary wall thickening) were valid. Within an individual vessel, the maximum velocity 
was intensely focused on the perforated plate area. For the pit structure, the radial flow was clearly visible and 
converged at the outflow point on the pit membrane, and the fluid in the pit cavity did not take part in the vessel 
axial flow. In the model, the general flow velocity inside the pit cavity was extremely low, and the pit structure 
had a great influence on the flow state in the pit cavity. The pressure gradient of the vessel wall is shown in Fig. 7, 
which also shows the local pressure gradient of the pit structure. The pressure distribution gradient of the pit 
membrane and perforated plate region was complicated. At the inlet and outlet regions of the vessel, the pressure 
gradient was less steep up to the perforated plate. However, directly before the secondary wall thickening, a small 
region of higher pressure developed, and an area of low pressure was present after the perforated plate. In the pit 
structure area, the pressure on the pit membrane was lower than that on the surrounding vessel area, while the 
pressure on the pores surrounding the area was higher than that on the other areas of the pit membrane.

Components of total resistance: perforation plate, pit structures, and smooth vessel. To esti-
mate the different structures of the J. curcas vessel components, the perforation plate, secondary wall thickening 
(bordered pit) and smooth vessel, the total pressure (Δp) and the average flow rate (q) were obtained through 
numerical simulation. The total resistance of the J. curcas vessel was calculated from Δp divided by q. In the ini-
tial calculation, the smooth vessel was added to model 1, secondary wall thickening was added to model 2, and 
the perforation plate was added to model 3.

Figure 5.  Grids in part of vessel model.

Figure 6.  Velocity distribution of flow field in section along vessel axis.

Figure 7.  Pressure distribution of flow field in section along vessel axis.
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With the addition of secondary wall thickening in model 1 (Table 2), Δp increased by 20.26%, the flow rate 
decreased by 21.08%, and the flow resistance increased by 45.61%. In models 2 and 3, Δp increased by 3.72% with 
the addition of the perforation plate, q was constant, and the flow resistance increased by 3.72%.

As shown in Table 3, the resistance ratio of each component in the vessel was obtained. The results are shown 
in Fig. 8. The perforation plate was a relatively lower component, at 3.60% of the total resistance; secondary wall 
thickening accounted for 30.20% of the total resistance, and the smooth vessel was a relatively larger component, 
at 66.20% of the total resistance.

Effects of the changes in the vessel structural parameters on total resistance. Effect of pit mem-
brane permeability on total resistance. The radial water transport of the vessel relied on the pit structure, and 
the pit membrane permeability in the pit had a significant effect on water transport. There was a close linear 
relationship between the flow resistance and pit membrane permeability (Fig. 9a), which was notably affected 
by the pit membrane permeability. When the pit membrane permeability changed from 0 to 30%, the total flow 
resistance changed from 1.837 × 1012 to 1.748 × 1012 Pa s m−3. The flow resistance of the vessel decreased with in-
creasing pit membrane permeability. In the J. curcas vessel, the flow resistance of the pit membrane permeability 
of 30% was 5.09% higher than that of 0%.

Effect of vessel inner diameter on total resistance. The flow rate and total pressure of the vessel were affected 
the size of the vessel inner diameter and then affected the flow resistance of the vessel. There was a close linear 
relationship between the flow resistance and the vessel inner diameter (Fig. 9b), which was notably affected by 
the vessel inner diameter. When the vessel inner diameter changed from 52 to 61 µm, the total flow resistance 
changed from 2.198 × 1012 to 1.162 × 1012 Pa s m−3. The flow resistance of the vessel decreased with increasing 

Table 2.  Flow resistance of the vessel model.

Models Δp/Pa q/(m3 s−1) Flow resistance/(Pa s m−3)

Model 1 0.849 7.093 × 10–13 1.197 × 1012

Model 2 1.021 5.858 × 10–13 1.743 × 1012

Model 3 1.059 5.858 × 10–13 1.808 × 1012

Table 3.  Resistance calculation method. R1 is the flow resistance of the model 1;  R2 is the flow resistance of the 
model 2;  R3 is the flow resistance of the model 3.

Calculation method Formula Calculation method Formula

Smooth vessel flow resistance Rs = R1 Fraction due to smooth vessel F1 = R1/R3

Secondary wall thickening flow resistance Rw = R2 − R1 Fraction due to secondary wall thickening F2 = R2 − R1/R3

Perforation plate flow resistance Rp = R3 − R2 Fraction due to perforation plate F3 = R3 − R2/R3

Total flow resistance Rtot = R3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 Smooth vessel

Perforation plate

Secondary wall  thickening

Total resistance

Resistance (1E12Pa s m-3)

Figure 8.  Total resistance component of J. curcas vessel model.
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vessel inner diameter. In the J. curcas vessel, the flow resistance of the vessel inner diameter of 52 µm was 89.15% 
higher than that of 61 µm.

Effect of pit depth on total resistance. The vessel inner diameter was affected by the size of the pit depth and 
then affected the flow, Δp and flow resistance of the vessel. There was a close linear relationship between the flow 
resistance and the pit depth (Fig. 9c), which was notably affected by the pit depth. When the pit depth changed 
from 2.6 to 5.6 µm, the total flow resistance changed from 1.592 × 1012 to 1.942 × 1012 Pa s m−3. The flow resist-
ance of the vessel increased with increasing pit depth. In the J. curcas vessel, the flow resistance of the pit depth 
of 5.6 µm was 21.98% higher than that of 2.6 µm.

Effect of perforation plate height and perforation plate width on total resistance. The flow velocity in the vessel 
was affected by the size of the perforation plate and then affected by the flow resistance of the vessel. There was 
a close linear relationship between the flow resistance and the perforation plate (Fig. 9d), which was notably 
affected by the perforation plate. When the perforation plate height changed from 2 to 5 µm, the total flow resist-
ance changed from 1.789 × 1012 to 1.866 × 1012 Pa s m−3, and when the perforation plate width changed from 2 to 
5 µm, the total flow resistance changed from 1.801 × 1012 to 1.824 × 1012 Pa s m−3. The flow resistance of the vessel 
increased with increasing perforation plate height and perforation plate width. In the J. curcas vessel, the flow 
resistance of the perforation plate height of 5 µm was 3.78% higher than that of 2 µm, and the flow resistance of 
the perforation plate width of 5 µm was 1.28% higher than that of 2 µm.

Radial transmission efficiency of the vessel. To study the effect of the radial transport of the vessel on 
the total resistance, the vessel inner diameter, pit depth and pit membrane permeability were analyzed. Here, 
the radial transmission efficiency is expressed as the percentage of radial transmission resistance in the total 
resistance

where F is radial transmission efficiency, F2 is the flow resistance with only axial water transport (The pit mem-
brane permeability is 0), F1 is the flow resistance with axial and radial water transport.

(3)F = (F2 − F1)/F1
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Figure 9.  Influence of vessel model parameters on total resistance: (a) pit membrane permeability, (b) vessel 
inner diameter, (c) pit depth, (d) perforation plate height and width.
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The influence of different structural parameters on F1 and F2 is shown in Table 4. The radial transmission 
efficiency of the J. curcas vessel was calculated by Eq. (1). The results show that the radial transmission efficiency 
of the vessel had a good correlation with the vessel inner diameter, pit depth and pit membrane permeability 
(Fig. 10). When the vessel inner diameter changed from 52 to 61 µm, the radial transmission efficiency changed 
from 1.64 to 1.38%; when the pit depth changed from 2.6 to 5.6 µm, the radial transmission efficiency changed 
from 1.44 to 1.65%; and when the pit membrane permeability changed from 0 to 30%, the radial transmission 
efficiency changed from 0 to 5.09%. Under the other geometrical dimensions, the radial transmission efficiency 
of the vessel decreased with increasing vessel inner diameter and increased with increasing pit depth and pit 
membrane permeability.

Discussion
Based on the modeling of botanical anatomical vessels, the resistance distribution of each structure in the vessel 
and its influence on the vessel were analyzed. The radial transmission efficiency was obtained by comparing it 
with the vessel that using axial transmission. The maximum flow velocity in the vessel occurred in the area of 
the perforated plate. The reason is that the perforation plate decreased the inner diameter of the vessel. Ai  QL11 
analyzed the perforation plate and obtained a similar flow velocity distribution. The secondary wall thickening 
structure showed a less steep pressure gradient than that of the perforation plate. It may be that the pit cavity was 
outside the vessel inner diameter and that the energy loss generated by the low velocity flow inside the pit cavity 
was insufficient to exceed the pressure gradient. On the other hand, the perforation plate on the inside of the 
vessel wall reduced the inner diameter and increased the velocity of the  fluid8, therefore, the pressure gradient 
changed greatly. Although the flow velocity inside the pit cavity was very low, it had a great influence on a small 
pit cavity, causing the pressure of the pit membrane to larger charge.

The xylem vessel model of J. curcas showed the flow phenomena of different resistances in xylem vessels, 
including perforation plate, secondary wall thickening and smooth vessels. The components of the resistance of 
the three elements showed that the smooth vessel obtained the largest flow resistance, indicating that the vessel 
was close to the ideal smooth vessel and that water transport was more efficient, which also explained the evo-
lution of the  plant12. The secondary wall thickening resistance was second, increasing the inner wall thickness 
to stabilize the vessel and the water radial flow.  Schulte18 analyzed the resistance of a 5-hole perforation plate 
and found that the resistance was only 8% of the total resistance. In our study, the perforation plate accounted 
for 3.60% of the total resistance, which had the lowest flow resistance in the water transport. The main reason 
was that the perforation plate was a single hole, but the perforation plate structure made the vessel more stable 
 mechanically5.

The change in the vessel inner diameter had an important effect on the total resistance of the vessel. This was 
mainly because that as the vessel inner diameter increased, the flow rate inside the vessel increased, the pressure 
drop decreased, and the total resistance decreased. Similar trends were found by  Tyree6 and  Chen8, who showed 
that in a larger inner diameter vessel, the water transport efficiency was much closer to that of an ideal vessel 
because the structural features of the vessel changes had little effect. Pit depth was also an important parameter 

Table 4.  Flow resistance of vessel with different structural parameters.

Vessel inner 
diameter (µm) F1 (× 1012) F2 (× 1012) Pit depth (µm) F1 (× 1012) F2 (× 1012)

Pit membrane 
permeability (%) F1 (× 1012) F2 (× 1012)

52 2.198 2.234 2.6 1.592 1.615 0 1.837 1.837

55 1.808 1.837 3.6 1.693 1.719 10 1.820 1.837

58 1.470 1.492 4.6 1.808 1.837 20 1.791 1.837

61 1.162 1.178 5.6 1.942 1.974 30 1.748 1.837
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Figure 10.  Influence of vessel model parameters on radial transmission efficiency: (a) vessel inner diameter, (b) 
pit depth, (c) pit membrane permeability.
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that affected the total resistance. Because the distance between the pit aperture and the pit membrane was 
affected, the vessel inner diameter was  changed19,20. Compared with the perforation plate width, the perforation 
plate height had a greater influence on the flow resistance. The perforation plate height had a large influence on 
the fluid velocity in the vessel, resulting in a large change in the total  resistance11.

At present, the study of xylem vessels is based on the influence of the internal structure on axial  transmission9. 
In our study, the area of secondary wall thickening (pit structures) led to radial flow inside the pit cavity, indicat-
ing that water could be transferred between  vessels20. From the analysis of the vessel inner diameter, pit depth 
and pit membrane permeability of the vessel, the pit membrane permeability had the greatest influence on its 
radial transmission efficiency with the transmission efficiency of 0–5.09%, indicating that the vessel was impor-
tant for axial transmission. The radial transmission efficiency of the vessel was positively correlated with the pit 
depth and pit membrane permeability and negatively correlated with the vessel inner diameter. The decrease in 
the pit depth led to an increase in the curvature of the inner wall of the pit cavity, and the sudden expansion of 
the fluid caused high shear forces in the fluid, which was not conducive to water  transport21. The increase in the 
vessel inner diameter increased the flow rate in the vessel, which increased the axial transmission capacity, so 
the radial transmission capacity was reduced. As the pit membrane permeability increased, the flow rate in the 
pit cavity increased, the pressure drop decreased, and the radial transmission capacity  increased22. The results 
of this study are contribute to the further study of the role of various structures in vessels.

Conclusions
The xylem vessel in J. curcas provides a low resistance path, in which the smooth vessel (resistance along the 
path) has the largest resistance, followed by secondary wall thickening and the perforation plate. Model solutions 
demonstrated a close positive relationship between the total resistance of vessels with pit depth, perforation plate 
height and width and a negative relationship between the total resistance of vessels with the vessel inner diameter 
and pit membrane permeability. Among them, pit depth and the vessel inner diameter had a great influence on 
the total resistance. The radial transmission efficiency of the vessel was positively correlated with the pit depth and 
pit membrane permeability and negatively correlated with the vessel inner diameter. Meanwhile, pit membrane 
permeability had a great influence on the radial transmission efficiency.

Data availability
The data that support the findings of this study are available from the corresponding author on reasonable 
request.
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