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Post-transplantation diabetes mellitus (PTDM) is a common metabolic complication after
solid organ transplantation, which not only results in elevated microvascular morbidity, but
also seriously impacts graft function and recipient survival. However, its underlying
mechanism is not yet fully understood. In this study, an integrated liquid
chromatography- mass spectrometry (LC-MS) and gas chromatography-mass
spectrometry (GC-MS) based-metabolomics approach was adopted to dissect the
metabolic fluctuations and deduce potential mechanism associated with PTDM. 68 adult
liver transplant recipients were recruited and classified as 32 PTDM and 36 non-PTDM
subjects. PTDM group and non-PTDM group were well matched in gender, age, BMI, family
history of diabetes, alcohol drinking history, ICU length of stay and hepatitis B infection.
Peripheral blood samples from these recipients were collected and prepared for instrument
analysis. Data acquired from LC-MS and GC-MS demonstrated significant metabolome
alterations between PTDM and non-PTDM subjects. A total of 30 differential metabolites
(15 from LC-MS, 15 from GC-MS) were screened out. PTDM patients, compared with non-
PTDM subjects, were characterized with increased levels of L-leucine, L-phenylalanine,
LysoPE (16:0), LysoPE (18:0), LysoPC (18:0), taurocholic acid, glycocholic acid,
taurochenodeoxycholic acid, tauroursodeoxycholic acid, glycochenodeoxycholic acid,
glycoursodeoxycholic acid, etc, and with decreased levels of LysoPC (16:1), LysoPC
(18:2), LysoPE (22:6), LysoPC (20:4), etc. Taken collectively, this study demonstrated
altered metabolites in patients with PTDM, which would provide support for enhancing
mechanism exploration, prediction and treatment of PTDM.
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1 INTRODUCTION

Solid organ transplantation (SOT), with more than 110,000
transplantations performed worldwide annually (1), is the
treatment of choice for patients with end-stage organ failure.
The short-term outcome of SOT improved remarkably due to
advances in organ preservation (2), surgical techniques (3),
immunosuppression regimens (4) and so on. However,
metabolic complications, such as diabetes mellitus,
hypertension and dyslipidemia, severely impact the long-term
survival (5, 6).

Diabetes mellitus after SOT, defined as post-transplantation
diabetes mellitus (PTDM), is considered to be a variant of type 2
diabetes mellitus (T2DM). PTDM is formally diagnosed at least
45 days post-transplantation and has a sudden onset within the
first year post-transplantation (7). The reported prevalence of
PTDM varies from 30% to 40% in liver recipients, 10% to 40% in
renal recipients and 20% to 40% in other SOT recipients (8).
PTDM is one of the major risk factors for diabetes-associated
microvascular complications and infections, contributing to 1.63
times higher risk of graft failure and 1.87 times higher risk of
mortality in SOT recipients (9).

Despite the prevalence and unfavorable outcomes associated
with PTDM, the mechanism underlying PTDM is not entirely
known. Over the past few decades, scientists devoted to evaluate
factors affecting PTDM occurrence, such as age, gender, hepatitis
infection, family history of type II diabetes mellitus, body mass
index and immunosuppressive agents (10–12). Since PTDM is a
serious frequent metabolic complication characterized by hepatic
glucose overproduction, insulin hyposecretion and resistance, it
is reasonably assumed that many metabolites and pathways are
quite likely to be interrupted and play a critical role in the whole-
body metabolic dysfunction. Thus, the comprehensive
measurement and characterization of altered metabolites could
give insights into the metabolic mechanism of PTDM.

Metabolomics is an invaluable tool for reflecting a series of
biological processes underlying metabolic homeostasis and their
complex association with peculiar disease, lifestyle, or genetic
modifications, etc (13). Compared to targeted metabolomics
focusing on well-defined metabolites, untargeted metabolomics
aims at the qualitative or quantitative monitoring of all low-
molecular-weight metabolites in a biological fluid and has been
widely used to discover specific metabolic patterns of diseases
(14). A range of analytical platforms including gas
chromatography-mass spectrometry (GC-MS) (15), liquid
chromatography-MS (LC-MS) (16), nuclear magnetic
resonance (NMR) spectroscopy (17) and direct infusion MS
(18) have been widely applied in metabolomics area. Among
these, GC-MS and LC-MS are the two most powerful and
commonly used analytical techniques owing to their high
resolution of the chromatographic system, high sensitivity of
MS detector and wide detection magnitude during the
qualification and quantification of metabolites. Moreover, since
no single analytical platform can cover the entire metabolome in
a biological sample, the integration of GC-MS and LC-MS would
serve as an appropriate strategy to capture a broader spectrum of
metabolites (19, 20).
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In this study, we aimed to primarily screen out the
differentially expressed metabolites in PTDM and explore its
potential pathophysiological mechanism by analyzing the
metabolomic characteristics of PTDM recipients with the aid
of the integrated liquid chromatography- mass spectrometry
(LC-MS) and gas chromatography-mass spectrometry (GC-
MS) based-metabolomics. For the first time to our knowledge,
the metabolic profiles involved in PTDM were explored, which
would provide novel insights into the underlying mechanisms of
PTDM from the perspective of metabolomics.
2 MATERIALS AND METHODS

2.1 Patients and Sample Collection
Adult (age ≥ 18 years) liver transplant recipients who had
undergone primary liver transplantation between July 2019
and June 2020 at the Affiliated Drum Tower Hospital of
Nanjing University Medical School, China were enrolled in
this study. Patients were excluded if they were followed up less
than one year after transplantation, underwent ABO
incompatible transplantation, received a multi-organ
transplantation, had diabetes mellitus prior to transplantation
or developed acute rejection. The receipts received a standard
triple-drug immunosuppression regimen including tacrolimus,
mycophenolate mofetil and corticosteroids.

The experimental protocol was reviewed and approved by the
Ethics Committee of the Affiliated Drum Tower Hospital of
Nanjing University Medical School (No. 2020-053-01). Signed
informed consent was exempted due to the deidentified data
provided to researchers and residual biosamples used.

According to the International Consensus Meeting on PTDM
(7), PTDM is diagnosed at least 45 days post-transplantation
using the American Diabetes Association (ADA) criteria for type
2 diabetes mellitus: with symptoms of diabetes plus random
plasma glucose ≥ 200 mg/dL (11.1 mmol/L) or fasting plasma
glucose ≥126 mg/dL (7.0 mmol/L) or 2-h plasma glucose after an
oral glucose ≥200 mg/dL (11.1 mmol/L) during an OGTT or
glycated hemoglobin (HbA1c) ≥6.5%. In this study, 32 and 36
recipients were assigned into the PTDM group and the non-
PTDM group, respectively. Peripheral blood samples from these
recipients were collected after overnight fasting at time of PTDM
diagnosis and centrifugated at 1760 g for 10 min to prepare
plasma. All the plasma samples were then divided into aliquots
and stored at -80°C until analysis.

2.2 LC-MS Based-Metabolomics
2.2.1 Sample Preparation for LC-MS Based-
Metabolomics
Plasma was thawed in a refrigerator at 4°C and thoroughly
vortexed with seven times pure ice-cold acetonitrile for 5 min.
The mixture was then centrifuged two times at 18407 g for
10 min at 4°C prior to injection into LC-MS system.

2.2.2 LC-MS Spectral Acquisition
Chromatographic separation was achieved on Shimadzu
Prominence series ultra-fast liquid chromatography (UFLC)
January 2022 | Volume 12 | Article 807318
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system equipped with Phenomenex Kinetex C18 column
(100×2.1 mm, 2.6mm; Phenomenex, Torrance, CA, USA) and a
guard column, SecurityGuard ULTRA cartridge UHPLC C18 for
2.1 mm ID column (Phenomenex, Torrance, CA, USA). The
column and autosampler were set at 40°C and 4°C, respectively.
The gradient elution involved a mobile phase consisting of
acetonitrile (mobile phase A) and 0.1% formic acid (mobile
phase B) with a gradient program as follows: 5%-95% A, 0-20
min and 95%A, 20-23 min. The mobile phase was directly
delivered into mass spectrometer at 0.4 mL/min, and the
injection volume was 5 mL.

Mass spectrometry was performed on an ion trap/time-of-
flight hybrid mass spectrometry with an electrospray ionization
(ESI) source (IT/TOF-MS, Shimadzu, Japan). The mass
spectrometer was operated simultaneously in positive and
negative electrospray ionization modes by switching the
interface voltage between 4.5 kV and -3.5 kV. The other
parameters were set as follows: curved desorption line (CDL)
temperature, 200°C; heat block temperature, 200°C;
microchannel plate detector voltage, 1.65 kV; nebulizer gas
(N2), 1.5 L/min; drying gas (N2), 10.0 L/min; collision energy,
10%, 30% and 60%. MS/MS analyses were conducted in data
dependent acquisition, in which precursor ions are serially
fragmented to generate their corresponding product-ion
spectra. Product-ion spectra were acquired automatically in
advance for a large number of ions. Furthermore, if the MS/
MS information of the selected discriminating variables was
missing, the product ion spectrum for these variables were
acquired independently in manual mode. External calibration
using the sodium trifluoroacetate was adopted to regulate the MS
and MS/MS data.

2.3 GC-MS Based-Metabolomics
2.3.1 Sample Preparation for GC-MS Based-
Metabolomics
The plasma was prepared with a two-step derivatization
procedure, that is, alkylation and silylation, according to
previous reports with a few modifications (21, 22). Briefly
speaking, a 10 µL aliquot of plasma was thoroughly vortexed
with ten times methanol followed by centrifuged at 18047g
at 4°C for 10 min in two cycles. Then 80 mL supernatant was
transferred to a brown glass vial and oximated with 25 mL
methoxyamine hydrochloride (10 mg/mL in pyridine) at 4°C
for 90 min. Finally, the mixture was vacuum-dried and silylated
with 120 mL N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) at 27°C for 120 min to separate for GC-MS analysis.

2.3.2 GC-MS Spectral Acquisition
GC-MS analysis was performed using GC/MS-QP2010 Ultra
(Shimadzu Inc., Kyoto, Japan) equipped with an electron impact
source operating in positive mode with the energy of 70 eV.
Separation was achieved on a fused silica capillary column (Rtx-
5MS; 30.0 m× 0.25 mm, 0.25 µm, Restek, USA) with a
programmed temperature vaporization. The initial oven
temperature was held at 70°C for 3 min, ramped to 320°C at a
rate of 10°C/min, and finally held at 320°C for 2 min. The
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injection was performed in split mode (1: 50). Helium
(>99.999%) was used as the carrier gas at a constant flow rate
of 1.0 mL/min. For mass detection, full scan with a mass range of
m/z 45-600 was adopted, and the ion source temperature was set
at 200°C.

2.4 Quality Assurance Procedure
To assure the robustness of analytical system and an acceptable
level of data quality for non-targeted metabolomics, pooled QC
samples, prepared by mixing equal volumes of each analyzed
sample (23), were injected at the beginning of the batch to
condition the analytical platform and then almost every six
samples to monitor the system. The metabolic features that are
detected in < 80% of QC samples (80% rule) and those with a
relative standard deviation (RSD), as calculated for the QC
samples, of > 30% (RSD 30% rule) were removed (20). The
quality assurance procedure was performed to remove metabolic
features with poor repeatability.

2.5 Statistical Analysis and Pathway
Enrichment
The obtained LC-MS and GC-MS raw data files were processed
using Profiling Solution version 1.1 (Shimadzu, Japan) for peak
detection, matching, and alignment. After filtered by “80% rule”
and “RSD 30% rule”, missing values replacement and total ion
intensity normalization, the resulting data was imported to
SIMCA software 13.0 package (version 13.0; Umetrics, Umeå,
Sweden) for multivariate statistical analysis including principal
component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA). Ions with variable importance
in the projection (VIP) exceeding 1.0 in the OPLS-DA model
and P-value adjusted by Benjamini-Hochberg method (pFDR)
below 0.05 (24) were retained for further identification.
Spearman correlation analysis was then applied to explore the
correlations between differential metabolites and clinical indices
of recipient.

The differential ions generated from LC-MS were tentatively
identified based on the public online databases, such as the
Human Metabolome Database (http://www.hmdb.ca) and the
Metlin database (http://metlin.scripps.edu) and confidently
annotated by matching retention time and mass characteristics
with those of in-house standards (25); meanwhile, those from
GC-MS were characterized by comparing the standard mass
fragments in National Institute of Standards and Technology
Research Library based on >70% similarity index (26) and
confirmed with the characteristics of the authentic standards
available in our lab.

To visualize and interpret the metabolic pathways related to
PTDM, the differential metabolites were imported into
MetaboAnalyst 5.0, which is a free web-based tool that uses
the high-quality KEGG metabolic pathway database as the
backend knowledge-base. Meanwhile, Cytoscape (http://www.
cytoscape.org), a highly popular Java-based open source software
tool, was adopted to visualize and analyze metabolite, gene and
protein interaction networks. The list of differential metabolites
(compound names or KEGG IDs) were first loaded in the
January 2022 | Volume 12 | Article 807318
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Metscape, a plugin for Cytoscape, to construct the compound-
reaction-enzyme-gene network. Then, the network centrality
parameters, such as degree, betweenness, and centroid value,
were computed by CentiScaPe, another plugin for Cytoscape, to
extract the core subnetwork.
3 RESULTS

3.1 Patient Characteristics
A total of 68 recipients, including 32 PTDM subjects and 36 non-
PTDM subjects were recruited. The baseline demographic
characteristics and clinical data of the two groups were
presented in Table 1. PTDM group and non-PTDM group
were well matched with no significant difference in gender,
age, BMI, family history of diabetes, alcohol drinking history,
ICU length of stay and hepatitis B infection.

3.2 Metabolomic Analysis
Typical total ion chromatograms (TICs) of PTDM and non-
PTDM recipients were presented in Supplementary Figure 1.
However, there was no visual difference in metabolic profiles
between PTDM group and non-PTDM group. Therefore, PCA,
an unsupervised method of multivariate analysis, was first
performed to get an overview of the difference on the
metabolic profiles. Outliers were checked using the Hotelling
T2 range, adopting 95% and 99% confidence limits for suspect
and strong outliers, respectively. Two patients from the PTDM
group appeared out of Hotelling’s ellipse at the 99% confidence.
These two outliers shared the common feature that their liver
function parameters, i.e. aspartate aminotransferase and alanine
aminotransferase, were abnormal, and one of them died at the
third year post-operation. Since then, the two outliers were
removed, multivariate analysis was re-performed. As shown in
Supplementary Figure 2, except two samples which lay between
95% and 99% Hotelling T2 ellipse, all of the remaining samples
lay inside the 95% Hotelling T2 ellipse. Tight clustering of QC
samples was observed in PCA score plots (Figures 1A, D, G),
giving some confidence that the analytical process was running
robustly providing reproducible metabolic profiles.

As depicted in PCA score plots (Figures 1A, D, G), there was
a visual separation between PTDM and non-PTDM groups,
indicating metabolic disorders in PTDM. Furthermore,
supervised OPLS-DA was introduced to maximize the
Frontiers in Endocrinology | www.frontiersin.org
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separation and dig out differential metabolites. All the three
models produced a goodness of prediction with Q2 > 0.5 and the
differences between R2Y and Q2 <0.3 (27) (Figures 1B, E, H).
Furthermore, permutation test (200 times) and CV-ANOVA
were performed to validate the generated models (28). For the
permuted R2 and Q2, all the values were lower than their
corresponding original ones, the intercepted value of Q2 in the
vertical axis was below 0 and p-values of CV-ANOVA for all
models were below 0.05 (Figures 1C, F, I), demonstrating high
goodness of fit for the generated OPLS-DA models.

Moreover, the combination of VIP>1 and pFDR<0.05 was
applied to screen out the differential metabolites between PTDM
and non-PTDM. As a result, a total of 37 differential metabolites
(21 from LC-MS, 16 from GC-MS) were identified. Furthermore,
Spearman correlation analysis was adopted to explore the
correlations between these differential metabolites and fasting
plasma glucose. Based on the correlation coefficients, L-valine,
LysoPE (20:4), LysoPE (18:2), LysoPC (20:2), LysoPC (18:1),
LysoPC (16:0) and LysoPC (14:0) were removed because of the
weak correlation (-0.3 < Spearman correlation coefficients < 0.3)
(Supplementary Figure 3). Finally, a total of 30 differential
metabolites (15 from LC-MS, 15 from GC-MS) were retained
for further analysis. The detailed information including
compound name, molecular formula, retention time and fold
change value were shown in Table 2 (GC-MS data) and Table 3
(LC-MS data). These 30 differential metabolites annotated six
main c lasses , inc luding e ight amino ac ids , seven
glycerophospholipids, six bile acids (BAs), three carbohydrates,
three long-chain fatty acids and others (Figure 2A).
Furthermore, the contents variations of differential metabolites
were depicted as a heatmap (rows correspond to metabolites,
columns to samples, red and green denote increased and
decreased signals in PTDM group compared with non-PTDM
group) in Figure 2B.

3.3 Altered Pathways Related to PTDM
To explore potential metabolic pathways involved in PTDM, the
differential metabolites were imported into MetaboAnalyst for
functional enrichment analysis and network topology analysis.
Results (Figure 2C) indicated that aminoacyl-tRNA
biosynthesis, valine, leucine and isoleucine biosynthesis,
primary bile acid biosynthesis, taurine and hypotaurine
metabolism, glycine, serine and threonine metabolism, arginine
biosynthesis with p-value less than 0.05 were the critical
disturbed pathways involved in progression of PTDM (29, 30).
To clearly elucidate the possible underlying mechanism of
PTDM, a hypothetical metabolic network was reconstructed by
using these differential metabolites, with the direction of the
content change labeled (Figure 3A).

Moreover, the MetScape plugin for Cytoscape was used to
construct the compound-reaction-enzyme-gene network based on
the 30 differential metabolites (31). Among them, LysoPCs, and
LysoPEs were regarded as category IDs. Additionally, for some
metabolites, such as tauroursodeoxycholic acid (TUDCA),
glycoursodeoxycholic acid (GUDCA) and glycochenodeoxycholic
acid (GCDCA) were not retrieved in the MetScape plugin or
KEGG database. Hence, there were 542 nodes containing 154
TABLE 1 | Clinical characteristics of the recruited PTDM and non-PTDM
recipients.

Parameters Non-PTDM PTDM P-value

Total N 36 32
Sex (male/female) 28/8 22/10 0.290
Age (years) 49.92 ± 10.61 49.06 ± 9.48 0.806
BMI (kg/m2) 22.83 ± 3.91 23.53 ± 3.31 0.323
family history of diabetes, n (%) 3 2 0.738
alcohol drinking history, n (%) 4 3 0.809
ICU length of stay (day) 3.19± 3.09 3.13 ± 1.98 0.366
hepatitis B infection, n (%) 25 27 0.826
January 2022 | Volume 12 | Article 807318
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compounds, 112 reactions, 87 enzymes and 189 genes in the
network (Supplementary Figure 4). Then, the node centrality
indexes, namely degree, betweenness, and centroid value, were
calculated to extract the core subnetwork displaying a critical role
Frontiers in Endocrinology | www.frontiersin.org 5
in the process of PTDM (32). As shown in Figure 3B, nine
metabolites, namely linoleic acid, L-leucine, L-glutamine, L-
phenylalanine, L-cysteine, cholesterol, L-serine, L-lysine, and
LysoPC, were selected as hub metabolites. Meanwhile, eight
A B

D E F

G IH

C

FIGURE 1 | Multivariate modelling of LC-MS and GC-MS data after log transformation and pareto scaling. (A) PCA score plot of LC-MS (+) data: R2X=0.527, Q2 =
0.322; (B) OPLS-DA score plot of LC-MS (+) data: R2X=0.131, R2Y=0.782, Q2 = 0.502, CV-ANOVA p value = 1.0e-10; (C) the 200-permutation test of LC-MS (+)
data; (D) PCA score plot of LC-MS (-) data: R2X=0.613, Q2 = 0.255; (E) OPLS-DA score plot of LC-MS (-) data: R2X=0.165, R2Y=0.816, Q2 = 0.535, CV-ANOVA p
value =2.4 e-9; (F) the 200-permutation test of LC-MS (-) data; (G) PCA score plot of GC-MS data: R2X=0.681, Q2 = 0.458; (H) OPLS-DA score plot of GC-MS
data: R2X=0.301, R2Y=0.899, Q2 = 0.701, CV-ANOVA p value =8.0e-14; (I) the 200-permutation test of LC-MS (+) data:. Blue circles: non-PTDM; red squares:
PTDM; black triangles: QC.
TABLE 2 | Differential metabolites identified by GC-MS.

Compound Datebase ID Formula VIP pFDR Ion RT Similarity Fold change

Urea HMDB00294 CH4N2O 1.34 <0.001 9.29 93 0.89
L-Leucine* HMDB00294 CH4N2O 1.14 0.001 9.73 74 1.15
L-Serine* HMDB00187 C3H7NO3 1.51 <0.001 11.03 91 1.20
L-Threonine HMDB00167 C4H9NO3 1.44 <0.001 11.39 76 0.62
L-Proline* HMDB00162 C5H9NO2 1.33 <0.001 13.28 93 0.84
L-Cysteine* HMDB00574 C3H7NO2S 1.15 <0.001 13.71 74 0.69
L-Lysine HMDB00182 C6H14N2O2 1.35 <0.001 15.59 91 0.86
L-Glutamine HMDB00641 C5H10N2O3 1.55 <0.001 16.35 84 0.76
Deoxyribose HMDB03224 C5H10O4 1.16 0.002 17.18 81 1.58
D-Glucose HMDB00122 C6H12O6 1.21 0.001 17.92 90 1.16
D-Glucuronic acid HMDB00127 C6H10O7 1.44 <0.001 18.97 83 1.33
Palmitic acid HMDB00220 C16H32O2 1.17 0.006 19.31 92 0.87
Uric acid HMDB00289 C5H4N4O3 1.05 0.010 19.78 87 0.88
Linoleic acid HMDB00673 C18H32O2 1.21 0.001 22.36 77 0.86
Cholesterol HMDB00067 C27H46O 1.35 <0.001 28.64 92 0.89
January
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A

B

C

FIGURE 2 | Analysis of the differentially expressed metabolites. (A) classification of the 30 identified differentially expressed metabolites; (B) Heat map of the
differentially expressed metabolites in each group. Rows, samples; columns, metabolites. The red band indicates an increased level of metabolites, while the green
band indicates a decreased level of metabolites in PTDM group compared with non-PTDM group; (C) Summary of the altered metabolism pathways determined with
MetaboAnalyst v. 5.0.
TABLE 3 | Differential metabolites identified by LC-MS.

Rt (min) Molecular Formula m/z ion forms MS/MS fragment VIP pFDR Fold change Identification

1.17 C9H11NO2 166.0877 [M+H]+ 120.0864 1.21 0.031 1.19 L-Phenylalanine
15.12 C14H28O2 227.2014 [M-H]- 109.1859, 145.8610 1.45 <0.001 0.59 Myristic acid
13.40 C21H44NO7P 454.2942 [M+H]+ 313.2706, 436.2881 2.12 <0.001 1.44 LysoPE (16:0)

[M-H]- 196.0368, 255.2354
14.94 C23H48NO7P 482.3258 [M+H]+ 341.3087, 421.2729, 464.3151 1.86 <0.001 1.26 LysoPE (18:0)

480.3075 [M-H]- 283.2683
12.58 C24H48NO7P 494.3252 [M+H]+ 184.0746, 476.3165 1.94 <0.001 0.67 LysoPC (16:1)

538.3254 [M+HCOO]- 253.2237, 478.2988
13.11 C26H50NO7P 520.3414 [M+H]+ 184.0755, 443.2782, 502.3330 2.23 <0.001 0.62 LysoPC (18:2)

564.3337 [M+HCOO]- 279.2348, 504.3167
15.35 C26H5N4O7P 524.3722 [M+H]+ 184.0750, 311.2981, 447.2860, 506.3643 1.86 0.001 1.22 LysoPC (18:0)

568.3622 [M+HCOO]- 100.5837, 283.2678, 508.3450
12.95 C27H44NO7P 526.2948 [M+H]+ 385.2803, 508.2844 1.89 <0.001 0.74 LysoPE (22:6)

524.2744 [M-H]- 196.0423, 283.2474, 327.2220
13.13 C28H50NO7P 544.3401 [M+H]+ 184.0779, 485.2655, 526.3357 2.55 <0.001 0.81 LysoPC (20:4)

588.3329 [M+HCOO]- 126.9552, 303.2333, 528.3122
10.54 C26H43NO5 448.3051 [M+H]+ 414.3102, 432.3129 1.89 0.001 1.54 Glycochenodeoxycholic Acid

450.3414 [M-H]- 386.3051
9.10 C26H43NO6 464.2998 [M-H]- 295.2011, 364.2687, 402.3076, 446.2918 1.56 0.001 3.67 Glycocholic Acid*
9.28 C26H45NO6S 498.2868 [M-H]- 355.2611, 480.2768 1.82 0.003 5.63 Taurochenodeoxycholic Acid*
8.14 C26H45NO6S 498.2869 [M-H]- 290.2154, 355.2671, 384.3029, 480.2768 2.12 <0.001 4.30 Tauroursodeoxycholic Acid
8.19 C26H45NO7S 514.2822 [M-H]- 515.2866 1.12 0.028 5.14 Taurocholic Acid*
9.24 C26H43NO5 448.3051 [M-H]- 386.3108, 449.3126 2.54 <0.001 2.72 Glycoursodeoxycholic Acid
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enzymes, such as aspartate transaminase, phospholipase A2 and
tryptase, were involved in this subnetwork.
4 DISCUSSION

As a frequent metabolic complication, PTDM seriously affects
the life quality and long-term survival of recipients. However,
data on the mechanism of PTDM are scarce. Beyond this, the
treatment is based on expert experience rather than research-
based evidence at the current stage. Metabolomics,
encompassing the comprehensive and systematic profiling of
multiple metabolites, is a promising approach to provide an
understanding of physiological and pathological status of the
living organism. Nevertheless, reports on the adoption of
metabolomics to describe the metabolic profiles and pathways
involved in PTDM have not been published. In this study, for the
first time to our knowledge, the metabolic profiles and pathways
involved in PTDM were explored by the integrated LC-MS and
Frontiers in Endocrinology | www.frontiersin.org 7
GC-MS based-metabolomics, which aimed to provide novel
insights into the underlying pathophysiological mechanisms of
PTDM. All individuals enrolled in our study were free of diabetes
pre-transplantation and matched on gender, age, BMI, family
history of diabetes, alcohol drinking history, ICU stay length and
hepatitis to minimize confounding factors.

The integrated untargeted metabolomics revealed that 30
significantly changed metabolites, among which 15 decreased
and 15 increased, possibly contributed to the development of
PTDM. Based on their chemical structure, these significantly
changed metabolites mainly belongs to the classes of amino
acids, bile acids, glycerophospholipids and others.

Our findings highlighted several amino acids, particularly the
branched-chain amino acids (BCAAs) and aromatic amino acids
(AAAs), were noteworthy and might be served as biomarkers of
PTDM. BCAAs (leucine, isoleucine and valine) and AAAs
(tyrosine, phenylalanine and tryptophan) have been proven to
be potential contributors to the development of insulin resistance
and diabetes in both humans (33) and rodent models (34).
A

B

FIGURE 3 | Analysis of potential biomarkers and related pathways. (A) Schematic overview of metabolic pathways based on the differentially expressed metabolites.
The metabolites indicated with red or green arrows represent increased or decreased levels, respectively, in PTDM group. (B) The compound-reaction-enzyme-gene
subnetwork. Red hexagons represent the identified differentially expressed metabolites. Green squares represent enzymes which might regulate the identified
metabolites. Grey diamonds represent reactions catalyzed by those enzymes.
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A nested case-control study in the Framingham Offspring Study
comprising 2422 normoglycemic individuals followed for 12
years indicated that plasma levels of three BCAAs (isoleucine,
leucine, valine) and two AAAs (tyrosine and phenylalanine)
exhibited highly significant associations with the future
development of T2DM (35). Furthermore, a meta-analysis
focusing on dietary BCAAs intake and T2DM showed that oral
BCAAs supplementation is positively associated with T2DM risk
(36). The same result was found in double AAAs intake to mice
(37). Our results also suggested L-phenylalanine and L-leucine
increased in participants with PTDM. Since BCAAs and AAAs
(expect tyrosine) are essential amino acid which must be
obtained from the diet, their elevated circulating levels might
be the result of excess intake and/or disruption of their catabolic
process. However, epidemiological results are controversial, with
some indicating that a diet high in BCAAs were positively
associated with circulating levels (38), while others not (35).
Since then, we inferred that the elevated circulating levels of
BCAAs might arise from the hindrances to their downstream
catabolism. Unlike most amino acids, whose catabolism take
place in the liver, BCAAs are initially catabolized by branched-
chain-amino-acid aminotransferase (BCAT) in extrahepatic
tissues (such as skeletal muscle) to form branched chain a-
keto acids (BCKAs) and then by branched chain a-keto acid
dehydrogenase (BCKD), the rate-limiting enzyme in BCAA
catabolism. Zhou M et al. (39) revealed that the enhancement
of BCKD activity by administration of BT2 to BCKD deficiency
obese (ob/ob) mice reduced the abundance of BCAAs and
BCKAs, resulting in markedly attenuated insulin resistance.
The BCAA catabolism was suggested as a potential therapeutic
target for insulin resistance and T2DM. In addition, recent work
revealed that elevated circulating BCAAs levels correlated with
intestinal microbiota dysbiosis of the host. Prevotella copri and
Bacteroides vulgatus were proven to be the main species
associated with the biosynthesis of BCAAs and insulin
resistance (40). Gavage with Prevotella copri would induce
insulin resistance, aggravate glucose intolerance and augment
circulating levels of BCAAs (38), while Gavage with Bacteroides
vulgatus exerted the opposite effect (41). Similar to previous
studies, the levels of L-leucine and L-phenylalanine were
significantly higher in PTDM recipients than in non-PTDM
ones, which might be due to BCAAs catabolism hindrance and/
or host intestinal microbiota dysbiosis.

Significant variations in specific BAs species were found in
our study. Simply put, the levels of taurocholic acid (TCA),
TUDCA, taurochenodeoxycholic acid (TCDCA), glycocholic
acid (GCA), GUDCA and GCDCA were significantly higher in
PTDM receipts than in non-PTDM ones. As the most frequent
etiology of liver transplantation (76.5%) in our study, hepatitis B
virus has been proven to alter the expression of CYP7A1, a key
enzyme involved in bile acid synthesis (42). Thus, the
disturbance in BA profiles has been repeated observed in
hepatitis B virus-infected patients for decades (43, 44). To
minimize the influence from this confounding factor, case and
control subjects were well-matched in hepatitis B virus infection.
What’s more, in terms of aspartate aminotransferase, alanine
aminotransferase, hepatic function of liver transplant recipients
Frontiers in Endocrinology | www.frontiersin.org 8
normally recovered within a few days, which was consistent with
previous research (45). Two participants with hepatic
disfunction were excluded from data analysis. Over the last few
decades, BAs have attracted considerable attention in the field of
diabetes, obesity, nonalcoholic fatty liver disease and so on. BAs
are synthesized in hepatocytes and then undergo enterohepatic
circulation with six to eight times per day in humans. Thus, BAs
are detected at relatively lower levels in plasma compared with
them in the liver, bile and intestine. In human, most bile acids are
conjugated to glycine (G) and taurine (T) at a ratio of about 3:1.
To date, it is still uncertain whether and what circulating BAs
alter in patients with T2DM. For instance, a cross-sectional study
including 224 T2DM patients and 102 nondiabetic individuals
indicated that patients with T2DM possessed increased plasma
levels of TCDCA, GCDCA, deoxycholic acid (DCA),
taurodeoxycholic acid (TDCA) and glycodeoxycholic acid
(GDCA), and decreased levels of CA and TCA (46). Another
case-control study of age- and gender-matched T2DM versus
control demonstrated elevated levels of TCA, TDCA, GDCA and
DCA in T2DM subjects (47). Furthermore, a nested case-control
study of 1,707 matched T2DM-control subject pairs within the
China Cardiometabolic Disease and Cancer Cohort Study
showed that conjugated primary BAs (GCA, TCA, GCDCA
and TCDCA) and secondary BA (TUDCA) were positively
related with T2DM risk, while unconjugated BAs (CA, CDCA
and DCA) were inversely associated with T2DM risk (48).
Accordingly, the currently human studies provided conflicting
results, with some reporting certain BAs species increased in
T2DM and others reporting those decreased in T2DM. Beyond
this problem, considering the relatively small number of
participants, the variation of BAs in PTDM recipients need to
be verified in a large cohort.

What’s more, we found a series of LysoPCs and LysoPEs
expressed differentially in PTDM recipients. The concentration
of lysoPCs in plasma, up to 100mM in healthy subjects (49), is
much higher than that of lysoPEs. In plasma, LysoPCs,
representing 5%-20% of total phospholipids, are mainly
formed by lecithin-cholesterol acyltransferase (LCAT) in the
process of transferring fatty acyl residues in sn-2 position of
phosphatidylcholine to free cholesterol for the formation of
cholesteryl esters, or by endothelial lipase, or by direct hepatic
secretion (50). The alterations of LysoPCs species linked to
T2DM have been widely studied. Significant lower levels of
LysoPC (18:2), LysoPC (18:1), LysoPC (18:0), and LysoPC
(17:0) were found in T2DM and impaired glucose tolerance
(IGT) cohort in the population-based Cooperative Health
Research in the Region of Augsburg (KORA) study. Among
them, LysoPC (18:2) served as a predictor for T2DM, which was
independently confirmed in the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam study
(51). A global lipidomics analysis of 293 Chinese individuals has
also shown that LysoPC (18:0), LysoPC (18:1), and LysoPC
(18:2) were all negatively correlated with HOMA-IR (52). Our
finding was in agreement with above findings that LysoPC (18:2)
exhibited significantly lower level in PTDM than non-PTDM
recipients. Several other studies have reported inconsistent
findings, i.e. diabetic men exhibited higher levels of centain
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LysoPCs, including LysoPC (14:0), LysoPC (16:1), LysoPC
(18:1), LysoPC (22:6), LysoPC (20:5) and LysoPC (18:3), but
not including LysoPC (18:2), LysoPC (16:0) and LysoPC (18:0)
(53). Our study exhibited inverse change trends of different
LysoPC species with increased expression in LysoPC (18:0)
and decreased expression in LysoPC (18:2), LysoPC (16:1) and
LysoPC (20:4), which might be due to the opposite effects of
saturated and unsaturated acyl LysoPC. Park JY et al. (54)
reported that lysoPC and lysoPE species containing unsaturated
fatty acids were associatedwith an increased risk of coronary artery
disease, whereas those containing saturated fatty acids were
associated with a decreased risk. Saturated LysoPCs, such as
LysoPC (16:0), are a potent inflammatory mediator, while
polyunsaturated acyl LysoPCs, including LysoPC (20:4) and
LysoPC (22:6), can serve as an anti-inflammatory lipid mediator
and inhibit the inflammation inducedby saturated LysoPCs (55). In
mousemodels,YeaK et al. (56) have reported that the bloodglucose
lowering effectofLysoPCswere found tobe sensitive tovariations in
lysoPC acyl chain length, which may elucidate the divisive findings
in our study. Therefore, lysoPCs play a complex role in T2DM,
especially special type of T2DM like PTDM, which needs further
work to clarify.

Our study recruited liver transplant recipients to address the
“real-world” problem in PTDM. The metabolomic results help to
give a new sight in the mechanism of PTDM. Since the analyzed
sample size was small, we speculate that PTDM might be
associated with the perturbation in amino acids, bile acids and
glycerophospholipids. This hypothesis provides possible research
direction in the field of PTDM. In addition, a major limitation of
plasma metabolomics is that all of the differential metabolites are
detected in plasma, their actual origins are unclear. Further studies
should investigate the highlighted pathways in relevant tissues
(such as muscle and liver) and their relations to PTDM for a
comprehensive understanding of its underlying mechanism.
5 CONCLUSION

In summary, the integrated LC-MS and GC-MS based-
metabolomics was adopted to dig out differentially changed
metabolites associated with PTDM. A total of 30 metabolites
(15 from LC-MS, 15 from GC-MS) significantly altered in PTDM
recipients were identified. Findings indicated that alterations in
plasma metabolites, particularly amino acids, BAs and LysoPCs
may contribute to the progression of PTDM. Our study offered
a novel insight into the pathological mechanism of PTDM.
Frontiers in Endocrinology | www.frontiersin.org 9
Further studies are needed to verify these findings and to
unravel the underlying mechanisms involved in PTDM.
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