
Review

Role of Autophagy and Apoptosis in Acute
Lymphoblastic Leukemia

Fang-Liang Huang1,2,3, Sheng-Jie Yu4, and Chia-Ling Li, PhD1

Abstract

Background: Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an excessive number of immature
lymphocytes, including immature precursors of both B- and T cells. ALL affects children more often than adults. Immature
lymphocytes lead to arrested differentiation and proliferation of cells. Its conventional treatments involve medication with
dexamethasone, vincristine, and other anticancer drugs. Although the current first-line drugs can achieve effective treatment, they
still cannot prevent the recurrence of some patients with ALL. Treatments have high risk of recurrence especially after the first
remission. Currently, novel therapies to treat ALL are in need. Autophagy and apoptosis play important roles in regulating cancer
development. Autophagy involves degradation of proteins and organelles, and apoptosis leads to cell death. These phenomena are
crucial in cancer progression. Past studies reported that many potential anticancer agents regulate intracellular signaling pathways.

Methods: The authors discuss the recent research findings on the role of autophagy and apoptosis in ALL.

Results: The autophagy and apoptosis are widely used in the treatment of ALL. Most studies showed that many agents regulate
autophagy and apoptosis in ALL cell models, clinical trials, and ALL animal models.

Conclusions: In summary, activating autophagy and apoptosis pathways are the main strategies for ALL treatments. For ALL,
combining new drugs with traditional chemotherapy and glucocorticoids treatments can achieve the greatest therapeutic effect by
activating autophagy and apoptosis.
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Introduction

Acute lymphoblastic leukemia (ALL) is a hematological

malignant disease characterized by over numbered immature

lymphocytes, of which 80-85% are B cells and 20-25% are

T cells. The result is arrested differentiation and abnormal

proliferation of these lymphocytes.1,2 Acute leukemia is the

most common form of cancer in children, comprising *30%
of all childhood malignancies. Of the acute leukemias, acute

lymphoblastic leukemia (ALL) occurs 5 times more often than

acute myeloid leukemia (AML). In 2020, the worldwide inci-

dence of ALL in population is estimated between 0.4 to 2 per

100,000, and prevalence rate between 0.37 to 1.6 per 100,000.

ALL most commonly occurs in children, but it is also diag-

nosed in adults. Its peak incidence is between 2 to 5 years of

age, and beyond that, 60% of cases occur prior to the age of 20.

Incidence rates show no gender differences.3,4 Although the
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5-year survival rate of ALL is about 90%, 20% of children with

ALL relapse with poor prognosis.5,6 Adult patients of ALL

have recurrence rates comparatively higher than children, up

to 40 or 50%.7,8 As a result, efforts are currently made to better

treat ALL. Children with ALL have poor social, physical, and

emotional health performances compared with normal children

and siblings of the same age. In addition, ALL children also

develop problems of depression, anxiety, and attentional dis-

orders.9,10 Current treatments of ALL include chemotherapy,

with high doses of methotrexate (MTX), 6-Mercaptopurine

(6MP) and other drugs,11-14 followed by regular oral or injec-

tion of anticancer drugs like Dexamethasone, Vincristine,

cytarabine (Ara-C), Endoxan, 6MP, and MTX. However, ALL

sometimes recurs, likely due to residual cancer cells escaping

treatment. These cells, when proliferated, will result in the

reappearance of the disease.15 When cancer thus returns, it is

called relapse or recurrence. That is to say, blast cells are

present in bone marrow after reaching complete remission.

About 15-20% of childhood ALL patients relapse.16 Therefore,

how to effectively detect minimal residual disease (MRD) is

important for the prognosis of ALL. MRD is assessed through

the examination of remission bone marrow samples. There are

several common methods of MRD assessment, such as poly-

merase chain reaction, flow cytometry and next-generation

sequencing.17 In addition to detecting MRD, from a molecular

perspective, apoptosis and autophagy are extremely important

aspects in treating relapse of ALL. The regulation of apoptosis

is known to be abnormal in relapse ALL. Relapse in childhood

ALL is associated with a drop in the Bax/Bcl-2 ratio, and loss

of spontaneous caspase-3 processing in vivo.18 Genes of the

Bcl-2 family are responsible for controlling pro-apoptotic

and anti-apoptotic pathways. In addition, impairments of

PI3K/Akt/mTORC1 and Notch1 signaling pathways are found

in ALL, affecting the regulation of autophagy.19 However, the

controversial role of autophagy in promoting or inhibiting leu-

kemia still needs to be clarified. Future medical treatments

shall aim to lower recurrences of ALL patients, especially those

after their first remission.

Autophagy and B-cell Acute Lymphoblastic
Leukemia (B-ALL)

Autophagy is a process that, through intracellular lysosomes,

eliminates old proteins, abnormal organelles or foreign invad-

ing microorganisms. Autophagy plays an important role in

clearing old organelles and reducing oxidative stress to main-

tain cell health, avoiding oxidative stress,20,21 and conse-

quently minimizing cancer development. B-cell acute

lymphoblastic leukemia (B-ALL) is treated with glucocorti-

coids that induce cell autophagy and cause cell death.22,23 In

B-ALL, ETV6-RUNX1 played an important role on inducing

genetic change and leading to tumorgenesis.24ETV6-RUNX1

fusion protein, which plays a role in the development of

B-ALL, accounts for 25% of pediatric patients with B-cell

precursor acute lymphoblastic leukemia (BCP-ALL). In

ETV6-RUNX1-positive cells, autophagy activates cell

proliferation, survival and drug resistance. The expression of

ETV6-RUNX1 could be regulated by autophagy-regulating

complex such as Vps34, Beclin-1, and Vps15.25 In the recent

study demonstrated that through suppressing autophagy in

ETV6-RXNX1 gene positive B-ALL could severely downre-

gulate cell proliferation and survival.26 Hydroxychloroquine,

an autophagy inhibitor, reduces proliferation and survival of

leukemic blasts in BCP-ALL.26 Furthermore, the ongoing

clinical trials also showed the same strategy to against B-

ALL proliferation. For example, an autophagy inhibitor,

chloroauine, could increase the response of patients with B-

ALL to the chemotherapy.27 These studies supported the

rationale between autophagy inhibition and B-ALL

suppression and showed the promising treatment effects. For

B-ALL, GC resistance is a key predictor of the adverse

outcome during the initial stage of chemotherapy. ALL with

GC-resistance shows higher expressions of the MAPK

pathway.28-30 The development of inhibitors, which target

components of MAPK pathway, attracts great research

interest. Selumetinib, a MEK1/2 inhibitor, enhances

dexamethasone toxicity, reduces pERK1/2 level and mTOR

signaling pathways.29,30 Besides, selumetinib treatment also

up-regulates a specific marker of autophagy LC3-ll level.29

Down-regulation of autophagy is closely related to B-ALL.

The Atg7 gene is one player of the autophagy pathway. Atg7

acts as an E1-like enzyme that conjugates itself with Atg12 and

Atg5. This conjugated complex is important for driving

phosphatidylethanolamine (PE) to LC3. Atg7 activates the

conjugation of LC3 with PE during autophagy.31 Deletion of

Atg7, by conditional knockout in B-ALL xenograft mouse

model, produces Atg7 deficient mice which are more

susceptible to the occurrence of engrafted human leukemia

cells.32 Bone marrow cells of pediatric B-ALL patients

display lower levels of expressing autophagy genes, like

Beclin-1, Atg5, Atg7, LC3 and p62. When autophagy is

activated by rapamycin, leukemia bone marrow cell cycle

arrest is inhibited, and thereby improving the survival of

ALL xenograft mice. Furthermore, this study found that

autophagy, collaborating with ubiquitination, could

downregulate oncoprotein in pediatric B-ALL.33

Autophagy and T-Cell Acute Lymphoblastic
Leukemia (T-ALL)

T-ALL is a common pediatric malignancy, comprising 20-25%
of ALL. In the ALL Jurkat cell model, timosaponin A

III induces cell autophagy and apoptosis to exert its anti-

tumor effects.34 The JAK-STAT pathway cascade regulates

lymphoid cells in their formation, proliferation, survival and

differentiation. Studies on leukemia reported that the

JAK-STAT pathway is frequently mutated. TG101209, a JAK2

inhibitor, inhibits T-ALL cell proliferation by regulating

JAK-STAT pathway and autophagy.35 Autophagy may play

an important role in cytotoxic effects of Akt inhibitors in pro-

tecting T-ALL cells. C Simioni et al, used MK-2206 in com-

bination with an autophagy inhibitor, either bafilomycin A1 or
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chloroquine, to increase cytotoxicity. MK-2206 can therefore

induce autophagy in T-ALL cells, protecting tumor cells

against apoptosis.36 The anti-malarial drug chloroquine (CQ),

an autophagy inhibitor, affects oncogenic NOTCH1 trafficking

and processing in T-ALL. Besides, CQ also induces apoptosis

and inhibits T-ALL cell proliferation.37 Targeting mutated

NOTCH1 proteins could increase anti-leukemia activity in the

T-ALL xenograft mouse model.38 The autophagy-related pro-

teins such as LC3-II, Atg5, Beclin-1 are key markers. The

20(S)-ginsenoside Rh2 (GRh2) is a bioactive compound iso-

lated from ginseng, which has beneficial effects on anti-cancer.

After 20(S)-ginsenoside Rh2 (GRh2) treatment in T-ALL, not

only the autophagic flux is enhanced, but also levels of LC3-II,

Atg5, Beclin-1 are upregulated.39,40 Also 20(S)-ginsenoside

Rh2 (GRh2) down-regulates levels of CD3 and CD45 in the

bone marrow of T-ALL xenograft mice. In addition, 20(S)-gin-

senoside Rh2 (GRh2) also regulates PI3K/Akt/mTOR signal-

ing pathway.41 In general, cancer cell development need

overcome the energy consumption and oxygen supplement,

therefore, autophagy played the major role on providing more

ATP to cancer cell and defeating hypoxic stress. Therefore,

targeting inhibiting T-ALL autophagy provided a promising

strategy to increase treatment efficacy or sensitivity to the che-

motherapy.42 Recombinant human arginase (rhArg) has been

demonstrated that could effectively decrease hepatocellular

carcinoma proliferation in the clinical trials.43 In the recent

year, the effects of rhArg on treating T-ALL has also been

investigated. In in vitro experiments showed that rhArg

induced both autophagy and apoptosis in the T-ALL cell lines.

However, by treated autophagy inhibitor and rhArg at the same

time, which could significantly enhance the rhArg induced cell

apoptosis.44 Furthermore, NL-101 compound which inhibited

T-ALL autophagy has been reported that could suppress

T-ALL proliferation through inducing cell cycle arrest and cell

apoptosis.45 These studies suggested that targeting suppressing

autophagy in T-ALL was effective and could be used to support

further clinical trials in the future.

Autophagy and Philadelphia Chromosome-
Positive ALL

The Philadelphia chromosome-positive ALL has a

t(9;22)(q34;q11) translocation in the Philadelphia chromo-

some.46 In Philadelphia chromosome-positive ALL, which is the

most frequent genetic aberration in ALL, different strategies are

used to induce autophagy. In this disease, the curcumin-induced

autophagy via the ERK1/2 pathway.47 On the other hand, tyr-

osine kinase inhibitors (TKIs) also show good effects in its

treatment. The combination of BCR-ABL1 inhibitors (TKIs) and

PI3K/Akt/mTOR inhibitors could effectively induce apoptosis

and autophagy, leading to lower viability of T-ALL cells.48 PI3K

played an important role in regulating cell proliferation, differ-

entiation, survival, cell cycle and metabolism in leukemia.49,50

Furthermore, recent study indicate that PI3K inhibitors combine

with TKIs induce autophagy in Philadelphia chromosome-

positive B-ALL cell lines.51 In the recent years, it has been

proven that metformin could reduce the incidence of cancer and

improve the outcome of chemotherapy.52 In in vitro study, met-

formin could induce apoptosis cell death in Philadelphia

chromosome-positive ALL by activating AMP-activated protein

kinase (AMPK) and inhibiting mammalian target of rapamycin

complex 1 (mTORC1) pathway. Besides, metformin also could

induce autophagy through the ERK signaling pathway in Phila-

delphia chromosome-positive ALL cell line.53 Therefore, these

studies suggested that the combination TKIs with PI3K/Akt/

mTOR inhibitors can be used as a novel therapeutic approach

for Philadelphia chromosome-positive ALL in future clinical

application.

Autophagy is widely used in treating ALL, as summarized

in Table 1.

Apoptosis and ALL

Programmed cell death, or apoptosis, is a process generally

characterized by distinct morphological changes. It is mediated

through energy-dependent biochemical mechanisms. Relapse

Table 1. Autophagy-Inducing/Inhibiting Agents in ALL Treatments.

Disease
Cell type/clinical
trial/ animal model Treatment Mechanism

Inhibit/induce
autophagy Ref

B-ALL GC-resistant
B-ALL cells

Selumetinib Inhibition of mTOR signaling pathway, inhibition of MEK/ERK pathway Induce 29

B-ALL pre-B ALL cell lines Dexamethasone Accumulation of autophagosomes, increase LC3-II accumulation Induce 54

T-ALL CCRF-CEM Dexamethasone Suppression of glycolysis and activation of mitochondrial function Induce 55

T-ALL Jurkat Tamoxifen In a G protein-coupled ER-dependent manner Induce 56

B-ALL SUP-B15 Curcumin Activation of RAF/MEK/ERK pathway Induce 47

ALL Clinical trial Obatoclax Increased LC3-I to LC3-II conversion Induce 57

ALL ALL xenograft mice Berberine Induced autophagy via inactivating AKT/mTORC1 signaling pathway Induce 58

ALL ALL xenograft mice RAD001
(Everolimus)

Increased in the autophagy-associated protein Beclin-1 and the processing of
LC3 to the lipidated form (LC3-II), which associates with
autophagosomes

Induce 59

B-ALL ALL xenograft mice Alantolactone Induced apoptosis and inhibited autophagy of ALL cells via upregulation of
adaptor related protein complex 2 subunit mu 1 (AP2M1)

Inhibit 60

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; T-ALL, T-cell acute lymphoblastic leukemia.
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in childhood ALL is associated in vivo with a lower Bax/Bcl-2

ratio, and a loss of spontaneous processing of caspase-3.61,62

Therefore, tumor-inhibiting effects can be exerted mainly

through apoptosis. Mitochondria plays a key role in a number

of cellular pathways, including the apoptosis pathway, reactive

oxygen species (ROS) production and cell death induction.

Mitochondria is an important organelle, which regulates many

cellular pathways in mammalian cells. The dysfunction of

apoptosis is common in cancer. Therefore, mitochondria is a

target for anticancer treatment. During apoptosis, the mito-

chondrial membrane is depolarized, leading to a drop in the

membrane potential (MMP). The loss of MMP increases the

permeability of its outer membrane. Consequently, the leakage

of mitochondrial membrane releases mitochondrial apoptosis

factors, including cytochrome c, apoptosis–inducing factor and

endonuclease G, leading to the activation of caspase-cas-

cade.63-65 Regulating mitochondrial functions is a therapeutic

strategy which stops oxidative phosphorylation and releases

proapoptotic proteins, like cytochrome c, Bcl-2 family, Bak

and Bax.66 Bcl-2 family proteins, such as BCL-2, BCL-XL,

BAX and BAK are important proteins responsible for regulating

pro- and anti-apoptosis effects. Among them, Bcl-2 is the most

important anti-apoptotic protein and Bax is a pro-apoptotic

protein. Remission failure of acute leukemia cases are closely

related to high Bcl-2 / Bax ratios. This Bcl-2 / Bax ratio is an

important parameter in ALL. When comparing ALL patients

and healthy controls, polymorphism within the Bcl-2 promoter

region is more reliable than that within the Bax promoter region

for estimating the survival time of ALL patients.67

In vitro study on CCRF-CEM cell line, which is an ALL

chemotherapy-resistant model, high doses of prednisolone

increases Bax gene expression but decreases Bcl-2 gene expres-

sion. Therefore, prednisolone activates the apoptosis pathway

by up-regulating Bax expression and down-regulating Bcl-2

expression.68 The Bcl-2 family represents an important

regulator in the intrinsic apoptosis pathway. Bcl-2 protein fam-

ily overexpression is one chemo-resistance mechanism. Previ-

ous studies targeted the Bcl-2 pathway to treat ALL. BH3

mimetic venetoclax (ABT-199), a Bcl-2 inhibitor, could inhibit

viability of human T-ALL cell lines, primary T-ALL samples,

and in vivo xenograft mice.69 Combining ABT-199 with che-

motherapeutic agents showed synergic effects on treating ALL,

including activated apoptosis markers such as caspase-3 and

PARP.70 ABT-737 is a small BH3 mimetic Bcl-2/Bcl-xL inhi-

bitor. Treatment with ABT-737 has anti-leukemia activity and

triggers mitochondrial apoptosis on ALL cells.71 Mitochondria

targeting is another anti-leukemia approach. Mitochondria reg-

ulates ROS which participates in various cellular signaling path-

ways such as cell cycle, differentiation, migration, proliferation

and apoptosis. Mitochondria are the most important source of

cellular ROS. ROS and apoptosis coordinate to maintain cellular

homeostasis. Excessive ROS could induce apoptosis. Activation

of ROS is thus a strategy for anti-leukemia. Matrine, an ingre-

dient isolated from traditional Chinese medicinal herb, could

effectively activate ROS production by a drop of MMP in ALL

B-lymphocytes. Higher levels of Bax/Bcl-2 appear in ALL B-

lymphocytes treated with matrine.72 Matrine could induce apop-

tosis in ALL B-lymphocytes. For example, in treating B-cell

ALL, bafilomycin A1 induces the binding of Beclin-1 to Bcl-

2, and thereby promoting apoptosis and inhibiting autophagy

and finally leading to cell deaths.73 Histone deacetylases

(HDACs) inhibitors induce the arrest of cell cycle and apoptosis,

leading to halted cell proliferation. HDACs inhibitors are there-

fore widely used in leukemia treatment.74

Apoptosis and Glucocorticoid (GC)-Resistant
ALL

In the past, the treatments of ALL have been chemotherapy and

glucocorticoids (GCs). GCs show anti-leukemic activity by

Table 2. Apoptosis-Inducing Agents in ALL Treatments.

Disease Cell type/clinical trial/animal model Treatment Mechanism Ref

T-ALL CCRF-CEM, JURKAT and MOLT-4 CFTR-inh172 Inhibited cell proliferation, promoted apoptosis and arrested the cell cycle 89

B-ALL pre-B ALL cell lines Dexamethasone Upregulation of promyelocytic leukemia protein 82

ALL L-asparaginase Activated inositol 1,4,5-trisphosphate (IP3)-induced Ca2þ signaling
in a Huntingin-associated protein 1 (HAP1) dependent manner

90

T-ALL Jurkat Ginsenoside Rh2 Inhibited PI3K/AKT pathway 91

T-ALL Jurkat FHL1C Suppressed downstream target genes such as Hes1 and c-Myc and
PI3K/AKT and NF-kB of Notch signaling pathways

92

ALL Clinical trial Obatoclax Activated caspase-3 activity by time- and dose-dependent manner 85

B-ALL Clinical trial Pentoxifylline Upregulated apoptotic extrinsic pathway 93

B-ALL Clinical trial Calphostin C Induced apoptosis was markedly suppressed by
BAPTA/AM, a cell-permeable Ca2þ chelator as well as NiC12,

an inhibitor of Ca2þ/Mg2þ-dependent endonucleases

94

B-ALL xenograft models of hypodiploid
B-ALL

Bcl-2 inhibitor Antiproliferative effect of Bcl-2 inhibition accompanied by induction of
apoptosis as shown by increased levels of cleaved PARP

95

B-ALL xenograft models Apatinib Induced apoptosis through suppressing the vascular endothelial growth
factor receptor 2 (VEGFR2) signaling pathway

96

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; T-ALL, T-cell acute lymphoblastic leukemia.
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first binding with glucocorticoid receptor (GR), and the acti-

vated GR binds to target genes in the nucleus, initiating the

transcription processes.75 GCs induce apoptosis via upregula-

tion of pro-apoptotic or downregulation of anti-apoptotic

genes. However, once ALL relapses, the resistance to GC

becomes stronger. This situation is more commonly observed

in pediatric T-ALL patients than in B-ALL patients.76,77

To overcome this weakness, new agents are being developed

to induce apoptosis in GC-resistant leukemic cells. For exam-

ple, anisomycin can induce apoptosis GC-resistant T-ALL cells

via activating cleaved caspase-3, mitogen-activated protein

kinases (MAPKs) p38 and Jun N-terminal kinase (JNK).78

Rapamycin plus dexamethasone induce more apoptosis and

greater cell cycle arrest via inhibition of the PI3K/mTOR path-

way.79 In addition to activating the pro-apoptosis pathway,

down-regulating the anti-apoptosis pathway is another

approach to enhance apoptotic cell death. Ciclopirox olamine

(CPX) has antileukemia effects by down-regulating anti-

apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1 in

GC-resistant T-ALL cell lines.80 Some studies used medicinal

herbs to treat GC-resistant T-ALL. For example, tetrandrine

(TET) and cepharanthine (CEP) could effectively induce apop-

tosis markers such as caspase-3, caspase-6, caspase-8, caspase-

9, p53 and Bax in human leukemia Jurkat T cells. Besides, both

TET and CEP not only upregulate apoptosis markers, but also

downregulate mTOR and p-phosphatidylinositol 3-kinase.81

Some studies have indicated that microRNAs (miRNAs) are

related to the sensitivity to drugs, in particular GCs. Overex-

pressing miR-331-3p inhibits MAP2K7 levels, leading to

reverse the GC resistance in GC-resistant CCRF-CEM cell

line.82 MAP2K7 has been reported to enhance cancer cell pro-

liferation, metastasis and progression.83,84 Also miR-124 is

abnormally expressed in cancers. In ALL, miR-124 targets the

GC receptor (NR3C1), leading to activation of GC resistance.

Besides, miR-124 promotes proliferation and inhibits apoptosis

in ALL cells. Therefore, targeting miR-124 can be a new ther-

apeutic strategy in GC-resistant ALL patients.85 Regulation of

miR-17 family is associated with the sensitivity to dexametha-

sone. And the miR-17 family plays a crucial role in cell cycle,

apoptosis, tumorigenesis and angiogenesis.86-88 Table 2 sum-

marizes previous studies showing the use of apoptosis-inducing

agents in ALL treatments.

Conclusion

Studies on autophagy and apoptosis in ALL reported that

enhanced activation of autophagy and apoptosis causes cell

death in the human ALL cell line or primary ALL cells. There-

fore, both autophagy and apoptosis have great potential for

anticancer treatment for ALL. In summary, activating autop-

hagy and apoptosis pathways are the main strategies for ALL

treatments. Through the development of new drugs, combating

relapsed ALL is an urgent medical goal. Traditional che-

motherapy and glucocorticoids are no longer sufficient to deal

with relapsed ALL. For ALL, combining new drugs with tra-

ditional chemotherapy and glucocorticoids treatments can

achieve the greatest therapeutic effect by activating autophagy

and apoptosis.
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