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Abstract: This study investigated the adsorption capacity of one material based on the treatment of
fly ash with sodium hydroxide as a novel adsorbent for toxic Cu2+ ion removal from aqueous media.
The adsorbent was obtained through direct activation of fly ash with 2M NaOH at 90 ◦C and 6 h
of contact time. The adsorbent was characterized by recognized techniques for solid samples. The
influence of adsorption parameters such as adsorbent dose, copper initial concentration and contact
time was analyzed in order to establish the best adsorption conditions. The results revealed that the
Langmuir model fitted with the copper adsorption data. The maximum copper adsorption capacity
was 53.5 mg/g. The adsorption process followed the pseudo-second-order kinetic model. The results
indicated that the mechanism of adsorption was chemisorption. The results also showed the copper
ion removal efficiencies of the synthesized adsorbents. The proposed procedure is an innovative
and economical method, which can be used for toxicity reduction by capitalizing on abundant solid
waste and treatment wastewater.

Keywords: copper adsorption; fly ash; NaOH treatment; zeolite

1. Introduction

Copper ion is considered a toxic substance [1], whose health effects include stom-
achache, lung cancer and neurotoxicity. Copper and its compounds are widely used
in many industries, such as: metal finishing, electroplating, plastics and etching [2]. A
variety of traditional techniques for water treatment have been shown to be capable of
removing copper from wastewater, including chemical precipitation, membrane filtration
and ion exchange [3]. Adsorption can be explained as a separation process in which the
components of a fluid phase are transferred to the surface of a solid material [4,5]. The
adsorption process is the most used technique due to its efficiency and simplicity [6–8].
Several adsorbents have been tested in order to remove copper ion, such as activated car-
bon [8–10], clays [11], apatite [12], composite carbon-silica [13], magnetic materials [14–16],
silica gel [17], hydroxyapatite [18], zeolites [19] and fly ash [5,20]. Over time, fly ash has
been investigated by many researchers as an adsorbent for heavy metal removal [21,22].
The fly ash produced by coal combustion is a mixture of oxides with negative surface
charge. The chemical composition of fly ash produced from different types of coal has been
listed in the literature [22,23]. In accordance with ASTM C618, fly ash can be classified into
two classes, depending on the sum of SiO2, Al2O3 and Fe2O3 [24]. Generally, the amount
of alkalis (combined sodium and potassium) and sulphates are higher in Class C than in
Class F. Ash is one of the most complex materials that can be characterized. There are
approximately 316 individual minerals and 188 mineral groups that have been identified
in different ashes [25]. For most ashes, the major phases consist of mullite, quartz and
hematite [26].
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The mineralogical classification system divides ash into four types—pozzolanic (P),
inert (I), active (A) and mixed (M)—based on the distinct behavior between (1) the vitreous
phase, (2) quartz + mullite and (3) the sum of other mineral phases, such as Fe–Ca–Mg–K–
Na–Ti–Mn oxyhydroxides, sulphates, carbonates and silicates.

Fly ash, as an adsorbent, is associated with some problems, such as a small surface
area (which leads to low adsorption capacities) and low storage [20]. On the other hand,
the production of fly ash is an environmental problem; there are on-going efforts to find a
use for this waste [27].

Dinah et al. have shown that the ash can be treated with alkaline solutions [28].
Obtaining these types of materials represents one of the most important applications of fly
ash [29].

One intensive application of fly ash is as an adsorbent for heavy metal removal from
aqueous media [22]. In the actual scientific context, it is underlined that implementing a
cheap and highly efficient adsorbent to treat water contaminated with copper ions is an
interesting challenge. In their investigations, many researchers tried to make fly ash more
usable by its surface modification, subsequently trying to make useful products from the
industrial waste. Therefore, fly ash treated with NaOH has become a subject of interest in
heavy metal removal [20,30–34].

The authors have studied heavy metal removal onto fly ash and modified ash, and
through over 10 years of experience have demonstrated that at low concentrations of
activators, the performances of the obtained materials are limited [35]. This study demon-
strates that an excellent adsorption capacity can be obtained, and for cheaper conditions
if the other factors are appropriate. This research provides insights into the interaction
mechanisms of modified fly ash with copper ions, facilitating the application of this type of
material as an adsorbent. Unmodified fly ash shows a low adsorption capacity for Cu2+

ions, of approximately 14 mg/g [14]. Therefore, the main idea of the present study is to
investigate the removal of Cu2+ toxic pollutants using an adsorbent based on fly ash treated
with NaOH. The adsorbent is characterized using SEM (scanning electron microscopy),
EDX (energy dispersive X–ray), XRD (X–ray diffraction), FTIR (Fourier transform infrared
spectroscopy), and BET (Brunauer–Emmett–Teller surface area) analyses. Copper ion
adsorption is examined within the adsorbent dose, initial concentration and contact time
from an aqueous media. The equilibrium adsorption data are analyzed using two ad-
sorption isotherm models: Langmuir and Freundlich. Two kinetic models are applied:
pseudo-first-kinetic and pseudo-second-order.

The data obtained in this study demonstrate that the low-cost and easy synthesis
of this new material based on the treatment of raw fly ash with sodium hydroxide in
combination with its properties represents a promising adsorbent for copper ion removal.

2. Materials and Methods
2.1. Materials

The starting material used for the synthesis of the adsorbent was fly ash collected
from the thermoelectrical power plant Holoca (Iasi, Romania). All the reagents used in
this study were purchased from Chemical Company (Iasi, Romania) and did not require
further purification.

2.2. Preparation of Adsorbent

To fabricate the adsorbent, a solution of NaOH (2M) and fly ash was prepared in a
mixture of 3:1 ratio and stirred for 6 h at 90 ◦C. Afterwards, the resulting adsorbent was
separated from the solution and rinsed several times with distilled water until it achieved
a neutral pH. Then, it was dried at 60 ◦C for 24 h and stored.

2.3. Material Characterization

The following instrumental studies were performed in order to characterize the pre-
pared adsorbent: SEM, EDX, XRD, FTIR and BET. The SEM and EDAX analyses were de-
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termined with a Quanta 3D instrument AL99/D8229 (FEI Company, Hillsboro, OR, USA).
X-ray powder diffraction was conducted using an X’Pert PRO MRD X-ray diffractometer
(PANalytical, Almelo, The Netherlands). The experiment was recorded by monitoring the
diffraction pattern appearing in the 2θ range from 10◦ to 90◦. Infrared absorption spectra
(400–4000 cm−1) were analyzed with a Thermo Scientific Nicolet 6700 FT-IR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). BET surface area analysis was performed
via Quantachrome instruments (Boynton Beach, FL, USA).

2.4. Batch Adsorption Experiments

Adsorption experiments were performed at room temperature, pH 5, at a shaking
frequency of 300 rpm. Sample aliquots were collected after performing adsorption tests;
the absorbance was measured at 390 nm wavelength using rubeanic acid [36]. Table 1
presents the adsorption experiments’ conditions. A Buck Scientific spectrophotometer
(Buck Scientific, East Norwalk, CT, USA) was used for copper ion determination.

Table 1. Adsorption experiment conditions.

Effect of Working
Parameters Adsorbent Dose Initial Concentration Contact Time

Effect of adsorbent dose 1 g/100 mL, 2 g/100 mL,
3 g/100 mL, 4 g/100 mL 300 mg/L 24 h

Effect of initial
concentration 1 g/100 mL 100–700 mg/L 24 h

Effect of contact time 1 g/100 mL 300 mg/L 1–240 min

The adsorption capacity of the adsorbent, q (mg/g), was calculated based on Equa-
tion (1), and the adsorption efficiency was determined using Equation (2):

q =
(Ci − Ce)V

m
(1)

Adsorption efficiency, % =
(Ci − Ce)

Ci
× 100 (2)

where Ci (mg/L) represent the initial concentration of Cu2+ solution, Ce (mg/L) is the
concentration of Cu2+ solution at equilibrium, V (L) is the volume of solution and m (g) is
the quantity of the adsorbent used.

3. Results
3.1. Characterization of Adsorbent

SEM analysis was used in order to identify the surface morphology of the synthesized
material, Figure 1a. A significant change in the material morphology was observed after
treatment with NaOH at 90 ◦C, as confirmed by the SEM images. This change may be
attributed to the chemical method by which NaOH was diffused into the structure of the
fly ash.
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Figure 1. Characterization of the adsorbent: (a) SEM analysis; (b) FTIR analysis; (c) XRD analysis;
(d) BET analysis.

The chemical composition of the material (Table 2), determined by EDX, indicated
that the adsorbent contains Si, O, Al, Fe, Ca and Mg as well as small quantities of Ti, K
and Na. The SiO2/Al2O3 ratio was approximately 1.3, which is in the range of NaP–type
zeolites [37].

Table 2. EDX analysis, % atomic.

O Na Mg Al Si K Ca Ti Fe

31.98 3.42 1.02 13.29 16.97 0.68 2.31 1.03 8.02

According to Figure 1b, the main functional groups were found at 3441 cm−1, 2362 cm−1,
1453 cm−1, 1645 cm−1, 1054 cm−1, 558 cm−1 and 466 cm−1. The peak at 2362 cm−1 can be
assigned to the hydration water. The peak at 1453 cm−1 indicates that the sample included
a GIS–NaP1 phase, a fact additionally demonstrated through the XRD analysis (Figure 1c).
XRD analysis was interpreted according to the high-quality investigations performed by
Treacy and Higgins [38].
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The BET surface area of the synthesized adsorbent (Figure 1d) was found to be
~38 m2/g, while the total pore volume was 0.119 cm3/g. The results obtained indicate a
higher surface area when fly ash is treated with NaOH that demonstrate a good adsorption
capacity for Cu2+ ion removal.

The chemical composition of the material, determined by EDX measurement, is listed
in Table 2. The detection limit of the device was 0.08% wt.

For comparison, the results regarding the SEM and EDAX analysis for raw fly ash
were included (Figure 2 and Table 3).
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Figure 2. SEM image for raw fly ash.

Table 3. The chemical composition for raw fly ash, % atomic.

O Na Mg Al Si K Ca Ti Fe

43.32 0.79 0.62 19.19 30.81 1.75 1.15 1.54 3.05

The fly ash from CET II Holboca Iasi contains: Cu = 298 ppm, Ni = 123 ppm,
Cr = 127 ppm. Other toxic metals were also presented in our previous paper [39].

The SEM image of fly ash reveals that the sample has spherical particles and small
quantities of irregular shapes of the particles. On the other hand, the EDX results show
differences between the composition of fly ash and synthesized material. For example, the
content of Na increased from 0.79% to 3.42%.

3.2. Adsorption Experiments

The pH value is very important in the adsorption process. First of all, the influence
of pH on the adsorption capacity of Cu2+ ion by the prepared material was investigated
at pH values of 2, 3, 4 and 5 (Figure 3). The optimum pH value was found to be 5.
Consequently, for further investigation regarding the influence of adsorbent dose, the
initial Cu2+ concentration and the contact time, the pH value was kept constant at 5 in
order to avoid Cu2+ precipitation.
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Figure 3. Influence of pH (contact time, 24 h; initial Cu2+ concentration, 300 mg/L; adsorbent dose,
1 g/100 mL; temperature, 25 ◦C).

Adsorption experiments were conducted by varying the adsorbent dose, the ini-
tial Cu2+ concentration and the contact time. The results regarding the influence of the
adsorbent dose, the initial concentration and the contact time are presented in Figure 4.
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Figure 4. (a) Influence of adsorbent dose (pH, 5.0; contact time, 24 h; initial Cu2+ concentration, 300 mg/L; temperature,
25 ◦C); (b) Influence of initial concentration (pH, 5.0; contact time, 24 h; adsorbent dose, 1 g/100 mL; temperature, 25 ◦C);
(c) Influence of contact time (pH 5.0; adsorbent dose, 1 g/100 mL; contact time, 240 min; initial Cu2+ concentration, 300 mg/L;
temperature, 25 ◦C).
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The influence of the adsorbent dose has a great effect on the adsorption process.
The adsorbent dose influences the number of active sites available for the adsorption of
pollutants [40]. The influence of the adsorbent dose on the adsorption capacity of the
prepared adsorbent was investigated (Figure 4a). The effect of the adsorbent dose was
performed using four dosages of the adsorbent (1–4 g/100 mL). According to Figure 4a,
the adsorption capacity decreased as the adsorbent dose was increased from 1 g/100 mL
to 4 g/100 mL. This fact may be attributed to the diminution of the adsorbent surface
available to Cu2+ ions due to the agglomeration or aggregation of binding sites. The results
indicated that 1 g/100 mL of synthesized material can be used for further experiments.

The initial Cu2+ ion concentration was studied at 100, 200, 300, 400, 500, 600 and
700 mg/L. Figure 4b presents the adsorption capacity of Cu2+ against the initial Cu2+

concentration. It is obvious that the adsorption capacity is affected by initial concentration
values; thus, the adsorption capacity increased proportionally with the investigated pa-
rameter. The adsorption capacity rapidly increased when the initial concentration changed
from 100 to 500 mg/L and reached the maximum adsorption capacity in the range of
600–700 mg/L. This aspect can be attributed to an increase in the driving force of Cu2+ ion
toward the surface of synthesized material [41].

In order to study the influence of contact time on the Cu2+ adsorption capacity of the
prepared adsorbent, the contact time was changed from 1 to 240 min. The results of the
contact time are shown in Figure 4c. In the initial stage (≤ 40 min), the adsorption capacity
rapidly increased due to the number of free available adsorption sites. As the contact time
increased, the adsorption capacity tended to reach equilibrium. The adsorbent reached the
maximum adsorption capacity of 28.6 mg/g within 120 min.

3.2.1. Adsorption Isotherms

The evaluation of adsorption isotherms was applied in order to ascertain the rela-
tionships between the prepared adsorbent and Cu2+ ion. The adsorption isotherm was
analyzed using the Langmuir and Freundlich models [42]. All parameters corresponding
to these models were calculated from the linear dependencies Ce vs. Ce/qe and lnCe vs.
lnqe. The plots for Cu2+ adsorption are displayed in Figure 5.
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Figure 5. Langmuir (a) and Freundlich (b) isotherm plots for the adsorption of Cu2+.

The values of the parameters corresponding to each isotherm model are summarized
in Table 4.
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Table 4. Adsorption isotherm constants.

Type of Isotherm Equation Linearization of
Equation Constants R2

Langmuir qe =
qmax×KLCe

1+KLCe

Ce
qe

= 1
KL ×qmax

+ Ce
qmax

qmax = 53.5 mg/g
KL = 0.094 L/g 0.9969

Freundlich qe = KF × Ce
1/n log qe =(

1
n

)
log Ce + log KF

KF = 10.23 (mg/g)/(L/mg)
1/n = 0.3438 0.7413

Where: Ce (mg/L) is the concentration of metal in solution at equilibrium, qe is the equilibrium metal adsorption capacity (mg/g),
qmax is the maximum adsorption capacity (mg/g), KL is the Langmuir constant (L/g), KF is the Freundlich constant and 1/n is the
heterogeneity factor.

The results displayed in Table 4 suggest that the adsorption of Cu2+ can be explained
better by the Langmuir model (R2 ≥ 0.99), with a maximum amount of copper adsorbed
of 53.5 mg/g. According to the Langmuir model, the theoretical maximum adsorption
capacity and the maximum adsorption capacity of the adsorbent from the adsorption
experiment were similar. The correlation coefficient of the other isotherm plot was relatively
low, R2 = 0.7413.

In addition, the fundamental characteristic and practicability of the Langmuir isotherm
regarding a dimensionless constant separation factor or equilibrium parameter, RL, suggest
that the adsorption process of Cu2+ using the prepared material was favorable, Figure 6, in
accord with literature [43].
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3.2.2. Kinetics of the Adsorption Process

Among the kinetic models developed, the pseudo-first-order and pseudo-second-
order kinetic models were used to study the adsorption process of Cu2+ ions. The equations
for the pseudo-first-order kinetic model and the pseudo-second-order kinetic model are
listed in Equations (3) and (4), respectively.

log
(
qe − qt

)
= log qe −

(k1t)
2.303

(3)

t
qt

=
1

k2 × qe
2 +

t
qe

(4)
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where qt is the amount of cadmium adsorbed per unit of adsorbent (mg/g) at time t, k1
is the pseudo-first-order rate constant (1/min) and k2 is the pseudo-second-order rate
constant (g/mg min).

The slopes and intercepts of the linear plots were used in order to calculate the kinetic
parameters for the adsorption of Cu2+ ion by prepared material. The obtained results are
summarized in Table 5.

Table 5. Comparison of the kinetic models for the adsorption of Cu2+.

qe, exp (mg/g) Pseudo-First-Order Model Pseudo-Second-Order Model
k1, (1/min) R2 qcal, (mg/g) k2 (g/mg min) R2

28.6 0.0419 0.9732 30 0.0028 0.9986

According to Table 5, the R2 values obtained after fitting the data suggest that the
pseudo-second-order model is more suitable than the pseudo-first-order model for de-
scribing the Cu2+ adsorption. The strong fit with the pseudo-second-order kinetic model
suggests a chemical adsorption

A supplementary EDX analysis after Cu2+ ion adsorption was performed (Figure 7). The
data demonstrate that the toxic ions were attached to the surface of the prepared adsorbent.
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Table 6. Comparison of adsorption capacity of various adsorbents for Cu2+.

Adsorbent. qmax, mg/g Ref.

Nanosilica particles modified by Schiff base Ligands
3-methoxy salicylaldimine propyl triethoxysilane (MNS1) 3.73 [44]

Nanosilica particles modified by 5-bromo salicylaldimine
propyl triethoxysilane 4.12 [44]

Nanosilica particles modified by 3-hydroxy salicylaldimine
propyl triethoxysilane (MNS3) 5.82 [44]

Fe3O4@TETA 39.2 [45]

Fe3O4@DETA 44.2 [45]

Fe3O4@DAMP 52.3 [45]

Natural bentonite treated with H2SO4 (ARH) 17.24 [46]

Calcium homoionic clay (ARC) 18.18 [46]

Sodium homoionic clay (ARS) 24.39 [46]

Acid-treated bio-sorbent (ATB) 8 [47]

Untreated bio-sorbent (UTB) 19 [47]

Base treated bio-sorbent (BTB) 25 [47]
Detergent treated bio-sorbent (DTB) 28 [47]

Treated fly ash 53.5 This work

According to Table 6, the material prepared in this study showed good adsorption capacity.
At the end of the study, the reusability investigation of the synthesized adsorbent was

performed. Experimental cycles of adsorption/desorption were performed and fed with
Cu2+ solution during the adsorption step and 0.1 [M] HNO3 during the desorption step.
The obtained results are summarized in Figure 8.
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From Figure 8, it is clear that the adsorption efficiency of the material drops a little after
each cycle. This might be due to the amount of the adsorbent lost during the adsorption
process. After three cycles the adsorption efficiency is still 90%, which made the synthesized
adsorbent appropriate for use in wastewater treatment loaded with the copper ions.



Polymers 2021, 13, 3468 12 of 14

4. Conclusions

The present research focused on the synthesis, characterization and applicability of one
material based on the direct activation of fly ash with NaOH as an adsorbent for Cu2+ ion
removal from aqueous media. The fly ash was synthesized under the following operating
conditions: an NaOH concentration of 2M, NaOH; a fly ash ratio of 3:1; a temperature
of synthesis of 90 ◦C; and a contact time of 6 h. In order to characterize the prepared
adsorbent, SEM, EDX, XRD, FTIR and BET analyses were conducted.

The adsorption results were investigated based on two adsorption isotherms, specifi-
cally two kinetic models. The adsorption isotherms and kinetics were well described by the
pseudo-second-order model and the Langmuir isotherm model. The maximum adsorption
capacity for Cu2+ was 53.5 mg/g. The adsorption mechanism involved in the adsorption
process was chemisorption.

This study demonstrated that fly ash may find application in the synthesis of low-cost
adsorbents for toxic ion removal from aqueous media.
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