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Abstract

Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms,
which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid
Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the
species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or
a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454
sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic
resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX
(Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum
across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide
polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated
the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina).
This allowed us to evaluate markers that may be associated with life-history mode.
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Introduction

Investigating trade-offs in life history of marine taxa has greatly

informed our understanding of macroevolutionary outcomes such

as taxonomic diversification, geographic range size and rate of

extinction ([1,2]; reviewed in [3,4]). Understanding the molecular

and regulatory mechanisms that underlie these trade-offs can

make a considerable contribution to our understanding of life

history evolution. This is particularly true for marine invertebrates,

where variation in life history traits such as offspring size and

number is orders of magnitude greater than that for terrestrial

animals [5]. Different species of marine invertebrates often exhibit

alternative reproductive strategies that either maximize adult

fecundity or offspring survival [3,5,6]. Planktotrophic species

produce large numbers of tiny eggs where larvae feed in the

plankton for weeks to months, potentially traveling 100 s of

kilometers, resulting in extended ranges and high gene flow [7–

12]. Lecithotrophic taxa produce fewer, larger eggs that are

maternally endowed with enough energy to complete develop-

ment; their non-feeding larvae have reduced dispersal, but higher

survival. By influencing gene flow, larval type has sweeping micro-

and macroevolutionary impacts on a lineage [13,14]. Larval type

can influence potential for local adaptation [15], population

genetic structure [16–20], rate of protein evolution [21], and

evolutionary processes such as speciation and extinction ([1,16]

reviewed in [22]); they are also tied to global patterns of marine

diversity [23]. Here we are developing a remarkable model system

for studying how a dimorphic life history strategy is maintained

within a single species.

The common estuarine polychaete Streblospio benedicti is a

particularly interesting species for exploring the evolution of

contrasting life histories because there are two distinct yet heritable

larval types that can occur together in coastal populations along

the US East Coast [24–26]. With a developmental polymorphism

known as poecilogony [27], females of S. benedicti can produce either

hundreds of small eggs that develop into planktotrophic feeding

larvae with a long development time (,150 eggs of 60 mm

diameter), or tens of large eggs that develop lecithotrophically,

maturing quickly while feeding on maternally provided yolk (,40

eggs of 100 mm diameter) (in lab studies, these large-egg larvae

have been observed taking up food particles at a later

developmental stage [28]). In addition to the contrast in their

initial size, the two larval forms differ in the formation of larval

bristles [29], and in the timing of gut development [24,28].

Ultimately, the different larvae develop into indistinguishable

juveniles. Thus S. benedicti provides a rare and largely unexplored

opportunity to study a suite of developmental trade-offs, including

larval size, larval duration, and maternal investment within a

single species where potentially confounding interspecies compar-

isons are minimized.

To develop S. benedicti as a model system for life history

comparisons at the genetic level, we use the transcriptome of a
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pooled set of embryos, larvae and juveniles from large-egg

lecithotrophic females from San Pedro, CA (SP). We have two

main goals for this transcriptome analysis: (1) We address the

utility of applying molecular population genetic indices to whole

transcriptome data and assess the match of these inferences to

known characteristics of the source population. Specifically, for a

non-normalized transcriptome, we have the opportunity to

investigate the ability of summary statistics based on the site

frequency spectrum (SFS) to reflect the relative influences of

evolutionary mechanisms such as historical demography and

selection (reviewed in [30]). Analyzing the SFS allows us to detect

signatures of selection in regions of the transcriptome that may

affect larval mode and differentiate locally adapted populations. (2)

In addition, we develop informative single nucleotide polymor-

phism (SNP) markers for further differentiation between geo-

graphic and phenotypic populations of S. benedicti for subsequent

studies.

Given the paucity of genomic data for marine polychaetes (there

are few annelid datasets in NCBI’s genbank: 1.46104 sequence

submissions and 515 popsets for the Annelida compared to

1.46106 protein and 1.26104 popsets for the Arthropoda as of Feb

2011), we are as yet unable to annotate this transcriptome to the

degree of other model systems; the genome for Capitella teleta has

just been released (among the first for the Lophotrochozoa) but C.

teleta is more than 400 million years divergent from S. benedicti [31].

We therefore focused primarily on polymorphism diversity within

a single reduced-complexity genomic sample. This allowed us to

establish early benchmarks for regions of the genome that

potentially harbor the additive and expression variance underlying

the observed life-history variation.

Methods

Transcriptome Generation
Large-egg Streblospio benedicti adults were collected by Dr. Bruno

Pernet from the intertidal zone near San Pedro, CA and

maintained in Petri dishes in artificial sea water with a fine layer

of mud at 22–23uC, and with a 12-hour day/night cycle as

described by [32]. No specific permits were required for the

described field studies, as the location is not privately-owned or

protected and S. benedicti is not an endangered or protected species.

All embryos and larvae were dissected from the maternal dorsal

brood pouches using an Olympus SZ61 dissecting microscope.

Total RNA from 325 embryo, larvae and juvenile individuals

that were collected across many developmental time points was

isolated using an RNAqueous-Micro Kit (Ambion), and ds-cDNA

was prepared according to the SMARTer Pico PCR cDNA

Synthesis Kit (Clontech). The cDNA library was not normalized

prior to sequencing, and sequence data were generated using a

quarter plate GS titanium chemistry FLX Next-gen (Roche 454)

by the University of York Technology Facility.

Sequence read files were aligned de novo in SeqMan sequence

assembler (DNASTAR) using the default alignment settings (mini-

mum match percent = 80, minimum sequence length = 100 bp,

match size = 12). We determined this set of parameters was

appropriate based on preliminary analyses with a range of para-

meter sets (minimum match percent = 85, 75) that did not greatly

change the number of quality contigs generated (results not

shown).

Characterization of Assembly
To identify potential signatures of selection across individual

assembled contigs, we calculated summary statistics based on the

SFS, which is the distribution of nucleotide frequencies at a large

number of loci. We tested for contigs that represented outlier SFS

patterns by calculating Tajima’s D (DT) [33] and Fu and Li’s F*

[34] for each contig using the program COMPUTE [35]. Assuming

some major violations to the standard test (e.g. elevated

sequencing error, etc.) we choose to focus more on the outliers

of this distribution rather than the deviation from the null

expectation itself [36,37]. The best BLAST hit and the predicted

gene ontology (GO) terms (GO; The Gene Ontology Consortium

2000) were determined for each of these contigs using Blast2GO

[38] with a GO e value of 1.0 e26 [39]. Using the GO information

we determined what category of gene functions were represented

in the highly positive and negative DT and F* categories.

To analyze the overall SFS of our transcriptome, we compared

the distribution of actual minor allele frequencies (MAF) for

identified SNPs to the predicted MAF distribution for a population

under neutrality. To do this, we initially found all SNPs from the

transcriptome using PipeMeta [40] with the minimum SNP site

depth set to one, and a minimum nucleotide depth at a SNP site

set to ten (n = 745). This initially liberal SNP criterion was applied

to eliminate SNPs that are at such low frequency they are likely to

be the product of sequencing error, while still including real low-

frequency SNPs in the SFS analysis. These initially broad criteria

insured that a large number of SNPs were included in our analysis,

despite the likelihood that many of these singleton SNPs are

actually the product of sequencing error. Because of the high

sequence error rate associated with 454 sequencing (,0.5%, [41]),

we only chose nucleotide replacement SNPs and not insertion-

deletion mutations. This is consistent for the entirety of the study.

To determine the expected MAF under neutrality, we used the

program MS [42] to simulate the same number of genealogies of

sample size 10 that were restricted to a single segregating site (as

with our SNPs). We then calculated p (pairwise differences

between sequences) for each replicate and estimated the MAF for

each replicate. We compared the expected and observed MAF

distribution for the two data sets using a chi-squared test.

SNP Marker Development
We choose SNP markers that will be informative for future

population genetic studies based on a priori criteria. To design the

most informative markers, we wanted to balance our choice of

SNPs between highly conserved housekeeping genes and genes

that are more typically associated with ecological and physiological

function. For the latter category we were specifically interested in

SNPs that occur in gene regions known to exhibit high protein

diversity in natural populations (e.g., allozyme loci listed in [43]

and genes involved in gut development [44,45].

Choosing SNPs in regions with good BLAST scores may bias

our selection towards genes that are highly conserved across a

diverse set of organisms and thus less variable in general. To

mitigate ascertainment bias, we chose to balance the proportion of

SNPs with good BLASTn hits (e-value of less than 10210) against

the NCBI nucleotide database, and others with less informative

BLAST hits, which may be due to omission of annelid genes from

NCBI’s database, or significant sequence divergence from taxa

currently represented in GenBank. SNPs with low MAFs are less

likely to be represented in the transcriptome, and therefore

choosing SNPs based on the MAF in the SP sample will introduce

ascertainment bias when applied to other populations [46]. We

therefore choose SNPs with a range of MAFs to equally represent

four categories of MAFs: 30–35%, 36–40%, 41–45% and 46–

50%.

In addition, we chose to minimize the number of SNPs in the

assay that are associated with ribosomal regions. From the BLAST

results we were able to determine which SNPs were known to
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occur in ribosomal regions, although there is a small possibility

that there may be additional ribosomal SNPs chosen that we were

unable to identify.

We used BLASTn to determine whether the nucleotide

substitution resulted in synonymous or non-synonymous changes

in the protein sequence. We used NCBI’s open reading frame

(ORF) finder (www.ncbi.nlm.nih.gov/projects/gorf/) to determine

all potential ORFs for each contig that contained one of the

known SNPs. We determined the correct ORF by selecting the

longest possible ORF and performing a BLASTx search on the

resulting protein coding sequence and verified that it matched the

initial nucleotide BLASTn result. When this was possible, and the

SNP occurred within an open reading frame, the SNP was

putatively scored as either a synonymous or non-synonymous

substitution.

SNP Discovery
The aligned contigs were used with the PipeMeta software

package [40] using the default settings (as opposed to the settings

described above for SFS analysis), as subsequent stringency criteria

would later be applied. We wanted to ensure that the SNPs we

chose for population genetic analyses were not the products of

sequencing error, so we applied more strict criteria than in our

initial SFS analyses. Here, our criteria for choosing SNPs require

that the MAF was greater than 30%, and the coverage greater

than 106. Otherwise, we were not confident that the SNP was real

[47]. We wanted to design SNPs for use with the Illumina Golden

Gate assay, which allows high-throughput multiplex genotyping of

SNPs. Therefore we also limited our selection to SNPs that had

high probability of success with the Golden Gate technology. The

SNPs were scored according to primer rankings generated by

Illumina based on the 60 nucleotides flanking each side of the

SNP. We also attempted to minimize potentially confounding

effects of linkage disequilibrium by choosing only one SNP per

contig for the final assay, although many of the SNP-containing

contigs had multiple polymorphic loci. We used ARLEQUIN 3.5 [48]

to test for nonrandom associations between loci at a significance

level of 5% level in both populations.

Genotyping
Individuals were collected from both SP, and the Baruch

Institute of Marine Biology, SC (BR) and genotyped using the

BeadXPress Golden Gate assay (Illumina) to verify the 96 SNPs.

All 46 of the SP individuals are lecithotrophic and of the 50 BR

individuals 17 are definitive lecithotrophs (which were observed

releasing lecithotrophic larvae) and 33 are putative lecithotrophs

(which appeared to be brooding lecithotrophic larvae that were

not ready for release). These individuals were used to verify the 96

SNPs. Whole specimen genomic DNA was isolated as in [49].

Nucleic acid quality and concentration were evaluated with a

Nanodrop ND-1000 spectrophotometer. Golden Gate genotyping

(Illumina) was conducted on 50 ng of DNA according to

manufacture’s protocols at the Georgia Genomics Facility

(dna.uga.edu).

Genotypes were assigned and annotated using GenomeStudio

(Illumina) with a default SNP call threshold of 0.30 (on a scale of

0–1). The call threshold is based on the distance of an individual

read from the center of the SNP call cluster. We also evaluated a

more stringent call threshold of 0.45, and while this significantly

reduced the successful call rate for each SNP, it did not change the

results of subsequent population analyses (data not shown). For the

two populations genotyped and at all loci, we calculated observed

and expected heterozygosity, as well as standard F-statistics, using

ARLEQUIN 3.5 [48]. Significance of statistics was assayed through

standard permutation tests of 10,000 iterations.

Results

The 454 pyrosequencing generated 336,715 reads of ,400 bp

average length. The SeqMan alignment produced 7,222 total

contigs with an average contig length of 436 base pairs and 3.086
coverage. Singleton reads were excluded. PipeMeta found 2,817

SNPs (2,095 were biallelic SNPs) in total from the 7,222 contigs,

although 6,940 contigs contained no nucleotide substitution SNPs.

SNPs that failed the criterion of having no more than two possible

nucleotides were excluded from our analysis.

Transcriptome Analysis
Of the contigs that produced DT values (i.e. had sufficient

polymorphism and coverage), no DT statistics were significant

relative to a null coalescent simulation model. The average DT for

the transcriptome was 20.574 with a SD of 0.774, as opposed to

previously analyzed mtCOI data from East and West Cost

populations that had a DT of 21.98 [50,51]. There were 42

contigs that were greater than one standard deviation above the

average and 25 that were more negative than one standard

deviation below (Figure 1). Within the ‘biological process’

designation of GO terms, under the most inclusive category (level

2), the majority of sequences were implicated in metabolic and

cellular processes. No apparent difference in the representation of

categories of GO terms was observed between the high and low

DT contigs (data not shown). We found no difference in F* except

that 71 more contigs occurred in the positive tail of the

distribution. The average F* across the data set was 0.51 (SD

0.92) and there was still no apparent difference in the distribution

of GO terms for contigs with excessively positive and negative F*.

When the observed transcriptome and simulated MAFs were

compared in order to analyze the SFS we found a significant

difference (chi-squared; p,0.01) between the observed and

neutrally simulated values (Figure 2). There is an excess of rare

alleles in the transcriptome SFS. Again, the excess number of single

SNP substitutions may be more due to sequencing error than real

allele frequencies and could lead to overestimating the apparent

importance of purifying or directional selection [47]. Because this

may skew our results we removed the MAF = 10% category and

repeated the statistical comparison; the two distributions were still

significantly different (p,0.01). This difference between the actual

transcriptome SFS and that simulated under neutrality suggests

that the population sampled in the transcriptome may not be

evolving neutrally. However, it is difficult to determine the cause of

this shift from neutral expectations as both the excess of low-

frequency alleles and the negative DT may be consistent with

purifying or variable selection (see [37] and refs therein) or

population expansion since introduction.

SNP Categories
Application of our minimum depth and frequency criterion

further reduced the number of candidate SNPs to 685. Finally, the

Illumina primer quality scores designated 266 SNPs with an optimal

rank (1) for successful primer design. Genes of functional interest,

including developmental gut genes and heterozygous allozyme loci,

were not represented in any of the contigs with a high probability (e-

value of less than 1025). Because none of the contigs had significant

DT values, and there was no difference in the functional categories

assigned to genes that were in either tail of the DT distribution, we

could not confidently assign contigs to putatively neutral or selective

classes. Because we wanted to equally represent each of our MAF

Transcriptome and SNP Development of S. benedicti
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categories within the framework of our selection criteria, we selected

19 SNPs with a MAF between 30–35%, 24 between 36–40%, 31

between 41–45% and 22 between 46–50%.

There were 37 SNPs that had a strong BLAST score (e-value

less than 10210; Table S1). All of these SNPs blasted to

metazoans with 16 of the top hits belonging to animals in the

Lophotrochozoa. We choose an additional 59 SNPs whose entire

contig had a BLAST e-value of greater than 10210. Of the 37

SNPs with strong BLAST scores, we chose nine that were

ribosomal and 28 that were associated with other genes.

Therefore only 24% of the chosen SNPs with known genomic

association are believed to be ribosomal. Of the 37 SNPs with

good BLAST scores, 24 occurred in an open reading frame that

could be identified. Twelve of these produced non-synonymous

substitutions in the amino acid.

Genotyping
Of the 96 SNPs originally chosen, ten of them (10.4%)

produced no genotype calls in the assay and two were

monomorphic and removed from subsequent analyses. The

remaining 84 SNPs were validated [NCBI SRA SRA048717.1].

The average successful call rate for the remaining 84 SNPs was

87% (sd. 25%) of the individuals sampled, where 63 of the SNPs

had call rates over 90% and an additional eleven were over 50%

(Table S1). Three additional SNPs were monomorphic in both

populations; however, these SNPs may be polymorphic in

other populations. 16 SNPs were monomorphic in BR, and 12

SNPs were monomorphic in SP. There were 17 SNPs where

the minor allele in BR was the major allele in SP (Figure 3).

FST is 0.217 (p = 0.001) suggesting strong differentiation

between the two populations. The FIT for all markers is 0.197

Figure 1. DT distributions for all contigs. The grey line is the mean DT. White diamonds are contigs with DT values greater or less then the
standard deviation from the mean.
doi:10.1371/journal.pone.0031613.g001

Figure 2. Histogram of the SFS for (A) actual and (B) simulated MAFs. Distributions are significantly different (p,,0.001).
doi:10.1371/journal.pone.0031613.g002
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(p,0.001), which also indicates population differentiation,

although the FIS (inbreeding coefficient within a population) is

not significant. Significant nonrandom associations between loci

pairs differed between the two populations. Of the 3570

pairwise comparisons between the 84 loci, in BR 1169

comparisons (32%) showed significant linkage disequilibrium,

while in SP, only 184 loci (,5%) were in significant linkage

disequilibrium.

Discussion

Transcriptome Analyses
Our transcriptome analyses allow us to make preliminary

identification of regions of the genome that potentially contain the

sequence and expression variance that may underlie life-history

variation. We used the SFS, which reflects the relative influences

of evolutionary mechanisms such as historical demography and

selection [52], to gain basic evolutionary insights for one

population of S. benedicti. Because our transcriptome was not

normalized, the resultant frequency of site variants is an unbiased

estimate of true allele frequencies in the total population, assuming

that expression is not dependent on allelic identity. Our EST

library was generated from one population, SP, and we therefore

expected the SFS to reflect a relatively neutral DT ([53,54] but see

[55]), although it is important to note that SP was a recently

introduced population (,100ya) and may not represent a

population at demographic equilibrium.

When generating the SFS we chose to use contigs with 106
coverage, as opposed to a higher coverage, to maximize cross-

genome sampling. In this case it includes 745 total SNPs that meet

our criteria. We included F* because it is more powerful in

detecting the effect of background selection, as it is based on the

difference between singleton mutations and the average number of

nucleotide differences [34], but this result did not provide distinct

insights from DT. However the SFS and DT both indicate

population expansion or purifying selection could be affecting the

population; this signature is a common deviation from neutral

expectations in metazoan taxa [37].

Our analyses of the SFS of lecithotrophic SP individuals show

an overabundance of low frequency polymorphisms when

compared to our neutral expectation (Figure 2), which may be

consistent with population expansion or purifying selection.

However, it is not clear that this is a true excess of rare alleles

that is not simply due to sequencing error and sampling bias in a

transcriptome of this coverage. More informative population

inferences can be determined directly from the SNP analyses.

It is clear that the MAF for a SNP in the transcriptome is not

predictive of the true MAF in the population (Figure 4). This is not

unexpected as the MAF from the transcriptome data is a product of

randomly amplified reads and perhaps, with greater coverage, the

actual MAF in the population would be better represented by the

transcriptome. Additionally, there are a maximum of 46 individuals

from SP that have genotype data for any given SNP, whereas in the

transcriptome, there can be more variable coverage at a site, which

may affect the MAF distribution. We may also expect true

differentiation in MAF differences between small and large-egg

populations. Through transcription profiling in S. benedicti, Marsh

and Fielman [56] used a reannealing assay to demonstrate that

small-egg individuals had a greater transcriptomic complexity with

more inter-individual variation than large-egg individuals. This is

consistent with findings that planktotrophic species in many taxa

harbor greater diversity and lower dN/dS ratios than lecithotrophic

species [57–59]. This suggests that the BR population, which

harbors both larval types, could have a very different MAF for each

SNP then the purely large-egg SP population. Marsh and Fielman

[56] also predict that it is unlikely that two distinct developmental

programs are harbored within this species, but rather small

regulation differences in a few genes are likely responsible for the

shift from planktotrophic to lecithotrophic individuals. This is the

case in sea urchins, where the switch from planktotrophy to

lecithoptrophy includes transcriptional changes that result in

differences in cleavage patterns, axis specification, morphogenesis,

and gene expression [60–64]. A similar regulation pattern may be

occurring between the two S. benedicti larval types. These predictions

remain to be tested in S. benedicti, but the SNPs developed here will

allow us to compare allelic diversity across larval types.

Figure 3. MAF distribution for each SNP at BR and SP.
doi:10.1371/journal.pone.0031613.g003
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SNP development
From the transcriptome of S. benedicti we successfully developed

84 SNPs for use in population genetic and demographic studies.

Because our cDNA library was not normalized prior to 454

pyrosequencing, there is an overabundance of ribosomal and other

housekeeping genes. We wanted to ensure the SNPs chosen were

representative of other transcribed genes as well. We were

particularly interested in using SNPs that would be useful in

differentiating coastal populations in future studies. Because the SP

population that our transcriptome was generated from is a recently

introduced population, the SNPs that occur are likely to be a

subset of those in the source populations. To the extent possible,

we chose SNPs that are representative of the entire transcriptome,

rather than only the high copy number and housekeeping genes.

Although we sampled only a single SNP from each assembled

contig, there are still instances of significant linkage disequilibrium

among some of our loci. The number of significant comparisons

between SNP loci differed between our two populations by 27%,

suggesting that distinct demographic or selective forces may be

associated with the observed linkage disequilibrium rather than

merely physical associations. There is not a significant inbreeding

coefficient in these populations, although the recent introduction

of the SP population, and the potential for a recent bottleneck,

may be affecting our detection of linkage disequilibrium.

Interestingly, of the SNPs that had significant BLAST results to

the same gene region (Table S1) the only pair that showed

significant linkage disequilibrium are SNPs 63 and 11 (actin genes)

in BR.

There are 32 SNPs that were not in HWE in one or both

populations. While this could be due to a variety of evolutionary

mechanisms at these markers, it is possible that these SNPs have

been shifted from expected frequencies due to genotyping call

error. When we increased the stringency of the call rate in

Illumina’s GenomeStudio from 0.30 (default) to 0.45, we found

that many of these SNPs (55%) lost genotyping calls completely

and 21% of the SNPs did not change their expected heterozygosity

at all. Of the remaining SNPs whose expected heterozygosity did

change slightly, the difference between observed and expected

heterozygosity remained significantly different. This demonstrates

that increasing the call rate threshold may remove some SNPs with

poor calls, but it does not affect the fixation indices (FST, FIS, FIT).

Therefore the expected fit to HWE will not change with increasing

call stringency (data not shown). Interestingly, the proportion of

genotyped individuals is not a good proxy for determining which

SNPs will drop genotyping calls with increasing stringency.

Instead, SNPs with a high expected heterozygosity (He.0.35)

may be products of poor genotype assignments and generally drop

out of the analysis when call stringency is increased.

It is important to note the transcriptome was generated from

one lecithotrophic population (SP), while the SNP analysis used

lecithotrophic individuals from two populations (SP and BR).

Therefore the differences we see from this initial SNP analysis may

only be due to population differences and not larval-type

differences. It is notable that most SNPs have very different allele

frequencies in both populations, although both populations are

predominately the large-egg type (Figure 3). It is possible that some

of the SNPs that are not informative in differentiating populations

in this initial analysis will become important for differentiating

larval types, and exploration of larval-type by population

differentiation is the focus of ongoing studies.

The evidence for genetic structure between the two populations

suggests one of two possibilities. These populations may have

become more evolutionarily divergent since their separation

,100ya. However it is unlikely that significant divergence between

the populations occurred in such a short time. It is far more likely

that the West Coast introduction(s) occurred from a population on

the East Coast that harbored existing genetic differences from the

one studied. It is possible that a few individuals established West

Coast populations, or that SP has undergone a bottleneck since

introduction. This suggests that there may be more genetic

structure on the US East Coast than previously suggested [50]

especially if the West Coast introduction originated from a

population that has not previously been sampled, such as the

Chesapeake Bay or further north.

Using SFS statistics, it seems that a transcriptome with this

amount of coverage does not allow for definitive inferences about

population demographics without greater coverage or more

accurate knowledge of sequencing errors. More informative

inferences can be drawn from the SNP markers themselves. The

majority of these SNP markers have a high genotyping call rate

and will be useful in differentiating genetic structure between

geographic and phenotypic populations of S. benedicti. The SNP

markers developed here will significantly improve our ability to

investigate life history trade-offs in this species.

Figure 4. MAF distribution for each SNP in SP. Predicted values are calculated from the transcriptome MAF data and the actual MAF is from the
population genotyping data.
doi:10.1371/journal.pone.0031613.g004
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Supporting Information

Table S1 Categories and statistics for 84 SNPs. SNPs that

did not meet the criterion for BLAST e- values are left blank. For

substitution type, Syn is a putatively synonymous substitution and

NS is a putatively nonsynonymous substitution. – designates when

an allele is fixed. SNPs that have a He (heterozygosity) over 0.35

generally dropped out all genotyping scores when the call

stringency was increased. * is p,0.05, ** is p,0.01, *** is p,0.001.
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