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Abstract: Multicomponent optical fibers with incorporated metals are promising photonic platforms
for engineering of tailored plasmonic structures by laser micromachining or thermal processing.
It has been observed that during thermal processing microfluidic phenomena lead to the formation of
embedded micro- and nanostructures and spheres, thus triggering the technological motivation for
their theoretical investigation, especially in the practical case of noble metal/glass composites that
have not yet been investigated. Implemented microwires of gold core and glass cladding, recently
studied experimentally, are considered as a reference validation platform. The Plateau-Rayleigh
instability in such hybrid fibers is theoretically investigated by inducing surface tension perturbations
and by comparing them to the Tomotika instability theory. The continuous-core breakup time was
calculated via Finite Element Method (FEM) simulations for different temperatures and was found
to be considerably higher to Tomotika’s model, while the final sphere diameter is a linear function
of the initial core radius. Different sinusoidal perturbation parameters were considered, showing
significant impact in the characteristics of formed spherical features. The theoretical results were in
close agreement with previous experimental observations expected to assist in the understanding of
the processes involved, providing insight into the engineering of fibers, both in the initial drawing
process and post processing.
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1. Introduction

The need for tailoring the properties of optical fibers has resulted in the design and fabrication
of hybrid multicomponent material fiber structures. A special class of composite optical platforms
consists of a combination of a supporting glass structure and noble metals that could give rise to
plasmonic effects for a class of nanofocusing photonic applications, such as microscopy, data storage [1],
and sensing [2,3], as well as continuum light generation [4].

Although the drawing of fibers containing base metals has already been investigated [5], the study
of fibers containing noble metals is of intense interest for plasmonic devices. The manufacturing and
post processing [6,7] of such fibers though is quite challenging due to the combination of materials
with different mechanical and physicochemical properties. At high temperature processing conditions,
a number of instabilities induce various microfluidic phenomena leading in turn to formation of various
embedded microstructures. The understanding of those phenomena is crucial, as it would help either
to avoid such structures or help in their tailored fabrication, consequently setting the motivation for
their theoretical investigation. The choice of materials with compatible properties, such as melting and
working points, is crucial in order to successfully draw uniform and low loss fibers. For the fabrication
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of fibers with uniform diameters and continuous metallic cores, key parameters, such as feed rate of the
metal, temperature, and pull rate, should be optimised during the drawing process [5,8]. In the high
temperature conditions needed for the fabrication of such multi-material systems, the breakup of the
core is commonly observed, and the consequent formation of spheres, and thus the temperature profile,
must be carefully controlled. This breakup is attributed to the Plateau-Rayleigh instability, which
grows in the low viscosity regime. Furthermore, as the diameter of the metal decreases, the instability
increases, limiting the reduction of the fibers’ diameters in the nanoscale, where fragmentation of the
metal can occur, even at temperatures lower than the bulk melting temperature [9,10].

Although the breakup of the core needs to be avoided during the fabrication and post-processing
of hybrid optical fibers, the study of the formation of an array of spheres with customised diameters
could be of great value for many applications, such as the development of integrated optical
microresonators [11]. Recent studies of capillary instabilities [12–14] have paved the way towards
this direction. Chains of dielectric [15–17] and Cu [18] nanoparticles have already been demonstrated,
showing high control over both size and spacing of the nanoparticles. The formation of noble metal
micro-nano spheres in an all-fiber plasmonic device, such as the one proposed here, would offer
mechanical robustness, ease of light coupling, as well as the possibility of its integration into standard
optical fibers, enabling the remote use of the device.

In the present study, the investigated platform consists of a gold core with a surrounding
borosilicate glass cladding with typical diameters of 4 µm and 40 µm, respectively. It was chosen
to organise this theoretical study around a specific composite fiber-optic platform, as it served as a
motivation engineering case that could also allow comparison of the findings with recently obtained
experimental results [6].

The theoretical investigation of the dynamic phenomena during the processing of composite
metal/glass structures and specifically fibers would allow the understanding of underlying fundamental
phenomena and will enable the optimization of both the fiber drawing manufacturing process, as well
as their post processing. A special case of post processing, also studied here, is the tapering of the
fibers for the implementation of nanoscale plasmon tips for light nanofocusing. The heating and
stretching method [19] is a widely used technique for the fabrication of optical fiber tapers. The two
fiber ends are placed at two elongation stages, inside optimum sized grooves. A third stage holding
the heating element moves across the fiber axis over several millimetres to heat the fiber (Figure 1).
A flame produced by a butane-oxygen mixture can be used as the heating element. The temperature
profile can be adjusted by changing the flow rates of the gases, as well as the distance between the fiber
and the flame. Appropriate conditions, such as the velocity and temperature of the heating element, as
well as the pull rate of the fiber, can lead to the fabrication of smooth plasmon tips with the desirable
geometrical characteristics [6]. In this direction, microfluidic simulations of the tapering process were
performed for the determination of the appropriate conditions that would allow the development of
plasmonic tips.
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The above discussion supports the need for further understanding of the dynamic phenomena
that occur during the thermal processing of such hybrid microfibers. Therefore, in this work a study
is conducted for the first time, to the best of our knowledge, on the microfluidic phenomena in a
microfiber platform of silicate glass and a noble metal core, with significant anticipated applications.
Microfluidics simulations based on Finite Element Method (FEM) were performed and compared with
the Tomotika’s linear stability analysis [20]. The study of the instabilities induced by the temperature
profile, such as perturbation wavelength and width in the case of static heating, can be used as a guide
for the fabrication of fibers with desirable characteristics. It is shown that although the diameter of
the primary spheres does not depend on the temperature, but only on the initial core radius, small
variations of the spheres’ sizes and of the number of the secondary spheres can result from different
perturbation wavelengths. Furthermore, the time that a part of the fiber remains under the influence of
the perturbation is an important parameter for the stability of the metal core. For short time scales
the core can remain intact while for longer processing time breakup occurs [21]. The breakup time
calculated by the simulations was found to be longer than the time estimated from the Tomotika
model due to Tomotika’s assumption of an unbound surrounding medium. This is in accordance
with our previous experimental results [6], where the breakup of the core was prevented during the
post-processing of the microfibers towards the fabrication of fiber tips, as described above. For the
short time scales estimated by the Tomotika model, this would not be feasible with our experimental
setup (Figure 1), due to the limited velocity of the flame. Microfluidic simulations of the tapering
process were also performed, showing that for low temperatures close to the melting point of gold,
smooth fiber tips can be developed.

2. Materials and Methods

For this study we consider a fiber with a gold core surrounded by a large borosilicate glass cladding
(Figure 2). The borosilicate glass was chosen due to its temperature compatibility with the gold.
The working range of borosilicate glass is between 825 ◦C and 1260 ◦C, which overlaps with the melting
point of gold (1065 ◦C). Both the core and the Schott Duran borosilicate glass cladding viscosities, as a
function of temperature, are taken into account, with µgold(T) [22] and µglass(T) (obtained from the
technical data sheet by fitting a power law curve to the given viscosities), respectively. The interfacial
surface tension, s(T) is considered to be dominated by the surface tension of gold.
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Figure 2. Schematic of a 4 µm gold core/40 µm borosilicate glass cladding fiber. The insets present
characteristic SEM images of actual microwires of different diameters. Adapted with permission
from [6]. Copyright 2018 American Chemical Society.

Instability analysis based on Tomotika’s stability theory [20] is performed for temperatures
≥1065 ◦C, for which the gold core is in its liquid form. Tomotika’s theory is strictly applicable only
when the relative velocity of the jet and surrounding fluid are very low. Hence, for the static case
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studied here, we can use the linear stability analysis of Tomotika, and we can calculate the breakup
time τB [21], defined as:

τB(T) =
1
in

, (1)

where
in =

s
2rµglass

(
1− x2

)
Φ(x), (2)

with r being the core radius, x = 2πr/λ, and Φ the function (39) in general cases of the Tomotika
model [20].

For the Finite Element Method (FEM) simulations, FEM-based COMSOL Multiphysics Modeling
software (Version 4.4, COMSOL Inc.) was employed to solve the Navier-Stokes equations that describe
the velocity field and pressure of the liquid. The level set method was chosen, in which the fluid–fluid
interface is represented as the 0.5 contour of the level set function. The level set method was chosen
over the moving mesh method, since the topology of the core after its breakup is of interest. Recent
developments on the improvement of the level set method can be found in previous studies [23–25].
No-slip walls were set as boundary conditions. Periodic boundary conditions were also used to
describe an infinitely long fiber. All the simulations are run with extra fine mesh and for times up
to 0.3 s, since for higher times the model does not converge. Furthermore, since the length scales
considered here are well below the capillary length, λc = 2.55 mm, the gravitational effects are neglected.
This assumption was supported also by the fact that in the experimental results no signs of gravitational
effects were obvious, since the fibers were symmetric with respect to the fiber axis after the formation
of the spheres.

3. Results and Discussion

The theoretical investigation is divided in two distinct approaches—the instability analysis based
on the Tomotika model and the FEM study. The theoretical results are also compared with experimental
findings, drawing conclusions on the validity of the model and gaining physical insight into the
microspheres formation process.

3.1. Instability Analysis of Heated Microwires

Using the equations of the general case of the Tomotika model, we can calculate τB as a function
of the temperature (Figure 3a). In the case studied here, the ratio of the core to cladding viscosity tends
to be zero (

µgold
µglass

→ 0), which according to the Tomotika model leads to a maximum instability for
x→ 0 , or accordingly for perturbation wavelength λ to be much larger than the radius of the core
(which typically is ~3 µm). As the temperature decreases the viscosity of the surrounding glass (µglass)
increases exponentially, leading to a stable jet due to the rapid increase of τB, according to Equation (1).

When such fibers are tapered down to small core radii, the time that they remain in the heating
zone is crucial in order to prevent the breakup of the core. In Figure 3b, τB, corresponding to the
maximum instability, i.e., to the x that maximizes Equation (2), is presented as a function of the
temperature. For 1065 ◦C, which is the melting point of gold, τB is ~0.22 s for a 3 µm core radius.
This value linearly decreases for smaller core radii, as shown in the inset diagram of Figure 3b. Hence,
a static heating zone would not be appropriate for the tapering of the fibers, as it would lead to the
rapid collapse of the core. On the contrary, a moving heating source, such as a moving flame, can be
used to successfully taper hybrid fibers.
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The flame’s temperature profile and distance from the fiber must be adjusted to match the desirable
temperature of 1065 ◦C, as for higher temperatures the instability of the core will increase. The most
crucial parameter though is the flame’s velocity. Since τB is ~0.22 s, a high flame velocity is needed.
Also, as the fiber is tapered down, the core radius decreases and becomes more unstable. Hence,
the flame’s velocity must be adjusted in order to be fast enough to prevent the breakup of the core
and slow enough to permit the melting of the metal. Furthermore, due to the system’s high instability,
a fast tapering process would be preferable. Thus, the pulling velocity of the fiber should be high
enough to reduce the tapering time.

3.2. Simulation Studies

3.2.1. Effect of Temperature

In order to investigate the instability of a gold cylindrical rod with a 3 µm radius surrounded by a
borosilicate glass cladding, we assume a surface tension perturbation of the following form:

s = s0

(
1−

(
w ∗ p(t) ∗ cos

(2∗π ∗ z
λ

)))
, (3)

where s0 is the surface tension corresponding to the desirable temperature, w is the width, and λ is the
wavelength of the perturbation, respectively, and p(t) is a piecewise function that controls the time that
the fiber remains under the influence of the perturbation. Note that perturbations are not possible to
be measured experimentally, thus due to the stochastic nature of the problem, both experiments and
simulations encompass a degree of uncertainty, which should be borne in mind when comparisons
are performed.

Figure 4 shows the modeled region of the fiber at different time steps at 1200 ◦C and at 1300 ◦C.
The parameters used are w = 0.008, λ = 200 µm and

p(t) =
[

10−2t t < 0.2 s
0 t > 0.2 s

, (4)

The core at T = 1300 ◦C breaks ~10 times faster than T = 1200 ◦C, as expected due to the
lower viscosity of gold. Furthermore, the size of the primary sphere does not seem to depend on
the temperature, but only on the initial core radius. Simulations were also performed for different
temperatures: 1065 ◦C, 1100 ◦C, 1150 ◦C, 1180 ◦C, 1200 ◦C, 1250 ◦C, and 1300 ◦C. For temperatures up
to 1180 ◦C and for the simulation time of 0.3 s, the final sphere is not formed but still has an ovular
shape, and hence the diameter cannot be measured. For temperatures of 1200 ◦C, 1250 ◦C, and 1300 ◦C,
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the size of the primary sphere diameter is consistently around 14.3 µm, as indicatively shown below in
Figure 4.Materials 2019, 12, x FOR PEER REVIEW 6 of 12 
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Figure 4. Different stages of the Plateau-Rayleigh instability during static heating for different
temperatures (1200 ◦C and 1300 ◦C) of a gold cylindrical rod by inserting a surface tension perturbation.

Figure 5 shows τB as a function of the temperature. For temperatures lower than ~1150 ◦C,
the core remains intact for times up to 0.3 s, according to the simulations. The calculated τB is 10
times higher than the one calculated from the Tomotika model. This is attributed to the fact that the
Tomotika model assumes an infinite unbound surrounding fluid. However, for the simulations a
limited surrounding fluid is considered with an external radius corresponding to real microwires.
As it has been shown by Liu et al. [26], the instability grows as the thickness of the surrounding
medium increases, which justifies the discrepancies in τB between the Tomotika model and simulations.
Therefore, the comparisons should be considered from the qualitative viewpoint, only bearing in mind
that the physics of the problem is highly non-linear, thus cannot be fully captured by Tomotika’s model.
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3.2.2. Effect of Core Radius

Simulations were also performed for the calculation of τB for different initial core radii.
The temperature for the simulations was 1200 ◦C, and as seen from Figure 6a, τB is a linear function of
the core radius, which is in agreement with what is expected from the Tomotika model.
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Figure 6. (a) Breakup time as a function of the initial core radius at T = 1200 ◦C calculated using
simulations (red) and the Tomotika model (blue). (b) Sphere diameter as a function of the core radius
at T = 1200 ◦C.

Furthermore, the diameter of the formed spheres is also a linear function of the core radius, as
shown in Figure 6b. The temperature for the simulations was 1200 ◦C, although the final sphere
diameter does not seem to depend (at least at a considerable or measurable degree) on the temperature,
as has been indicated by the discussion above, in Figure 4, where for temperatures of 1200 ◦C, 1250 ◦C,
and 1300 ◦C, the size of the primary sphere diameter is consistently around 14.3 µm. Although this
conclusion cannot be fully validated at this stage it can be intuitively explained as follows. The sphere
diameters do not depend on the intermediate transient effects, which differ as functions of temperature,
but on at the final equilibrium condition set by the structure’s geometrical characteristics.

Figure 7 shows microscope images of spheres formed from fibers with different initial core radii.
Specifically, the spheres were obtained when the temperature and the velocity of the flame were 1200 ◦C
and 2 mm/s, respectively. The diameters of the spheres are approximately 12 µm and 17 µm for 2 µm
and 3 µm initial core radii, respectively, a result close to the simulations, where the corresponding
diameters were ~9 µm and ~14.3 µm (Figure 6b). The distance between the spheres is ~37 µm, while
for the simulated ones it is 22.5 µm.
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3.2.3. Effect of the Width and Wavelength of Perturbations

Simulations for surface tension perturbations with different widths and wavelengths were also
performed to investigate the differences between the formed microspheres. The temperature is
considered constant at 1200 ◦C. The surface tension perturbation has the following form:

s = s0

(
1−

(
w∗ cos

(2∗π ∗ z
λ

)))
, (5)

where s0 is the surface tension corresponding to the desirable temperature, w is the width, and λ is the
wavelength of the perturbation. Figure 8a,b shows the resulting topology for different widths and
wavelengths of the surface tension, respectively. Although the distance and size of the primary spheres
remain the same, the number and sizes of the formed satellite spheres differ significantly. Furthermore,
the calculated τB is the same for different widths. For the simulations of Figure 8a, the wavelength was
5 µm and the widths were 0.008, 0.02, and 0.04. For the simulations of Figure 8b, the width was 0.008
and the wavelengths were 3, 15, 21 and 22 µm.
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Figure 8. (a) The resulting topology of a 2 µm radius gold core for different widths of the surface tension.
(b) The resulting topology of a 2 µm radius gold core for different wavelengths of the surface tension.

The diameters of the primary and secondary formed spheres as a function of the wavelength are
shown in Figure 9a,b, respectively. Only perturbation wavelengths up to 25 µm are presented due
to the computationally limited simulating fiber length. The distance between the primary spheres is
related to the diameters of both the primary and secondary spheres. As primary spheres, only the two
outer spheres of Figure 8b are considered for all the calculations, even when the secondary (middle)
sphere reaches the size of the primary. For larger secondary spheres the size of the primary spheres
decreases due to mass conservation. Furthermore, a large secondary sphere between two primary
spheres means that the breakup points have larger distances between them, leading to larger distances
between the two primary spheres. This explains the anti-correlation between the diameter of the
primary spheres and their distance (with Pearson and Spearman correlation coefficients −0.84705 and
−0.71876, respectively) and the correlation between the diameter of the secondary spheres and the
distance between the primary spheres (with Pearson and Spearman correlation coefficients −0.81517
and −0.85451, respectively), as shown in the inset plots of Figure 9a,b. The values of the slopes for
the inset plots of Figure 9a,b are −0.07552 and −0.32299, respectively. With corresponding standard
errors (0.00967 and 0.04685, respectively) being less than 20% of the slope values, we can consider the
correlation in both plots linear.
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spheres as a function of the perturbation wavelength.

Although the primary sphere diameter and the distance between the primary spheres seem to
have a linear anti-correlation, this can only be valid for a rather short range of diameters and distances.

The minimum diameter of a sphere is 3
√

3π
2 D (corresponding to a minimum distance of πD), where D is

the initial core diameter. For a 4 µm core, the corresponding minimum sphere diameter and minimum
distance are Dmin = 6.3 µm and dmin = 12.6 µm, respectively, in the case where only primary spheres
exist. When secondary spheres are present, the distance between two primary spheres increase with
the wavelength until the size of the secondary sphere reaches the size of the primary, and hence it is
also considered as primary (Figure 8b). This result is obvious in Figure 9b, where the diameters of the
secondary spheres for long wavelengths are ~8 µm, comparable to the diameters of the primary spheres
shown in Figure 9a. The perturbation wavelength at which three equally sized spheres (D ≈ 8 µm)
are formed for an initial 4 µm core is λ ≈ 21 µm and the distance between the spheres is d ≈ 19 µm,
slightly larger than the theoretical Dmin and dmin, probably due to the existence of smaller satellite
spheres. This result is also very close to the experimental distance between the spheres, as shown
above, where d ≈ 37 µm (Figure 7a). As shown in Section 3.2.2, the diameter of the primary sphere
depends on the initial core radius and is the same for different temperatures. In Figure 9 only small
variations of the primary sphere diameters are seen, with an average diameter of 8.84 µm, which is the
expected diameter for a 2 µm core radius, as shown in Figure 6b, where a wavelength of 200 µm was
considered, leading to a large distance between the spheres. Hence, for large distances between the
primary spheres the primary sphere diameter will remain ~9 µm for a 2 µm initial core radius but the
number of the secondary spheres will increase due to mass conservation.

The formation of secondary spheres is in agreement with previously published works, where
satellite droplets are observed [11,21]. Furthermore, we have control over the primary sphere diameter,
since, as discussed above, it is only related to the initial core radius. The control of the sphere’s diameter
over a small range has been previously shown [15], where silica-clad silicon-core fiber with a diameter
of 340 nm was continuously fed into a flame, defining an axial thermal gradient; the continuous
formation of spheres whose size is controlled by the feed speed was also demonstrated. Due to the
limited simulated length though we cannot come to a conclusion concerning the distance between the
primary spheres, since only 1 or 2 spheres are formed in this limited segment.

3.2.4. Simulation of the Tapering Process

The fibers’ tapering process, as described in the introduction and illustrated in Figure 1, was also
simulated in order to study the conditions of smooth adiabatic tapering by avoiding the formation of
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spheres. For the purposes of the simulation a radial velocity was added to the outer glass boundary
using deformed geometry. The velocity was set to be:

vr = −0.5(z + 30) (µm/s), (6)

with z being the axis along the fiber ranging from −30 µm to 30 µm.
Two different temperatures, 1065 ◦C and 1200 ◦C, were investigated. The simulation time was

0.3 s. The results are shown in Figure 10a. At 1065 ◦C a smooth taper is obtained, while at 1200 ◦C the
metal core breaks into spheres. Even though the velocity is rather high compared to the experimental
procedure, it was chosen in order to test the behavior of the core when its diameter reduces drastically.
Even higher velocities result in the formation of smooth tapers for T = 1065 ◦C (Figure 10b). For lower
velocities the simulation should run for longer time scales in order to reach the same diameters, which
are limited due to convergence issues. However, lower and higher velocities were also simulated,
giving the same results, i.e., smooth tapers at 1065 ◦C and core breakup at 1200 ◦C.
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Figure 10. (a) Simulation of the tapering process of a 2 µm core radius microfiber at 1065 ◦C and
1200 ◦C with vr = −0.5 (z + 30) (µm/s), showing the core’s evolution after 0.3 s. (b) Simulation of the
tapering process of a 2 µm core radius microfiber at 1065 ◦C for higher radial velocities. (c) Top: Optical
microscope images of a fabricated fiber tip before cleaving. Bottom: Optical microscope (left) and
SEM (right) characteristic images of a fabricated fiber tip after the cleaving process (Reprinted with
permission from [6]. Copyright 2018 American Chemical Society).

The performed simulations and the study of instabilities in the heated microwires provided
very useful and intuitive guidelines for the appropriate thermal treatment in the tapering process.
Indeed, when the lowest possible temperature (~1065 ◦C) combined with high flame velocity (6 mm/s;
“fast and cold method”) were employed in the experimental tapering process, which is schematically
represented in Figure 1, smooth adiabatic tips were successfully fabricated (Figure 10c) [6].

4. Conclusions

Motivated by recent experimental results, we investigated the process of microsphere formation
in a glass/metal hybrid microfiber. FEM simulations were performed in order to investigate, for
the first time, microfluidic phenomena in hybrid metal/glass microfibers, by adopting a specific
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physically implemented microfiber platform consisting of gold core microwires surrounded by glass
borosilicate cladding. Simulations revealed the conditions for the formation of various discontinuous
features, such as primary and secondary microspheres after the breakup of the solid gold core due to
Plateau-Rayleigh instability. The results differ from the Tomotika instability theory, which assumes an
unbound surrounding fluid. Different gold core diameters were considered, showing that there is a
linear dependence of both the breakup time and final primary sphere diameter to the initial core size.
By changing the width and wavelength of the surface tension perturbation, significant differences of
the final formed satellite spheres were observed, providing useful insight in the process. The theoretical
results were in good agreement with experimental findings [6], thus providing an intuitive view of
the underlying process and useful guidelines for controllable fabrication of in-fiber features, such as
spheres or tapered tips for photonic applications. It is suggested that future work should also take
into account multiscale phenomena across micro- and nanoscales using hybrid molecular-continuum
models [27]. This will lead to a better understanding of the effects of perturbations on the instability
formation on microscale.
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