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Abstract: Background: Pharmaceuticals with targets in the cholinergic transmission have been used 
for decades and are still fundamental treatments in many diseases and conditions today. Both the 
transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be 
targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in 
the nervous systems may include a number of different receptor subtypes of both the nicotinic and 
the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of 
action of pharmaceuticals. 

Methods: We have search of bibliographic databases for peer-reviewed research literature focused on 
the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the 
conclusions of this study. 

Results: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed 
in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are 
elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these 
systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower 
urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of 
significance for physiological, pharmacological and toxicological effects in these organs.  

Conclusion: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses 
that no selectivity can be expected. However, some differences in the adverse effect profile of 
muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor 
subtypes in different organs. However, a complex pattern of interactions between muscarinic 
receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In 
the development of new entities for the treatment of for instance pesticide intoxication, the 
muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 
receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of 
the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for 
deaths by esterase blocking. 

Keywords: Acetylcholine, acetylcholinesterase, muscarinic receptor subtypes, pharmacotherapy. 

INTRODUCTION 

 A large number of pharmaceuticals intervene with the 
cholinergic transmission, most commonly by a direct  
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antagonism on muscarinic receptors [1]. Examples of drugs 
exerting effects via intervention of the muscarinic receptor 
are pharmaceuticals employed in the treatment of the 
overactive urinary bladder, in obstructive pulmonary diseases 
and in the treatment of eye diseases [2]. Also, the muscarinic 
receptor may be either directly or indirectly targeted in 
pharmacotherapies of the central nervous system [3]. Despite 
the general occurrence of a composite muscarinic receptor 
(muscarinic M1 – M5 receptors) population in the neuronal 
junction, this has generally been disregarded because the 
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drugs exert almost no selectivity between the muscarinic 
receptor subtypes [4]. Furthermore, the muscarinic M3 
receptor is considered to be the principal receptor subtype 
mediating the parasympathetic contractile response in 
smooth muscle tissues. As a consequence, any interactions 
via other muscarinic receptor subtypes in neuronal and 
neuro-effector junctions have been neglected in the 
assessment of drug effects. 

 Pharmaceuticals intervening indirectly with cholinergic 
transmission, such as in the treatment of Alzheimer’s disease 
(AD), generally act on acetylcholine esterase. In organophos- 
phorus intoxication, such as by pesticides blocking the 
esterase, antimuscarinic treatment is usually combined with 
reactivators of the acetylcholine esterase (AChE [5]). 
However, when examining the mechanism of action of the 
reactivators it has turned out to be complex [6]. One 
probable mechanism is an antagonism of acetylcholine 
effects exerted on muscarinic receptors [6c]. Also, this 
antimuscarinic mechanism of action of the reactivators 
shows varying degree of selectivity for muscarinic receptor 
subtypes [7]. Oximes, for example, bind to and antagonize 
cholinergic effects preferentially via muscarinic M2 
receptors [8]. Due to the varying significance of the composite 
muscarinic receptor population in different organs, the 
functional implication of intervening at a specific level of the 
cholinergic transmission may be hard to predict in the whole 
body [9]. 

 Currently, the cholinergic transmission and the 
interactions of muscarinic receptors in the synapse and at 
different levels of the reflex arc are reviewed. Divergent 
effects of pharmaceuticals due to composite cholinergic 
mechanisms are addressed from the perspective of functional 
implications of possible interplays between muscarinic 
receptor subtypes. 

CHOLINERGIC TRANSMISSION 

 The transmitter acetylcholine is a phylogenetically old 
substance and almost all living organisms are able to 
synthesize the compound. The evolvement of the 
acetylcholine synthesizing systems occurred well ahead of 
the appearance of living organisms expressing a nervous 
system [10]. Over the years, the possibility of non-neuronal 
synthesis of acetylcholine has been overlooked in mammals. 
However, today two sources of acetylcholine synthesis are 
recognized – neurons and non-neuronal tissues [11]. The 
non-neuronal sources of acetylcholine have gained increased 
interest lately. Originally, non-neuronal release of acetylcholine 
was ascribed either cells correlated to pathology, e.g.  
cancer cells�or immune cells, or tissue lining cells, e.g.�
keratinocytes, urothelial�cells, airway epithelial cells�or 
endothelial cells [12]. However, it has been found that also 
other types of cells may produce acetylcholine. One example 
is cardiomyocytes, in which the production is thought to be 
protective against hypertrophic stimuli [13]. 

 Acetylcholine is mainly synthetized from acetyl 
coenzyme A and choline by the enzyme choline 
acetyltransferase (ChAT) [14]. ChAT mediates the transfer 
of an acetyl group from acetyl coenzyme A to choline in the 
nerve terminal. Neuronal ChAT uses choline that is 

accessible from the extracellular fluid by a high-affinity 
choline transporter (ChT). The transmitter is then accumulated 
in the synaptic vesicles by a vesicular acetylcholine 
transporter (VAChT). However, the mitochondrial enzyme 
carnitine acetyltransferase (CarAT) may also contribute to 
the synthesis of acetylcholine. The ChAT-related enzyme 
CarAT is expressed in all cells [10]. Besides enhancing the 
ChAT mediated acetylcholine synthesis by cooperative 
mechanisms, CarAT may by itself cause acetylcholine 
synthesis [15]. CarAT seems to have a significant role in 
cholinergic signalling in some tissues. For example,  
the measurement of the synthesis of acetylcholine in 
homogenates of the extensor digitorum longus muscles (in 
the normally sciatic nerve innervated and in the denervated 
muscle) revealed half of the acetylcholine to be synthetized 
by CarAT in the former case and almost all of it in the latter 
case [16]. However, CarAT may also contribute to 
acetylcholine synthesis in organs consisting of smooth 
muscle. Specifically, CarAT is the major ACh-synthesizing 
enzyme in the urothelium in the urinary bladder [17]. Here, 
as well as in other non-neuronal cells, the polyspecific 
organic cation transporter (OCT) has been shown to present 
choline intracellularly. 

 Acetylcholine release occurs in a quantal (vesicular) and 
a non-quantal (non-vesicular) way [18]. The quantal release 
was first described for the neuromuscular junction, but is 
typical for neuronal transmission [19]. The basis for quantal 
release is the exocytosis of acetylcholine containing vesicles 
in the neuron induced by impulse activity. The membrane 
depolarization causes voltage-gated Ca2+ channels to open 
and exocytosis of the vesicle content starts within sub-
milliseconds after calcium influx. The delay of the release is 
minimized by a large number of calcium channels being 
accessible close to the active zone [20]. However, the 
vesicles docking with the presynaptic membrane of the active 
zone have to undergo a priming reaction before exocytosis 
[21]. The anchoring of the vesicle to the membrane and its 
exocytosis include interactions of a number of proteins (e.g., 
SNAREs, syntaxin and synaptotagmins), whose activation is 
Ca2+ dependent [22]. At the neuromuscular synapses, the 
content of an acetylcholine quantum is fairly constant (6000–
10000 molecules) [23]. 

 The less well-characterized non-quantal release, on the 
other hand, may occur independently of impulse activity 
either in neurons or in non-neuronal tissues and is not 
restricted to the quantal pulsatile nature of release [19c, 24]. 
One example of the latter is the urothelial release in the 
urinary bladder, and further, the OCT seems to be of particular 
importance in the non-neuronal release of acetylcholine  
[25, 26]. However, the neuronal non-quantal release may 
involve ChT as well as VAChT that remains in the plasma 
membrane after the vesicular fusion [24]. It has been 
speculated that the ChT may transport choline retrogradely 
and ACh orthogradely. 

 Acetylcholine may be hydrolyzed by either of two 
structurally similar enzymes in the body - acetylcholinesterase 
(AChE) and butyrylcholinesterase (BuChE). In the synaptic 
cleft, acetylcholine is metabolized by AChE within 
milliseconds after its release from the nerve, forming choline 
and acetic acid [27]. In non-neuronal cells both AChE and 
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BuChE are expressed, while BuChE is particularly obvious 
in blood plasma, the kidneys and the liver. BuChE catalyzes 
acetylcholine hydrolysis as well [28]. However, it hydrolyses 
esters with larger moieties, like butyrylcholine or 
benzoylcholine, more efficiently. The full significance of 
BuChE is still unclear, but it probably plays a role in the 
metabolism of cellular intermediates. 

 In the periphery, acetylcholine is a classical transmitter in 
the somatomotoric and autonomic nervous systems. The 
nicotinergic contraction of skeletal muscle and the 
muscarinic effects mediated via the autonomic nervous 
system are well known [4b, 9, 29]. In the parasympathetic 
nervous system, acetylcholine transmits signals both in the 
ganglia and at the effector cell level. In conditions of 
excessive discharge of the parasympathetic nervous systems, 
typical signs of cholinergic effects appear [30]. These signs 
include salivation, lacrimation, urination, defecation, emesis 
and vomiting, miosis, bradycardia and bronchial obstruction. 
Pronounced AChE inhibition causes similar symptoms, but 
affects the neuromuscular signalling as well [31]. The signs 
of excessive parasympathetic discharges elucidate the 
functions that are regulated by the parasympathetic nervous 
system under physiological conditions. 

 In contrast to the periphery, acetylcholine primarily acts 
as a neuromodulator within the central nervous system [32]. 
Here, acetylcholine modulates a number of vital functions 
such as cognition, reward and motor control. The effects are 
exerted by activation of both major groups of cholinergic 
receptors, muscarinic and nicotinic, which are widely 
distributed throughout the central nervous system [29, 33]. 
One major pathway is the cholinergic projection from the 
nucleus basalis to cortical areas, which is particularly related 
to attention and memory. In dementia, such as AD, the 
failure of cholinergic transmission is one important cause for 
the symptoms. 

MUSCARINIC RECEPTORS 

 Muscarinic receptors occur in five subtypes, which all 
belong to the family of G protein-coupled receptors [9]. The 
G protein consists of one α-, β- and γ-subunit. Depending on 
the primary sequence homology of the α -subunit, the G 
protein is classified as Gs, Gi/o, Gq or G12 [4b]. The 
muscarinic receptor subtypes couple differentially to the G 
proteins, and the subunits of G proteins activate distinct 
cellular pathways. The inhibitory muscarinic M2 and M4 
receptors mainly couple to G i/o, whereas the excitatory 
muscarinic M1, M3 and M5 receptors most frequently 
couple to G q/11. The muscarinic M2 and M4 receptors 
mainly exert inhibitory effects by reducing the activity of 
adenylate cyclase, prolonging the opening of potassium, 
non-selective cation and transient receptor potential 
channels. Muscarinic M1, M3 and M5 receptors increase 
intracellular calcium by mobilizing phosphoinositides that 
generate inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. 

NICOTINIC RECEPTORS 

 Nicotinic receptors belong to a family of ligand-gated ion 
channels, where binding of two molecules of acetylcholine 
results in a conformation change of the receptor and the 

subsequent formation of a pore between the subunits allows 
the permeation of cations through the receptor. Usually, 
sodium (Na+) ions flow inward and potassium (K+) outward, 
however, some neuronal nicotinic receptors have been 
shown to be permeable for calcium (Ca2+) ions, thereby 
affecting the release of other neurotransmitters [34]. Two 
types of nicotinic receptors occur – the muscular and the 
neuronal type. The muscle-type receptors are situated in the 
neuromuscular junctions and are composed of α1, β1, δ, ε or γ 
subunits. The adult and fetal isoforms differ by substitution 
of the γ subunit with the ε subunit. The stoichiometry of the 
muscle-type nicotinic receptor is always α2β(ε)γδ. The 
neuronal type, sometimes subdivided into a CNS type and a 
ganglionic type, is always composed of α- and β-subunits. 
Homomeric receptors consist of only α7-10 subunits, 
heteromeric of α2-6 and β2-4 subunits in a conserved 2:3 ratio 
[35]. 

 Nicotinic receptors are localized both pre- and post-
synaptically. The former ones serve as regulatory receptors 
modulating the release of acetylcholine and other 
neurotransmitters in the CNS. The nicotinic-evoked release 
of transmitter can be both positively and negatively 
modulated by interactions with metabotropic and ionotropic 
receptors [36]. At the motor neurons, presynaptic nicotinic 
receptors facilitate mobilization of a reserve pool of 
acetylcholine, thereby enhancing the cholinergic transmission 
[37]. The significance of postsynaptic nicotinic receptors is 
evident as they depolarise the membrane at the neuro- 
muscular endplate, leading to muscle contraction. Further, in 
the CNS they play a crucial role in maintaining cognitive 
function. Nicotinic receptors in the CNS are commonly 
linked to neurodegenerative diseases such as Alzheimer´s 
and Parkinson’s disease [38]. 

SALIVARY GLANDS 

 The increase in salivary flow evoked by activation of 
muscarinic receptors has generally been attributed to effects 
via muscarinic M3 receptors [39]. However, all subtypes 
have been described in salivary glands [40] and data from 
studies in several animal models have indicated that in 
particular muscarinic M1 receptors also contribute to the 
secretory response to muscarinic receptor stimulation [41]. 
In the rat sublingual and the ovine submandibular glands, 
concomitant activation of the different muscarinic receptor 
subtypes seems to be a necessity for maximum glandular 
responses [41a, 42]. 

 Regarding the neuronal activation of salivary glands, 
prejunctional muscarinic receptors modulate the parasym- 
pathetic nerve-evoked response [43]. Here, muscarinic M1 
receptors normally facilitate transmitter release during short, 
intense nerve activity. At low frequencies, on the other hand, 
muscarinic M2 receptors, or possibly muscarinic M4 
receptors, inhibit the transmission, but only after some delay 
[42, 43b]. By blocking the prejunctional inhibitory muscarinic 
receptors the nerve-evoked secretory response may be 
threefold larger than in the absence of the inhibition in the 
rat parotid gland [43b]. This increase, however, does not 
only reflect cholinergic effects since neuropeptides, e.g., 
vasoactive intestinal peptide (VIP), are co-released from the 
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parasympathetic nerve and markedly potentiate the 
cholinergic response. Also, in many species the neuro- 
peptides evoke atropine-resistant overt secretion (up to 50% 
of the parasympathetic response) [44]. In the concomitant 
parasympathetic vascular response, acetylcholine and VIP 
also interact [45]. Here, VIP is the major player, while 
acetylcholine, by acting on muscarinic M3 receptors, has 
additive effects [46]. 

The Urinary Bladder 

 In the urinary bladder, all five subtypes of the muscarinic 
receptor are expressed [47]. However, the expression varies 
in different bladder tissues. On the detrusor smooth muscle 
cells, muscarinic M2 receptors dominate in number, even 
though muscarinic M3 receptors have been shown to evoke 
the main cholinergic contractile response [43a, 48]. The 
other subtypes have been demonstrated to occur as well, but 
at a markedly lower number. In the urothelium, on the other 
hand, all muscarinic receptor subtypes are expressed in large 
numbers. The muscarinic M1 receptors occur on basal cells 
and muscarinic M2 receptors on umbrella cells, while 
muscarinic M3 and M4 receptors are homogenously 
distributed and muscarinic M5 receptors are distributed with 
a decreasing gradient from luminal to basal cells [49]. 
Traditionally, the urothelium has been regarded to be a 
passive barrier. However, during the last decade observations 
have accrued showing that the urothelium plays an important 
integrating role in the regulation of bladder function [50]. 
This indicates that the ways the muscarinic receptors may 
interact are numerous, which may be even more intricate 
when taking prejunctional receptors into consideration. 
Namely, muscarinic receptors are expressed on bladder 
neurons, afferent as well as efferent [43a, 51]. Muscarinic 
facilitatory and inhibitory receptors occur on efferent nerve 
terminals. While the former are of the muscarinic M1 
receptor subtype, the latter has for long been considered to 
be of the M2 subtype. However, some reports indicate that 
the inhibitory subtype may be the muscarinic M4 receptor 
[47, 52]. Sensory neurons have been reported to express 
different subtypes of the muscarinic receptor (M2, M3 and 
M4 [53]), suggesting cholinergic influence on the processing 
of sensory information from the bladder. However, even 
though it is well known that the administration of muscarinic 
antagonists inhibits the neuronal activity in bladder afferents 
[54], the specific effects of the muscarinic receptor subtypes 
in the local bladder afferent activation are unclear. 

 A number of substances may be released from the 
urothelium of which ATP seems to be of particular interest 
[55]. Stretch may release urothelial ATP that, directly or 
indirectly via inducing non-neuronal acetylcholine release, 
stimulates afferents within the micturition reflex [56]. Non-
neuronal acetylcholine may, by acting on urothelial 
muscarinic M5 receptors, induce the release of nitric oxide 
that exerts inhibitory effects and that preserves low bladder 
pressures in spite of increasing urine volumes [57]. Any 
muscarinic M3 receptor effect on the effector smooth muscle 
cell evoked by low concentrations of acetylcholine, e.g. non-
quantal release or release at low parasympathetic stimulation 
intensity, is counteracted by muscarinic M2 receptor hyper- 
polarization [58]. Also, muscarinic M2 receptors inhibit 

adenylate cyclase and by that the formation of cAMP [59]. 
This mechanism has been shown to prevent adrenergic and 
purinergic effects that might counteract the cholinergic 
contraction. Furthermore, the release of low amounts of 
acetylcholine upon parasympathetic activity exerts a 
prejunctional inhibition on its own release via muscarinic 
M4 (and/or M2) receptors. However, intense neuronal activity 
over short periods of time resulting in high concentrations of 
the transmitter stimulates, in resemblance with the glandular 
mechanism, facilitatory muscarinic M1 receptors on the 
nerve terminal [41c, 43b]. This eventually results in either larger 
(M1 effect) or smaller (M4 (and/or M2) effect) acetylcholine 
evoked detrusor contractions via the muscarinic M3 receptor. 
A schematic overview of the conceptual interactions of 
muscarinic receptor subtypes within the urinary bladder is 
presented in Fig. (1). 

THE RESPIRATORY TRACT 

 The respiratory tract shows great resemblance with the 
urinary bladder regarding muscarinic receptors and the 
cholinergic system. All five subtypes are expressed in the 
lungs and both neuronal and non-neuronal release of 
acetylcholine occurs [60]. Muscarinic M3 receptors have a 
dominant role in the smooth muscle contraction. Furthermore, 
the muscarinic M2 receptors that outnumber the M3 
receptors have indirect roles. These indirect roles are exerted 
by inhibition of relaxation evoked by β-adrenoceptors [61]. 
Both facilitatory and inhibitory prejunctional muscarinic 
receptors regulate the parasympathetic transmission [62]. In 
resemblance with the urinary bladder and salivary glands, 
prejunctional muscarinic M1 receptors facilitate the 
acetylcholine release [63]. However, most reports claim the 
inhibitory receptors to be of the M2 subtype, even though 
some animal studies propose the prejunctional receptors to 
be of the M4 subtype [64]. Nevertheless, the prejunctional 
inhibitory muscarinic receptor function has been suggested 
to be hampered in asthma [62]. In addition to the smooth 
muscle expression of muscarinic receptors, mucosal glands 
also exhibit muscarinic receptors and likewise the M3 
subtype mediates the main secretory response [65]. 

 The pulmonary arteries belong to the group of vessels, 
including those of salivary glands as well, that are influenced 
by parasympathetic nerve activity [66]. Namely, in the lung, 
stimulation of the vagal nerve induces vasodilatation via 
acetylcholine acting on muscarinic M3 receptors [67]. This 
may in turn cause endothelial release of nitric oxide [68]. 
The vascular response to acetylcholine appears biphasic, 
involving a contractile part as well. Muscarinic M1 receptors 
have been discussed in this context and have been proposed 
to have a key role in pulmonary vascular dysfunction [69]. 
However, the vagal transmitter release is not the only source 
of acetylcholine [70]. Non-neuronal release of acetylcholine 
from the endothelium has been proposed to participate in the 
vasodilator response due to local mechanical forces induced 
by blood flow changes [12]. 

THE HEART 

 The primary effect of the parasympathetic nervous 
system in the heart is to decrease the rate [71]. The source of 
acetylcholine release may be an atrial non-neuronal 
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production [18a]. The classical view is that atrial muscarinic 
M2 receptors exclusively mediate this effect [72]. However, 
studies in a number of different species including man, 
indicate the expression of other subtypes, in particular in the 
ventricles [73]. Of these other subtypes, most interest has 
been given to muscarinic M1 and M3 receptors [74]. 
Whether functionally significant or not, all other subtypes 
are heavily outnumbered by the muscarinic M2 receptors 
[75]. 

 Cholinergic stimulation of the atrial muscarinic M2 
receptors slows the rate of spontaneous firing in the 
sinoatrial node [76]. Also, muscarinic M2 receptors 
influence the conductance of impulses in the atrioventricular 
node, which is slowed down by parasympathetic activity 
[77]. One way this effect of muscarinic M2 receptors is 
exerted is via potassium currents (IK(ACh)) that hyperpolarizes 
the membrane potential [76]. Another way is by inhibiting 
cAMP-dependent effects (i.e., β-adrenoceptor effects [78]). 

a 

 

b 

 

Fig. (1). Schematic drawing of muscarinic receptor subtypes in the urinary bladder. The upper panel (a) indicates the filling phase of the 
urinary bladder. In this phase a limited amount of acetylcholine is released from neuronal (parasympathetic) and non-neuronal tissues (e.g. 
the urothelium). Adrenergic stimulation of relaxatory β3-adrenoceptors (by noradrenaline or adrenaline) is indicated. Relaxatory urothelial 
factors (e.g. nitric oxide released by activation of muscarinic receptors) stabilize the detrusor. Postsynaptic muscarinic M2 receptors inhibit 
the effects of contractile muscarinic M3 receptors. Presynaptic muscarinic M4 receptors inhibit the release of transmitter. The lower panel 
(b) indicates the emptying phase (detrusor contraction). In this phase a large number of vesicles release acetylcholine. Presynaptic 
muscarinic M1 receptors are activated and facilitate the release. The intense stimulation of contractile muscarinic M3 receptors overcomes 
any inhibitory effect of postsynaptic muscarinic M2 receptors. The muscarinic M2 receptors inhibit relaxatory effects via β3-adrenoceptors. 
Excitatory factors (e.g. ATP) are released from the urothelium. Both synaptic acetylcholinesterase and non-synaptic butyrylcholinesterase 
metabolizes acetylcholine. 



642    Current Neuropharmacology, 2017, Vol. 15, No. 4 Soukup et al. 

Several mechanisms have been suggested regarding the latter 
matter. For instance, muscarinic M2 receptors have been 
suggested to stimulate the production of cGMP via nitric 
oxide, which in turn inhibits cAMP-dependent responses. 

 In the heart, large concentrations of muscarinic agonists 
have been shown to increase automaticity and possibly 
contractility as well [74b, 79]. Muscarinic M1 and/or M3 
receptors have been discussed in this context. A muscarinic 
M1 receptor effect has been suggested to be mediated via 
PLC-dependent mechanisms that enhance L-type Ca2+-
channels [80]. The tentative muscarinic M3 receptor effect 
seems also to include PLC-dependent mechanisms, which 
activate potassium currents of a delayed rectifier type [81]. 
Thus, the most prominent and normal role of acetylcholine in 
the heart is to decrease the cardiac output via muscarinic M2 
receptors. However, other subtypes may also affect cardiac 
function, particularly under pathological conditions such as 
in heart failure, ischemia and arrhythmias [82]. 

THE CENTRAL NERVOUS SYSTEM 

 All five muscarinic receptor subtypes occur in the central 
nervous system. In contrast to the periphery, based on their 
frequency of occurrence, muscarinic M3 receptors seem to 
be of less significance [83]. Muscarinic M3 receptors are 
mainly expressed in cortical pyramidal cells and in glial 
cells. Muscarinic M1 receptors show a similar distribution 
and are found throughout the brain, but in much higher 
concentrations [84]. The highest concentrations occur in 
cortical regions and hippocampus. The cortical muscarinic 
M1 receptors are mostly located postsynaptically in 
excitatory synapses. Muscarinic M2 receptors occur both 
pre- and postsynaptically, and the receptor subtype occurs in 
high levels in the nucleus basalis, cerebellum, pons/medulla 
and thalamus/hypothalamus [85]. Muscarinic M2 receptors 
are expressed in other cortical areas also, such as hippo- 
campus and putamen. Muscarinic M4 receptors occur in the 
highest concentrations in basal ganglia, where they occur in 
association with dopaminergic receptors. Muscarinic M5 
receptors, on the other hand, are sparsely expressed in the 
central nervous system [86]. However, some expression 
occurs in the hippocampus, substantia nigra and ventral 
tegmental area. 

 The cholinergic systems are affected in a number of 
disorders of the central nervous system. In particular in AD 
and other cognitive disorders, muscarinic receptors have 
been regarded to be potential targets when developing new 
pharmaceuticals. Muscarinic M1 receptors seem to be 
particularly important for mediating cognitive effects, and 
M1-selective agonists have been proposed to be suitable in 
the pharmacotherapy of AD. The favourable effects of 
treatment with acetylcholine esterase inhibitors support this 
notion. 

APPLICATION OF PHARMACEUTICALS ACTING 
ON THE PARASYMPATHETIC NERVOUS SYSTEM 

 A number of pharmaceuticals used in the clinic intervene 
with the cholinergic systems and because of the broad 
spectrum of parasympathetic effects in the body, adverse 
effects are numerous [1]. Historically, drugs affecting the 

cholinergic systems were often employed in the 
pharmacotherapy of diseases in the gastrointestinal tract e.g. 
gastric ulcer and intestine disorders [87]. Today, other 
treatments have substantially replaced the old therapies. 
However, the use of pharmaceuticals acting on the 
parasympathetic nervous system is still indicated in the 
pharmacotherapy, but then non-systemic administration 
approaches of the drugs may be employed [88]. 

 Generally, systemic administration of muscarinic 
receptor antagonists is more common than of muscarinic 
receptor agonists. When agonists are used the indication 
often only requires a single dose administration. In cases of 
atonic gut or atonic bladder, a muscarinic agonist may be 
injected in order to trigger the activity of the smooth muscle 
[89]. However, in the treatment of glaucoma (local) or oral 
dryness as in Sjögren’s syndrome (systemic) pilocarpine 
may be prescribed for long-term use [90]. Acetylcholine 
esterase inhibitors are an alternative to the direct agonists 
and are indicated in the treatment of diseases in the central 
nervous system (e.g. AD; see below [91]). Outside of the 
central nervous system they may be used in the treatment of 
glaucoma, to increase bladder and intestine motility, to 
overcome neuromuscular blockade in anaesthetized patients 
and in the treatment of myasthenia gravis. Esterase inhibitors 
with strong and irreversible binding to the enzyme have been 
used in chemical warfare or misused for terroristic purposes. 
Also, pesticides have the same mechanism of action as the 
inhibitors used in warfare and may cause, likewise to the 
militarily used inhibitors, death mainly by respiratory arrest. 
In the treatment of esterase inhibition, so called esterase 
reactivators are given in addition to muscarinic antagonists 
[92]. The mechanism of action of the reactivators is via affinity 
to the enzyme and the ability to bind the organophosphate 
which is inhibiting its active site, thereby making the site 
accessible to acetylcholine [93]. In the absence of inhibition, 
the reactivators act as weak acetylcholine esterase inhibitors. 
The exact mechanism of action of the reactivators is not 
totally unraveled. However, muscarinic and nicotinic 
receptor antagonism has been suggested [92]. 

 Even though muscarinic receptor antagonists may be 
administered locally, e.g. for inducing mydriasis, counteracting 
cycloplegia and as asthma inhalation treatment [88, 90b], 
they are applied systemically in the treatment of certain 
diseases and conditions such as for resuscitation purposes via 
inhibition of bradycardia and for relief of postprandial 
discomfort [82, 87, 94]. However, the most common use of 
drugs exerting antimuscarinic receptor effects is for urge 
incontinence. Also, in cases of organophosphate poisoning 
(chemical warfare or pesticides), muscarinic receptor 
antagonists are indicated as antidotes [92]. �� 

TREATMENTS WITH ANTICHOLINERGIC DRUGS 
AFFECTING THE LOWER URINARY TRACT 

 Today it is well accepted that bladder contraction is 
almost solely caused by activation of muscarinic M3-
receptors, with slight influence of M2-receptors via indirect 
inhibition of adrenergic and purinergic induced detrusor 
relaxation [47]. However, when employing anticholinergic 
drugs in the treatment of the patient, the whole micturition 
reflex arc must be taken into consideration. Even though the 
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rationale for anticholinergic treatment of overactive bladder 
is via blockade of muscarinic receptors, the effect is likely 
exerted at more levels than merely by antagonizing receptors 
in the detrusor [95]. For instance, one must take non-
neuronally released acetylcholine into account, which can act 
on muscarinic M2, M3 and M4 receptors, yielding an 
excitatory or inhibitory effect on afferent activity in the 
micturition arc. An anticholinergic effect on such excitatory 
muscarinic receptors is suggested to at least partially 
improve the disease symptoms. When examining the affinity 
of the antimuscarinic drugs, most of them have greatest 
affinity for muscarinic M3 receptors with some exceptions 
such as imidafenacin and tolterodine [96]. Therefore, if one 
solely takes into account the detrusor overactivity in OAB 
patients to be caused by activation of muscarinic M3 
receptors located either on the detrusor muscle [97] or on 
afferents [98], it is impossible to explain the positive clinical 
effects of the drugs. 

 Over the past decade and a half, the concept of tissue 
selectivity has emerged which could be one possible approach 
to develop new entities showing less anticholinergic adverse 
effects. A number of studies have indicated that some 
antagonists exert this form of bladder selectivity, in 
comparison with salivary glands when examined in vivo [99]. 
The suggestion that these observations show general bladder 

selectivity may be an over-interpretation. No, or only small, 
differences appear when studying the tissue affinity of 
antagonists when comparing the bladder and salivary glands 
(Table 1a). The low degree of selectivity is also supported 
by results from binding experiments on cell lines expressing 
the specific muscarinic receptor subtypes (Table 1b). Data 
from one species must be assessed based on its particular 
physiology. In rat a pronounced non-adrenergic, non-
cholinergic (NANC) salivary secretion occurs, while in cat 
the NANC transmitters (e.g., VIP) markedly potentiate the 
cholinergic response [9]. No such responses have been 
described in man. It may be argued that the same situation is 
valid in the urinary bladder. However, the NANC transmitters 
are different [100]. In the case of the occurrence of NANC 
responses, ATP (short-lasting effects) is the main transmitter 
in the bladder [101], while neuropeptides (substance P, VIP 
and calcitonin gene-related peptide; long-lasting effects) 
evoke the atropine-resistant responses in glands [102]. 
Therefore, it is hazardous stating tissue selectivity based on 
responses evoked by nerve stimulation. Also, carbachol has 
routinely been used as the muscarinic agonist of choice in 
studies on the urinary bladder. This may, likewise to 
acetylcholine, also create a confounding situation due to its 
pronounced effect on nicotinic receptors [103]. Thus, to 
conclude the occurrence of tissue/bladder selectivity, in vivo 
data could be faulty for various reasons. For one, bladder 

Table 1a. Inhibitory constants of muscarinic antagonists in urinary bladder and salivary gland tissue. 

Compound Urinary Bladder (pKi) Parotid Gland (pKi) Submandibular Gland (pKi) 

Imidafenacin 9.2a 9.2 a   

Tolterodine 8.6 a, 8.7 b, 8.5 c 8.5 a, 8.5 b 8.7 c 

Oxybutynin 8.4 a, 7.8 b, 8.7 c 8.8 a, 8.2 b 9.0 c 

Solifenacin 7.4 a, 8.5 c 7.7 a 8.2 c 

Darifenacin 8.4 c, 7.7 b 8.7 b 8.8 c 

Propiverine 6.3 b 6.6 b   

Competitive inhibition of b[3H]NMS [149] and a[3H]imidafenacin [96d] binding by muscarinic antagonists in homogenates of human bladder and parotid gland and c of carbachol-
induced Ca2+ mobilization in bladder and submandibular gland cells from Cynomolgus monkeys [150]. 

 

Table 1b. Binding affinities of muscarinic antagonists in cell lines expressing human muscarinic receptor subtypes. 

Compound M1 (pKi) M2 (pKi) M3 (pKi) M4 (pKi) M5 (pKi) 

Tolterodine 8.7, c 7.8 b  8.4 c , 8.0 b  8.4 c , 8.3 b  8.4 c , 8.6 b  8.8 c , 8.6 b  

Oxybutynin 8.6 c, 8.5 a 8.1 c, 7.6 a 8.8 c, 8.7 a 8.7 c, 8.5 a 8.8 c 

Solifenacin 7.6 c , 7.1b 7.1 c , 7.0 b  7.7 c , 7.7 b 6.8 c , 7.7b 7.2 c , 7.5 b 

Darifenacin 7.5 c , 7.2b 7.2 c , 6.9 b 8.6 c , 8.4b  7.3 c , 7.5 b 7.9 c , 7.6b 

Fesoterodine 7.8 b 8.6 b 7.3 b 8.0 b    

Propiverine 6.4 a 5.7 a 6.7 a 6.5 a   

Trospium 8.5 b 9.0 b  9.0 b 8.8b 8.2b 

References: 
a=151 b=152 c=153 



644    Current Neuropharmacology, 2017, Vol. 15, No. 4 Soukup et al. 

contraction and salivation are induced in different ways. 
This, in turn, is linked to the possibility that other factors 
may obscure the data and its interpretation. For instance, it 
seems likely that effects involving prejunctional inhibitory 
muscarinic receptors, i.e. M2 and/or M4, will affect 
measurements of salivation and bladder contraction [43, 52, 
60, 64b, 104]. Further, it is still not known exactly how the 
various muscarinic receptor subtypes per se affect bladder 
contraction and salivation in different species, and to link 
findings in an animal species to possible effects in man is 
therefore hard. However, the fact remains that in vivo data of 
this kind are hard to interpret due the influence of 
prejunctional receptors and a non-complete understanding of 
bladder contraction in other species, as well as the various 
levels at which antimuscarinics affect bladder contraction. 

TREATMENTS WITH ANTICHOLINERGIC DRUGS 
AFFECTING THE RESPIRATORY TRACT 

 Anticholinergic drugs are often employed in the treatment 
of chronic obstructive pulmonary diseases in which an 
increased vagal tone may occur [105]. Consequently, the 
drugs may exert a number of attractive effects, which in 
addition to counteracting the smooth muscle contraction, 
decreases mucus secretion and bronchial vasodilatation 
[106]. However, in cases of the anticholinergic drug reaching 
the circulation, adverse effects such as dry mouth, urine 
retention and tachycardia often occur. Anticholinergics may 
also be indicated in asthma therapy when the condition is 
associated with vagal activity. However, β2-agonists are 
generally superior in improving airflow in acute asthma 
when compared with anticholinergics [107]. 

 Two types of muscarinic receptor antagonists are 
approved for marketing authorization; so called short-acting 
(e.g., ipratropium and oxitropium) and long-acting muscarinic 
receptor antagonists (e.g., tiotropium) [108]. Even though 
tiotropium is more potent than ipratropium as an antagonist 
at muscarinic receptors, its longer dissociation half-life at 
muscarinic M3 receptors provides the long-acting duration. 

 A number of new anticholinergic drugs are currently in 
phase II or III. One mutual focus when new anticholinergic 
drugs are developed is to create compounds with larger 
effects on muscarinic M3 receptors than on muscarinic M2 
receptors [109]. This aims to reduce the cardiac adverse 
effects induced by the treatment. Namely, increased risks of 
cardiovascular death have been reported [110]. Furthermore, 
another positive result of this new selectivity profile could be 
that less effect occurs on the prejunctional inhibitory 
muscarinic receptors. However, it is still not clarified if these 
latter receptors are of the muscarinic M2 or the M4 receptor 
subtype in humans, even though animal experiments indicate 
the receptors to be of the latter subtype [111]. If they are of 
the muscarinic M4 receptor subtype, selectivity for muscarinic 
M3 over M2 receptors might be of no significance regarding 
the prejunctional effects. Furthermore, the selectivity for 
muscarinic M3 over M2 receptors may even be 
disadvantageous in view of the muscarinic M2 receptor 
inhibiting adrenergic relaxation [112]. Namely, if only the 
muscarinic M3 receptors are blocked, while leaving the 
muscarinic M2 receptors unaffected, acetylcholine can still 

exert its M2-mediated inhibition of β2-adrenoceptor induced 
relaxation. 

TREATMENTS WITH PHARMACEUTICALS 
AFFECTING ACHE 

 As have been mentioned previously, AChE modulators 
can be used in the clinical treatment of several conditions. 
AChE modulators comprise of two different subgroups - 
widely used AChE inhibitors and specific AChE 
reactivators. One important characteristic of the latter 
subgroup is that they usually act as weak AChE inhibitors 
[7]. However, the specific name originates from the 
pharmacological action, which is reactivation and which is 
ensured by the oxime moiety in their structure. Therefore, 
the term oxime reactivator, or just plainly oxime, is 
commonly used. Both types of compounds affecting the 
esterase show composite mechanisms of action. A summary 
of AChE affecting compounds is presented in Table 2. While 
the AChE inhibition frequently is combined with effects on 
the nicotinic receptor, the effect on muscarinic receptors is 
particularly obvious for the reactivators. 

REACTIVATORS OF ACHE 

 Reactivators are used in a specific case - the 
organophosporus (OP) poisoning caused by either nerve 
agents like soman, sarin tabun etc. or by OP pesticides [92]. 
The former cause is nowadays rather rare, however, recent 
misuse of sarin in Syria testifies in favor of maintaining 
readiness against OP terroristic threats. Moreover, their place 
in the army gear is unquestionable. Reactivators, together 
with atropine, represent a necessary first aid for OP 
intoxication. Every year, hundreds of thousands of people 
die due to pesticide poisoning, either by mistake or rather 
commonly by committing suicide [113]. Reactivators 
represent the causal treatment whereas atropine is merely 
symptomatic [114]. Pralidoxime, trimedoxime, methoxime, 
obidoxime and HI-6 are reactivators that are currently used 
against OP poisoning. Unfortunately, the reactivators differ 
in their efficacy against individual nerve agents, which 
means that the source of poisoning must be identified before 
application of a proper oxime. The most versatile oxime, HI-
6, lacks efficacy against tabun for which obidoxime or 
trimedoxime must be used. On the contrary, those 
compounds are ineffective against soman poisoning (for 
review see [115]). Soman poisoning is also complicated due 
to the process called “aging”, which is a time-dependent loss 
of AChE ability to be reactivated [116]. Regarding soman, 
aging occurs within a few minutes. Pesticide poisoning is 
easier to treat, since aging may take a couple of days. 
Obidoxime is the drug of choice here. However, due to its 
higher toxicity, a replacement of obidoxime would be 
beneficial and the oxime K027 seems to be a rather 
promising candidate [117]. Reactivators also exhibit varying 
degree of affinity for cholinergic receptors [7]. Obidoxime, 
for instance, exerts significant antagonism on the muscarinic 
M2 receptor [8]. At first, this mechanism of protecting 
cholinergic receptors may seem advantageous. However, in 
the light of what has been discussed above regarding the 
physiological function of this particular receptor, it may 
explain its higher toxicity [58]. Another common feature of 
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all reactivators is a low blood-brain barrier penetration due to 
the charged nitrogen in their structure [114b]. Therefore, the 
use of non-quaternary and monoquaternary reactivators or 
other approaches targeting blood-brain barrier penetration 
are currently being thoroughly investigated. An oxime 
moiety seems to be essential for the effects of reactivators. 
Attempts with compounds lacking this moiety have been 
made, but these compounds are not better than oxime-based 
reactivators regarding efficacy against OP compounds (for 
review see [118]. 

ACETYLCHOLINESTERASE INHIBITORS 

 Inhibitors of AChE have found their use in a wide area of 
applications. Reversible inhibitors can serve as prophylaxis 
for OP poisoning. The resistance to OP irreversible 
inhibitors is ensured by their higher affinity to AChE than 
organophosphate, and after being spontaneously hydrolyzed 
AChE can fulfill its physiological tasks. Carbamates 
(pyridostigmine, physostigmine) belong to this group of 
reversible AChE inhibitors [114a]. 

 The use of AChE inhibitors is wide, for instance as 
symptomatic treatment in Alzheimer´s disease (AD) and 
other types of dementia (e.g. Lewy body dementia), 
glaucoma, postural tachycardia and myasthenia gravis [119]. 
Especially AD represents an increasing health problem 
[120], and the massive worldwide pursuit for finding an 
effective cure has been fruitless so far. In the treatment of 
AD, the fact that inhibitors of AChE might also be inhibitors 
of BuChE should be considered. It has been reported that 
non-selective inhibitors of cholinesterases would be a more 
nuanced and logical treatment, since BuChE activity rises in 
the AD brain [121]. As expected, selective AChE inhibitors 
have been reported to be more effective than inhibitors of 
BuChE due to the fact that AChE outnumbers BuChE in the 
brain [119a]. Since one area of frequent employment of 
cholinesterase inhibitors is AD, the pharmacology of some 
key inhibitors are reviewed with this particular focus. 

 The first nonselective AChE inhibitor was tacrine 
(1,2,3,4-tetrahydro-9-aminoacridine), commercially named 
(Cognex®), which was approved by the FDA in 1993. 

Table 2. IC50 values (in µM) representing affinity of different AChE inhibitors to cholinergic enzymes (human acetylcholinesterase 
(hAChE) and human butyrylcholinesterase (hBAChE), cholinergic receptors (muscarinic; Musc) and nicotinic (Nic) 
receptors. 

Compound hAChE hBChE Musc Nic 

Pralidoxime >1000a >1000b N/A N/A 

Trimedoxime 215a >1000b N/A N/A 

Methoxime >1000a >1000b N/A N/A 

Obidoxime >1000a >1000b 3.5i 140-250j 

HI-6 281a >1000b 167i 140-250j 

K027 >1000a >1000b 18i >600j 

K203 >1000a >1000b 4.7i 140-250j 

Physostigmine 0.072g 0.035g 24000q Direct agonisms 
Potentiation(1-100 µM)p 

Antagonism (IC50=70 µM)s 

Pyridostigmine 40c 16000c >10v Potentiation(200-400 µM)x 
Antagonism (IC50=2000 µM) x 

Neostigmine 0.1c 0.8c No affinityr,v 100t 

Ambenonium 0.0007c 6.82c 0.37u Direct agonismw 

Distigmine 0.25g 0.27g Ki=2u Ki=23u 

Edrophonium 5.17c 1370c >10v Direct agonism (<300 µM] k 
IC50=44k 

Tacrine 0.5d 0.02d 12.6d 3.6d 

Donepezil 0.022e 4.15 e  21m Antagonism (10-100 µM)n 

Rivastigmine 4.15f 0.037f No affinityo 15-30p 

Galantamine 0.8f 73f >10v Potentiation (1-10 µM) 
Antagonism (>10 µM)l 

References: 
a=[154] b=[155] c=[156] d=[157] e=[158] f=[159] g=[160] h=[161] i=[162] j=[163] k=[164] l=[165] m=[166] n=[167] o=[168] p=[169] q=[170] r=[171] s=[172] t=[173] u=[147] 
v=[174], w=[175] x=[176]. 
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However, the use of tacrine was limited by its poor oral 
bioavailability, the necessity of four-times daily dosing, and 
considerable adverse effects (mainly hepatotoxicity) [122]. 
Due to the adverse effects, the compound was eventually 
withdrawn from the market. Interestingly, tacrine is a 
relatively weak AChE inhibitor, as compared to donepezil  
or rivastigmine, with a complex mechanism of action 
involving other cholinergic structures, ion channels and 
monoaminergic systems [123]. Furthermore, tacrine reduces 
the levels of total β-amyloid peptide (Aβ), suggesting its 
involvement in the amyloidogenic pathway [124]. Even 
though tacrine itself is an obsolete molecule, it is a parent 
compound for many derivatives due to its multi-target 
directed ligand (MTDL) mode of action. Such compounds 
have recently been reported to combine inhibition of 
cholinesterases with antioxidant activity, chelating of metal 
ions, interaction with cholinergic receptors, neuroprotection 
and the inhibition of Aβ turnover [125]. 

 Later, rivastigmine (Excelon®), another non-selective 
cholinesterase inhibitor, was approved for the treatment of 
mild to moderate AD. Rivastigmine is a pseudo-irreversible 
selective AChE inhibitor [126]. The pseudo-irreversibility 
refers to its binding to AChE, which cleaves the rivastigmine 
molecule resulting in the release of an inert phenolic product 
while the carbamate moiety remains bound to the esteratic 
site of the AChE [127]. Similarly to tacrine, rivastigmine 
seems to possess additional mechanisms of action of 
importance in the treatment of AD, even though probably not 
to same extent. Nevertheless, it has been reported to 
beneficially modulate the glutaminergic pathway [128] and 
shift Aβ processing towards the more beneficial α-secretase 
cleavage pathway [129]. The latter effect on the Aβ cascade 
might be a common feature of all BChE inhibitors since the 
locally neurotoxic Aβ plaque development is driven by the 
increase of BChE at the plaque level [128]. 

 Galantamine, an alkaloid from the family Amaryliidacae, 
represents the weakest AChE inhibitor among the approved 
compounds. However, it also has additional cholinergic 
effects. Galantamine acts as a positive allosteric modulator 
on nicotinic receptors in the central nervous system, which 
are down regulated in AD patients [130]. Besides the direct 
and indirect cholinomimetic effect, galantamine modulates 
the nicotinic receptor-induced release of glutamate and 
monoamines, such as serotonin and norepinephrine, which 
also play a role in the pathogenesis of AD [131]. 

 The last, but probably most widely used and most 
effective, AChE inhibitor is donepezil. Its efficacy is ensured 
by its simultaneous binding to the active site and to the 
peripheral anionic site of the enzyme [132], which has been 
reported to enhance Aβ aggregation [133]. Thus, donepezil 
stimulates the cholinergic pathway and inhibits Aβ turnover 
in the AD brain. 

 Despite the variations in the mode of action of the three 
cholinesterase inhibitors, which do notonly pertain AChE 
inhibition, there is no evidence of any major differences 
between them in respect to efficacy against AD. However, 
there appears to be less adverse effects associated with 
donepezil [134]. Newly developed derivatives of currently 
used AChE inhibitors have been reviewed recently [135]. 

 Another disease in which AChE inhibitors are prescribed 
is myasthenia gravis. Myasthenia gravis is a rare disease 
affecting 20 out of 100 000 people [119b, 136]. Since the 
target is the motoric synapse at the neuromuscular junction, 
the AChE inhibitors of choice, in contrary to those used in 
the treatment of AD, are charged molecules. The anticipated 
clinical effect is simply an enhancement of cholinergic 
transmission, which is defected by an antibody-dependent 
attack on the postsynaptic membrane in the neuromuscular 
junction [137]. Antibodies may either affect the muscular 
nicotinic receptor (seropositive myasthenia gravis) or other 
components in the neuromuscular junction (seronegative 
myasthenia gravis) [138]. It has been shown that many 
seronegative patients have antibodies that bind to the 
muscle-specific tyrosine kinase that anchors and clusters the 
nicotinic receptor at the postsynaptic membrane [139]. 

 Similarly to the treatment of AD, tAChE inhibitors 
employed in the treatment of myasthenia gravis only have 
symptomatic effects, by increasing acetylcholine and thereby 
facilitating neuromuscular transmission. The carbamates 
neostigmine, pyridostigmine and the extremely effective 
ambenonium are commonly used drugs [140]. Furthermore, 
edrophonium is a rapidly acting and reversible AChE 
inhibitor used to differentiate between myasthenia gravis, 
Lambert-Eaton myasthenic syndrome and cholinergic crisis 
(the so called Tensilon test). Edrophonium, which also 
possesses a direct nicotinic effect, improves the muscular 
weakness in patients with myasthenia gravis, whereas it has 
no effect or worsens weakness in the other conditions. 

 AChE inhibitors are usually employed in the early stage 
of myasthenia gravis, when an adequate number of nicotinic 
receptors still exists [141]. Even though no randomised 
controlled trial has been conducted on the use of the 
inhibitors, pyridostigmine seems to be better tolerated and 
more widely used than neostigmine [142]. Although 
possessing one quarter of the potency of neostigmine, 
pyridostigmine is the drug of choice also due to its long 
duration of action (6 h) and fewer gastrointestinal side 
effects [143]. Besides, physostigmine is sometimes used in 
the treatment of primary and secondary glaucoma. It 
facilitates the drainage of aqueous humour, thus lowering 
intraocular pressure. Neostigmine is used mainly for 
reversing neuromuscular blockade, but may be used in other 
conditions as well such as in colonic pseudo-obstructive 
conditions [144]. Ambenonium is an interesting compound 
with the highest affinity to the AChE, despite the fact that it 
forms only non-covalent bounds [145]. Ambenonium, due to 
its efficacy, became a parent structure for the derivatives 
capable to cross the blood brain barrier and which are useful 
pharmaceuticals in the treatment of AD [146]. Sometimes, 
the long lasting distigmine, which additionally and directly 
interacts with muscarinic and nicotinic receptors, may also 
be used; e.g. for the treatment of detrusor under-activity 
[147]. Quaternary derivatives used in the treatment of 
myasthenia gravis was reviewed by Komloova et al. [148]. 

CONCLUDING REMARKS 

 Most pharmaceuticals targeting muscarinic receptors are 
employed at such large doses that no selectivity can be 
expected. However, some differences in the adverse effect 
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profile of muscarinic antagonists may still be explained by 
the variation of expression of muscarinic receptor subtypes 
in different organs; e.g., an antagonist with a muscarinic M3 
receptor selective profile affects urinary bladder contraction 
more than salivation which is exerted by activation of both 
M1 and M3 receptors. However, a complex pattern of 
interactions between muscarinic receptor subtypes occurs, as 
indicated in Fig. 1, that needs to be considered when 
searching for selective pharmaceuticals. In the development 
of new entities for the treatment of for instance pesticide 
intoxication, the muscarinic receptor selectivity needs to be 
considered. Reactivators generally have a muscarinic M2 
receptor acting profile. Such a blockade may engrave the 
situation since it may enlarge the effect of the muscarinic M3 
receptor effect. This may explain why respiratory arrest is 
the major cause for deaths by esterase blocking. Thus, in 
future drug development, muscarinic receptor subtype 
effects and interactions ought to be considered to a greater 
degree. 
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