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Objective: The role of C-X-C motif chemokine 12 (CXCL12) in atherosclerotic

cardiovascular diseases (ASCVDs) has emerged as one of the research hotspots

in recent years. Studies reported that the higher blood CXCL12 level was

associated with increased major adverse cardiovascular events (MACEs), but

the results were inconsistent. The objective of this study was to clarify the

prognostic value of the blood CXCL12 level in patients with coronary artery

disease (CAD) through meta-analysis.

Methods: All related studies about the association between the blood CXCL12

level and the prognosis of CAD were comprehensively searched and screened

according to inclusion criteria and exclusion criteria. The quality of the

included literature was evaluated using the Newcastle-Ottawa Scale (NOS).

The heterogeneity test was conducted, and the pooled hazard risk (HR) or

the odds ratio (OR) with a 95% confidence interval (CI) was calculated using

the fixed-e�ect or random-e�ects model accordingly. Publication bias was

evaluated using Begg’s funnel plot and Egger’s test. Sensitivity analysis and

subgroup analysis were also conducted.

Results: A total of 12 original studies with 2,959 CAD subjects were included in

the final data combination. The pooled data indicated a significant association

between higher CXCL12 levels and MACEs both in univariate analysis (HR

5.23, 95% CI 2.48–11.04) and multivariate analysis (HR 2.53, 95% CI 2.03–

3.16) in the CXCL12 level as the category variable group. In the CXCL12 level

as the continuous variable group, the result also indicated that the higher

CXCL12 level significantly predicted future MACEs (multivariate OR 1.55, 95%

CI 1.02–2.35). Subgroup analysis of the CXCL12 level as the category variable

group found significant associations in all acute coronary syndrome (ACS)

(univariate HR 9.72, 95% CI 4.69–20.15; multivariate HR 2.47, 95% CI 1.79–

3.40), non-ACS (univariate HR 2.73, 95% CI 1.65–4.54; multivariate HR 3.49,

95% CI 1.66–7.33), Asian (univariate HR 7.43, 95% CI 1.70–32.49; multivariate

HR 2.21, 95% CI 1.71–2.85), Caucasian (univariate HR 3.90, 95% CI 2.73–

5.57; multivariate HR 3.87, 95% CI 2.48–6.04), short-term (univariate HR 9.36,

95% CI 4.10–21.37; multivariate HR 2.72, 95% CI 1.97–3.76), and long-term

(univariate HR 2.86, 95% CI 1.62–5.04; multivariate HR 2.38, 95% CI 1.76–

3.22) subgroups. Subgroup analysis of the CXCL12 level as the continuous
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variable group found significant associations in non-ACS (multivariate OR 1.53,

95% CI 1.23–1.92), Caucasian (multivariate OR 3.83, 95% CI 1.44–10.19), and

long-term (multivariate OR 1.62, 95% CI 1.37–1.93) subgroups, but not in

ACS (multivariate OR 1.36, 95% CI 0.67–2.75), Asian (multivariate OR 1.40,

95% CI 0.91–2.14), and short-term (multivariate OR 1.16, 95% CI 0.28–4.76)

subgroups. No significant publication bias was found in this meta-analysis.

Conclusion: The higher blood CXCL12 level is associated with increased

MACEs in patients with CAD, and the blood CXCL12 level may serve as an

important prognostic index for CAD. Integrating the blood CXCL12 level into

CAD risk assessment tools may provide more comprehensive messages for

evaluating and managing patients with CAD.

KEYWORDS

CXCL12, coronary artery disease, acute coronary syndrome, prognosis, MACEs, meta-

analysis

Introduction

Heart disease is the leading cause of death worldwide.

As the most common type of heart disease, coronary artery

disease (CAD) also referred to as coronary heart disease (CHD)

or ischemic heart disease (IHD) affects around 126 million

individuals globally, which is estimated to be 1.72% of the

world’s population in 2017 (1). In China, with the aging of

the population, the prevalence and mortality of CAD have

been increasing continuously within the past two decades (2).

Although with the progress of medical care, the prognosis

of CAD is still not optimistic, especially in acute coronary

syndrome (ACS) (3) and elderly patients (4). Thus, in addition

to diagnosis and therapy, evaluation of prognosis or risk

stratification for patients with CAD is a clinical matter of

great concern.

In fact, many risk stratification tools, such as the GRACE

and CRUSADE scores for assessing the risk of patients with

non-STEMI ACS (5), have been generated for risk classification

for CAD. Although each may have its respective merits, these

risk stratification tools are not comprehensive or have some

limitations. Thus, exploring new strategies or indicators guiding

more precise evaluation of CAD prognosis and directing more

optimized treatment of CAD is of great clinical significance. In

recent years, the clinical prognostic value of novel biomarkers in

CAD has increasingly aroused people’s attention (6).

The C-X-C motif chemokine 12 (CXCL12), also known

as stromal cell-derived factor-1 (SDF-1), is a chemokine

protein that exerts multifaceted roles in atherosclerosis and

other cardiovascular diseases through its classical C-X-C motif

chemokine receptor 4(CXCR4) and atypical ACKR3 (atypical

chemokine receptor 3, also CXCR7) receptors (7, 8). The role

of the CXCL12/CXCR4/ACKR3 system in the pathogenesis

of cardiovascular diseases was a research hotspot in recent

years. Studies reported that CXCL12 gene polymorphisms are

associated with an increased risk of CAD (9, 10), and a high

blood CXCL12 level predicted high coronary events in diabetes

patients (10).

Other studies reported that an increased level of blood

CXCL12 predicted adverse clinical outcomes in CAD. Chang

et al. first reported that a higher serum CXCL12 level positively

predicted 30-day major adverse clinical outcomes in patients

with acute myocardial infarction (AMI) (11). Thereafter, several

studies supported the positive correlation between higher blood

CXCL12 levels and increased risk of future (both short and long

terms) adverse clinical outcomes in patients with CAD (12–14).

However, negative or even opposite results were also reported,

which found no significant correlation between blood CXCL12

levels and CAD prognosis (15), or even higher serum CXCL12

levels predicting lower future cardiovascular events in patients

with CAD (16). Thus, the association between blood CXCL12

levels and future major adverse cardiovascular events (MACEs)

in patients with CAD seems to be controversial.

A good method to resolve the contradictions between

individual studies is meta-analysis. To evaluate the predicting

role of the blood CXCL12 level in the prognosis of

CAD objectively, we reviewed all the related literature

comprehensively and conducted a meta-analysis.

Methods

Search strategy

All related studies about the correlation between blood

CXCL12 level and CAD prognosis were identified by

comprehensive computer-based searches. The retrieved

databases included PubMed, EMBASE, ScienceDirect, Web

of Science, and the China National Knowledge Infrastructure
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(CNKI) database. The keywords used for the literature search

were combined as follows: (“CXCL12” OR “C-X-C motif

chemokine ligand 12” OR “SDF-1” OR “stromal cell-derived

factor-1 ”) and (“coronary artery disease” OR “coronary heart

disease” OR “CAD” OR “CHD” OR “ischemic heart disease”

OR “myocardial infarction” OR “angina” OR “acute coronary

syndrome” OR “STEMI” OR “non-STEMI”) and (“prognosis”

OR “MACE” OR “major adverse cardiovascular events” OR

“adverse outcome”). The last search was updated on 8 June 2022,

and the literature language was limited to English and Chinese.

Data inclusion and exclusion criteria

Data inclusion criteria

The inclusion criteria for eligible studies were as follows:

(1) studies evaluated the association between the blood CXCL12

level and the prognosis of CAD. (2) The CAD diagnostic criteria

were angiographically confirmed CAD or ACS diagnosed

with general standard criteria. (3) Studies were published in

prospective cohort studies. (4) The follow-up duration was at

least 30 days. (5) The actual number of MACEs was presented,

or the hazard ratio (HR)/odds ratio (OR) and 95% confidence

interval (CI) of blood CXCL12 level and MACEs were provided.

Data exclusion criteria

Exclusion criteria included (1) conference abstracts or

reviews; (2) unpublished data; (3) studies with duplicated

publications or studies with partially replicated populations; (4)

primary endpoints and secondary endpoints were not about

death or adverse cardiovascular events; and (5) Newcastle-

Ottawa Scale (NOS) score was <6 scores.

Data extraction

Three reviewers (Zhang, Ding, and Feng) extracted key

data from each included original study independently, and

the extracted data included the name of the first author,

publication year, study type, sample size, region, ethnicity of

the study population, diagnostic criteria for patients with CAD,

methods for measuring CXCL12 level, cutoff or comparison

of CXCL12 level, follow-up duration, measurement of clinical

outcomes, and covariables adjusted in the multivariate model.

For studies in which the CXCL12 level was presented as a

continuous variable, we standardized the group-level exposure

estimates to single units, thereby allowing for combining

the effects of different CXCL12 values in different studies.

All the independently extracted data were compared, and

disagreements were settled by consensus. If these three authors

could not reach a consensus, the results were further arbitrated

by the fourth author (Gao).

Literature quality assessment

The quality was assessed and scored using the Newcastle-

Ottawa Quality Assessment Scale (NOS) (17) system by two

authors independently. The NOS uses a “star” rating system

ranging from zero (worst) to nine stars (best) to judge the quality

of observational studies, and studies with a total score of≥7 were

generally regarded as high quality. Any disagreements about

study quality assessment between the two authors were settled

by consensus or consulted by the third author.

Statistical analysis

STATA 16.0 (STATA Corp., College Station, TX, USA) was

used to carry on the statistical analysis. The pooled HRs or ORs

and 95% CIs were used as the effect indicator to evaluate the

predicting role of the blood CXCL12 level in CAD prognosis.

According to the different variable types of the CXCL12 level

used in each original study, all the included studies were divided

into the CXCL12 level as the category variable group and the

CXCL12 level as the continuous variable group, and the overall

effects were combined separately. Heterogeneity between studies

was assessed using the I2 test, and I2 > 50% and P < 0.1 were

considered existing significant heterogeneity (18). If significant

heterogeneity was found, the random-effects poolingmodel (I-V

heterogeneity) was used to evaluate the pooledHRs or ORs (with

95% CIs); otherwise, the fixed-effect pooling model (inverse

variance) was used to calculate pooled HRs or ORs (with 95%

CIs). The significance of overall effects was tested using the Z-

test (19). Subgroup analysis was performed based on different

ethnicities, CAD types, and follow-up durations to explore the

predicting role of the blood CXCL12 level in the CAD prognosis

more comprehensively. Sensitivity analysis was conducted to

observe the influence of any single study on the pooled HRs or

ORs to evaluate the robustness of overall effects. The potential

publication bias was assessed using Begg’s funnel plot and Egger’s

test. Except for the I2 test for assessing heterogeneity, a 2-tailed

P < 0.05 was considered to be statistically significant.

Results

Literature search and study
characteristics

A total of 1,815 potentially relevant articles were initially

identified according to the search criteria described above. After

screening titles and abstracts, 1,779 studies were excluded for

duplicates, reviews, or being irrelevant. The left 36 articles were

entered full-text assessment for eligibility, and 25 articles were

further excluded for duplicate data, endpoints not about death

or cardiovascular events, study subjects were not patients with
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CAD, detected CXCL12 level not in serum/plasma, or could

not get outcome measurement data. As a result, a total of 11

articles (12 studies) with 2,959 patients with CAD were included

in this meta-analysis for the final data combination. The study

screening process is shown in Figure 1.

Of the included 12 studies, four studies enrolled patients

with STEMI as study subjects, four studies enrolled patients

with CAD as study subjects, and the left four studies enrolled

patients with the acute coronary syndrome. As for the methods

for measuring the CXCL12 level, all the included original studies

detected the CXCL12 level by enzyme-linked immunosorbent

assay (ELISA), with seven studies detected in serum and the

left 5 studies in plasma. According to the variable type of the

CXCL12 level adopted by the authors, the included studies were

divided into two groups: one group incorporated 6 studies with

the CXCL12 level as the category variable, and the other group

consisted of the left sixstudies with the CXCL12 level as the

continuous variable. The pooled data of the two groups were

calculated separately. The main characteristics of the included

studies are presented in Table 1.

CXCL12 level and future clinical
outcomes in patients with CAD

According to the variable type of CXCL12 level adopted in

the original studies, all the included original studies were divided

into CXCL12 level as the category variable group and CXCL12

level as the continuous variable group, and we pooled the data of

the two groups separately. Before calculating pooled HRs/ORs, a

heterogeneity test was conducted. In CXCL12 level as category

FIGURE 1

Flow diagram of the study selection process.

group, heterogeneity was found in univariate analysis (I2 =

91.7%, P < 0.001) but not in multivariate analysis (I2 = 49.4%,

P = 0.095) (Figures 2, 3). In the CXCL12 level as the continuous

variable group, heterogeneity was found in multivariate analysis

(I2 = 78%, P < 0.001) (Figure 4), while univariate analysis data

could not be pooled for only one study presented univariate OR

and 95% CI. Thus, a random-effects model was used to merge

HRs/ORs in univariate analysis of CXCL12 level as category

variable group and in CXCL12 level as the continuous variable

group, while a fixed-effect model was used to merge HRs in

multivariate analysis of CXCL12 level as the category group.

A positive association between higher blood CXCL12 level and

future MACEs was found in both CXCL12 level as category

variable group (univariate HR 5.23, 95% CI 2.48–11.04, P <

0.001; multivariate HR 2.53, 95% CI 2.03–3.16, P < 0.001)

(Figures 2, 3) and CXCL12 level as continuous variable group

(multivariate OR 1.55, 95%CI 1.02–2.35, P = 0.039) (Figure 4).

Publication bias

The Egger’s (26) test and Begg’s funnel plot were used to

evaluate the publication bias of the included studies in both the

CXCL12 level as the category group and the CXCL12 level as the

continuous group. Begg’s test found no significant publication

in all the univariate analysis of CXCL12 level as category group

(Z = 1.13, P = 0.26), the multivariate analysis of CXCL12 level

as category group (Z = 1.71, P = 0.086), and the multivariate

analysis of CXCL12 level as continuous group (Z = 0.75, P

= 0.452). No obvious asymmetry was found in Begg’s funnel

plots for all these three analyses (Figure 5). Since Egger’s test

has a higher sensitivity than Begg’s test, Egger’s test was further

conducted. In addition, Egger’s test also found no significant

publication in all the univariate analysis of CXCL12 level as

category group (t = 0.61, P = 0.577), the multivariate analysis

of CXCL12 level as category group (t = 2.71, P= 0.073), and the

multivariate analysis of CXCL12 level as continuous group (t =

0.04, P = 0.969).

Subgroup analysis

To evaluate the influences of CAD type, ethnicity, and

follow-up duration on the role of the CXCL12 level in

predicting CAD adverse outcomes, a subgroup analysis was

conducted. According to the CAD type of study subjects, the

included studies were divided into ACS subgroup and non-

ACS subgroup; according to the ethnicity of study subjects,

the included studies were divided into Asian subgroup and

Caucasian subgroup; whereas based on different follow-up

durations, the included studies were divided into short-term

subgroup and long-term subgroup, respectively. The results of
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TABLE 1 Clinical characteristics of the included original studies.

Study Region Subjects Study

design

Sample

size

Follow up

(month)

Methods

for

measuring

SDF-1

level

CXCL12

Cutoff or

comparison

(pg/ml)

Outcome

endpoints

HR/OR (95%CI) Adjusted covariates

in multivariate

analysis

NOS score

Univariate Multivariate

Matsuoka et al.

(20)

Japan OMI Prospective

study

192 90 Detected with

ELISA in

plasma

≥2,162 vs.

<2,162

Cardiac death,

non-fatal MI,

refractory

unstable angina

pectoris (UAP),

decompensated

heart failure

1.87

(1.35–2.60)

1.98

(1.38–2.85)

Age, gender, smoking,

hypertension, diabetes,

multivessel disease, BMI,

heart rate, LDL, HDL,

HbA1c, LVEF, GFR, BNP,

CRP, aspirin,

thienopyridines,

b-Blocker, ACEI/ARB,

statin

7

Ghasemzadeh

et al. (12)

USA CAD Prospective

study

186 67.7 Detected with

ELISA in

plasma

>1,734 vs.

<1,734

CV death, MI 3.01

(1.68–5.40)

6.24

(2.61–14.91)

Age, gender, diabetes,

hypertension, smoking,

acute MI, serum

creatinine, LVEF, history

of CABG, statin use,

aspirin use, presence of at

least 50% stenosis in at

least one major epicardial

vessel, LDL

7

Ghasemzadeh

et al. (12)

USA CAD Prospective

study

599 19.2 Detected with

ELISA in

plasma

>2,679 vs.

<2,679

CV death, MI 4.27

(2.30–7.91)

4.36

(2.05–9.28)

Age, gender, diabetes,

hypertension, smoking,

acute MI, serum

creatinine, LVEF, history

of CABG, statin use,

aspirin use, presence of at

least 50% stenosis in at

least one major epicardial

vessel, LDL

7
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TABLE 1 Continued

Study Region Subjects Study

design

Sample

size

Follow up

(month)

Methods

for

measuring

SDF-1

level

CXCL12

Cutoff or

comparison

(pg/ml)

Outcome

endpoints

HR/OR (95%CI) Adjusted covariates

in multivariate

analysis

NOS score

Univariate Multivariate

Tong et al. (13) China ACS Prospective

study

678 18 Detected with

ELISA in

plasma

>2175.1 vs.

<2175.1

Death,

recurrent MI,

advanced HF

10.879

(7.635–15.499)

2.45

(1.71–3.50)

Age, gender, BMI,

smoking, diabetes,

hypercholesterolemia,

hypertension, MI, chronic

HF, revascularization,

ST-depression ≥0.1mV,

troponin I, GFR, delay

time, admission to

balloon time, Killip class,

left main artery disease,

triple vessel disease,

NT-proBNP, hs-CRP,

ACEI, ARB, β-blocker,

statin, aspirin,

clopidogrel, tirofiban

7

Chang et al.

(11)

China

(Taiwan)

AMI Prospective

study

129 1 Detected with

ELISA in

serum

>1,500 vs.

≤1,500

Advanced Killip

score, mortality

26.00

(7.20–93.93)

NA NA 7

Peir’ (14) Spain ACS Prospective

study

254 60 Detected with

ELISA in

plasma

Three tertile

vs. 1+2 tertile

All-cause death 4.90

(2.53–9.50)

2.53

(1.24–5.16)

Age, medical history of

myocardial infarction,

diabetes, chronic kidney

disease, GRACE score,

troponin I peak, three

vessels stenosis,

LVEF≤40%, NSTEMI or

unstable angina

7

Cai et al. (21) China CAD Prospective

study

130 1 Detected with

ELISA in

serum

Continuous

variable

CV death,

recurrent MI,

advanced HF

NA 3.683

(1.131–11.989)

White blood cell, mean

platelet volume,

erythrocyte mean volume,

hs-CRP, CTnI, BNP,

LVEF, apolipoprotein A,

6

(Continued)
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TABLE 1 Continued

Study Region Subjects Study

design

Sample

size

Follow up

(month)

Methods

for

measuring

SDF-1

level

CXCL12

Cutoff or

comparison

(pg/ml)

Outcome

endpoints

HR/OR (95%CI) Adjusted covariates

in multivariate

analysis

NOS score

Univariate Multivariate

apolipoprotein

B, lipoprotein

a, TG, TC,

HDL, LDL

Zhang et al.

(22)

China ACS Prospective

study

214 6 Detected with

ELISA in

serum

Continuous

variable

Total death, CV

death, recurrent

MI, recurrent

angina, stroke,

advanced HF

NA 1.812

(1.187–2.767)

Age, gender, BMI,

smoking, diabetes,

hypertension,

hyperlipidemia, CAD

family history, LVEF,

hs-CRP

6

Yang et al. (23) China CHD Prospective

study

189 12 Detected with

ELISA in

serum

Continuous

variable

CV death,

recurrent MI,

revascularization,

in-stent

thrombosis

NA 1.484

(1.183–1.863)

Hypertension,

hyperlipidemia, diabetes,

number of coronary

artery lesions, length of

coronary artery lesions,

Gensini scores, LVEF,

CRP, TNF-α

6

Yang et al. (24) China AMI Prospective

study

94 12 Detected with

ELISA in

serum

Continuous

variable

CV death,

recurrent

angina,

advanced HF,

malignant

ventricular

arrhythmia

NA 1.733

(1.317–2.281)

Age, gender, BMI,

smoking, alcohol

consumption, diabetes,

blood pressure, TC, TG,

HDL, LDL

6

Cai et al. (16) China STEMI Prospective

study

122 10 Detected with

ELISA in

serum

Continuous

variable

CV death,

recurrent MI,

recurrent

angina,

advanced HF,

malignant

NA 0.246(0.1–

0.603)

Age, hypertension,

diabetes, TC, TG, HDL,

LDL, creatinine level,

cTnI, white blood cell, fast

glucose level

6

(Continued)
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subgroup analysis stratified by CAD type, ethnicity, and follow-

up duration are presented in Table 2. In the CXCL12 level as

the category variable group, all subgroups stratified by CAD

type, ethnicity, and follow-up duration (both in univariate and

multivariate analyses) have significant correlations. However,

in the CXCL12 level as the continuous variable group, the

correlations of the ACS subgroup, Asian subgroup, and short-

term subgroup were not statistically significant, though the

correlations of non-ACS, Caucasian, and long-term subgroups

were significant.

Sensitivity analysis

To test the robustness of the pooled data of our meta-

analysis, a sensitivity analysis was conducted. As a result, in

the CXCL12 level as the category variable group, omitting any

single study had no significant influence on the pooled HRs

in both univariate analysis and multivariate analysis, indicating

the robustness of pooled estimates (Figures 6A,B). However, in

the CXCL12 level as the continuous variable group, each study

except for the study by Cai X et al. had a significant influence on

the overall effect (Figure 6C), suggesting the unstableness of the

pooled estimate in this group.

Discussion

CXCL12 (also referred to as SDF-1) is a member of the CXC

chemokine family and plays a prominent role in hematopoiesis,

angiogenesis, immunogenesis, stem cell mobilization, and tissue

regeneration through its receptors CXCR4 and ACKR3 (7,

27). In the past two decades, the role of CXCL12 and

CXCR4/ACKR3 systems in the pathogenesis of cardiovascular

diseases emerged to be one of the research hotspots of

this field (28). CXCL12 as a chemokine plays multifaceted

roles in the pathogenesis of coronary atherosclerotic heart

disease, both beneficial and detrimental roles of CXCL12 were

reported (7, 29). A variety of studies reported that CXCL12

was cardioprotective after myocardial infarction, attenuated

adverse ventricular remodeling, and preserved ventricular

function after myocardial infarction (30, 31). Exogenous

CXCL12 administration significantly alleviated myocardial

ischemia/reperfusion injury (IRI) and improved post-ischemic

myocardial functional recovery (32). In fact, considering the

critical role of CXCL12 in promoting tissue repair and

myocardial protection, a clinical trial aimed to improve cardiac

function with the treatment of CXCL12 has been conducted.

The STOP-HF randomized Phase II trial evaluated the safety

and efficacy of a single treatment of plasmid CXCL12 delivered

via endomyocardial injection to patients with ischemic heart

failure and demonstrated the potential for attenuating left

ventricular remodeling and improving ejection fraction (EF) in
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FIGURE 2

Forest plot of the association between C-X-C motif chemokine 12 (CXCL12) level as category variable and major adverse cardiovascular events

(MACEs) in patients with coronary artery disease (CAD) (univariate analysis).

FIGURE 3

Forest plot of the association between CXCL12 level as category variable and MACEs in patients with CAD (multivariate analysis).

high-risk ischemic cardiomyopathy (33), further supporting the

cardioprotective role of CXCL12.

However, other studies reported that the higher blood

CXCL12 level correlated with the severity of coronary artery

lesions and predicted adverse clinical outcomes in patients

with stable CAD or acute coronary syndrome, though the

underlying mechanism is unclear. Chang et al. (11) first reported

that the higher serum CXCL12 level predicted 30-day major

adverse clinical outcomes in patients with AMI. Thereafter,

other studies also reported the correlation between higher blood

CXCL12 levels and increased risk of future adverse clinical

outcomes in patients with CAD (12–14). In contrast, negative

or even opposite results were also reported (16). Thus, to

evaluate the correlation between the blood CXCL12 level and

the prognosis of CAD comprehensively and objectively, we

conducted this meta-analysis.

By strict screening, 12 original studies with a total of 2,959

CAD subjects were entered into the final data combination. For

different studies that assigned blood CXCL12 levels as different

variable types, we first divided all the included studies into

CXCL12 level as the category variable group and CXCL12 level

as the continuous variable group and pooled the estimates,
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FIGURE 4

Forest plot of the association between CXCL12 level as continuous variable and MACEs in patients with CAD (multivariate analysis).

respectively. As a result, the pooled data indicated a significant

association between higher CXCL12 levels and future adverse

clinical events both in univariate analysis (pooled HR 5.23, 95%

CI 2.48–11.04, P < 0.001) and multivariate analysis (pooled

HR 2.53, 95% CI 2.03–3.16, P < 0.001) in CXCL12 level as

category variable group. In the CXCL12 level as the continuous

variable group, univariate data were available only in one study,

so we only pooled the multivariate estimates, and the result also

indicated that the higher CXCL12 level significantly predicted

future adverse clinical events (pooled OR 1.55, 95% CI 1.02–

2.35, P= 0.039). These results suggested that the blood CXCL12

level may be a valuable prognostic index for MACEs in patients

with CAD.

Pathophysiologically, there are some differences between

stable CAD and ACS (34), and different races may exert

influences on the clinical characteristics and prognosis of CAD

(35). In addition, the blood CXCL12 level may have different

roles in predicting the short-term or long-term prognosis

of CAD. So, the subgroup analysis stratified by CAD type,

ethnicity, and follow-up duration was conducted to evaluate the

influence of these three covariables on the overall effects. In

the CXCL12 level as the category variable group, each subgroup

(non-ACS or ACS, Caucasian or Asian, and short-term or long-

term) showed a significant association between blood CXCL12

level and future MACEs. But in the CXCL12 level as the

continuous variable group, the results were only significant in

non-ACS, Caucasian, and long-term subgroups, suggesting the

unstableness of the pooled OR in this group. In fact, sensitivity

analysis also suggested that the pooled OR in the CXCL12 level

as the continuous variable group was unstable, for several single

studies, all had a significant influence on the overall pooled

estimate (Figure 6C). In contrast, sensitivity analysis indicated

that the pooled estimates were robust in the CXCL12 level as the

category variable group, and no single study was indispensable

for the significant overall HRs (Figures 6A,B).

Although all the included original studiesmeasured CXCL12

level with ELISA, the detecting substrates were different. In the

CXCL12 level as the continuous variable group, all the included

studies detected CXCL12 level in serum, while in the CXCL12

level as the category group, only one in serum (the other five

studies detected CXCL12 level in plasma) was detected. The

composition of serum and plasma has a small difference, but

the pooled estimates in both groups are all significant, indicating

the consistency of the predicting role of CXCL12 level in serum

and plasma.

Publication bias is a serious problem in the meta-analysis,

whichmay affect the reliability and generalization of conclusions

(36). In this meta-analysis, both Begg’s and Egger’s tests showed

no significant publication bias in univariate and multivariable

analyses of CXCL12 level as category variable group and

multivariable analysis of CXCL12 level as the continuous

variable group, indicating the authenticity and validity of

the conclusions.

As for the mechanism underlying the association between

higher blood CXCL12 levels and poor prognosis of CAD, it

remains to be elucidated. But, existing clues indicated that higher

blood CXCL12 level was associated with more severe coronary

artery lesions (37), and CXCL12 promoted atherosclerosis to
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FIGURE 5

Begg’s funnel plot for evaluating publication bias of included studies. (A) Univariate analysis in CXCL12 level as category variable group (Z = 1.13,

P = 0.26); (B) multivariate analysis in CXCL12 level as category variable group (Z = 1.71, P = 0.086); (C) and multivariate analysis in CXCL12 level

as continuous variable group (Z = 0.75, P = 0.452).

drive CAD progress (38), which may lead to a higher incidence

of adverse cardiovascular events. This may partly account for

themechanism of the association between higher blood CXCL12

levels and poor prognosis of CAD.

Recently, Leberzammer et al. reported that CXCL12

augments platelet aggregation by activating its receptor CXCR4,

while inhibition of CXCR4 attenuates platelet aggregation,

and platelet-specific CXCL12 deficiency in mice limits arterial

thrombosis, indicating the pro-thrombotic function of platelet-

derived CXCL12 (39). In addition, an earlier study reported

that platelet-derived CXCL12 can activate platelets thromboxane

A2-dependently through its receptor CXCR4 (40). In contrast,

higher expression of CXCL12 in platelets is associated with

worse clinical outcomes in patients with CAD (41). In the

CXCL12 level as the continuous variable group of this meta-

analysis, all the original studies detected the CXCL12 level in

serum, as much of serum CXCL12 may potentially be derived

from circulating platelets activated during blood clotting, so

the platelet-derived CXCL12 in serum may have exerted pro-

thrombotic role to trigger adverse cardiovascular events. This

further supports the role of higher blood CXCL12 levels in

predicting the poor prognosis of CAD mechanistically.

CXCR4 andACKR3 are the two receptors of CXCL12 known

so far. CXCR4 is a G protein-coupled receptor (GPCR) and

serves as an amplifier to increase CXCL12-associated signaling

(42). ARKR3 does not couple with G protein; however, it has a

much higher affinity for CXCL12 than CXCR4 and is initially

considered a negative regulator of CXCL12 expression and

function for the primary role of ACKR3 is to internalize and

deliver CXCL12 for lysosomal degradation (43). ACKR3 has also

been reported to be involved in signaling independent of G-

protein (44). CXCR4 and ACKR3 perform both proatherogenic
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TABLE 2 Subgroup analysis stratified by CAD type, ethnicity, and follow-up duration.

Subgroups Category variable (n= 2,038) Continuous variable (n= 921)

Univariate analysis Multivariate analysis Multivariate analysis

HR (95% CI) I
2 (%) HR (95% CI) I2 (%) OR (95% CI) I2 (%)

ACS 9.72 (4.69–20.15) 70.4 2.47 (1.79–3.40) 0 1.36 (0.67–2.75) 85.3

Non-ACS 2.73 (1.65–4.54) 67.4 3.49 (1.66–7.33) 74.5 1.53 (1.23–1.92) 54.5

Asian 7.43 (1.70–32.49) 96.6 2.21 (1.71–2.85) 0 1.40 (0.91–2.14) 79.5

Caucasian 3.90 (2.73–5.57) 0 3.87 (2.48–6.04) 23.5 3.83 (1.44–10.19) 0

Short term* 9.36 (4.10–21.37) 78.5 2.72 (1.97–3.76) 45.3 1.16 (0.28–4.76) 89.1

Long term* 2.86 (1.62–5.04) 72.5 2.38 (1.76–3.22) 65 1.62 (1.37–1.93) 47

*In the CXCL12 level as the category variable group, the short-term subgroup was defined as a follow-up period <24 months, while the long-term subgroup was defined as ≥24 months;

in the CXCL12 level as the continuous variable group, the short-term subgroup was defined as a follow-up period <12 months, while long-term subgroup defined as ≥12 months.

FIGURE 6

Sensitivity analysis evaluating the influence of any single study on the overall e�ects. (A) Univariate analysis data of the CXCL12 level as category

variable group. (B) Multivariate analysis data of the CXCL12 level as category variable group; (C) Multivariate analysis data of the CXCL12 level as

the continuous variable group.

and athero-protective functions dependent on various cell types.

Both CXCR4 and ACKR3 in macrophages are proatherogenic

(45, 46), and CXCR4 in platelets was also reported to be

proatherogenic (47). However, activation of CXCR4 or ACKR3

in vascular cells limits atherosclerosis progress (48, 49). We

assumed that the proatherogenic role of CXCR4 in both

macrophages and platelets and ACKR3 in macrophages is

accountable for the association between higher blood CXCL12

levels and worse outcomes of CAD.

Atherosclerosis is an inflammatory disease (50), and

CXCL12 was once considered a pro-inflammatory molecule

(51), which may promote the progress of CAD and lead to a
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poor prognosis. However, later findings indicated that CXCL12

may have the opposite role in inflammation (52, 53). So, the

actual mechanism underlying the correlation between higher

blood CXCL12 levels and poor prognosis of CAD is complicated

and warranted to be further explored.

To the best of our knowledge, this is the first meta-analysis

assessing the association between blood CXCL12 levels and the

prognosis of CAD. Inevitably, there are some limitations in

our meta-analysis. First, as aforementioned, sensitivity analysis

indicated the unstableness of pooled OR in the CXCL12 level

as the continuous variable group, suggesting that using the

CXCL12 level as the continuous variable to conduct multivariate

logistic regression to assess the role of the CXCL12 level in

predicting the prognosis of CAD maybe not a good method.

Second, although we conducted subgroup analysis stratified by

CAD clinical type, ethnicity, and follow-up duration, subgroup

analysis stratified by different MACEs could not be conducted

for lack of enough related data. Third, the sample size of a few

included studies was small.

In summary, our meta-analysis illustrated that the higher

blood CXCL12 level is associated with increased MACEs in

patients with CAD, and the blood CXCL12 level may serve

as an important prognostic index for CAD. Integrating blood

CXCL12 levels into CAD risk assessment tools may provide

more comprehensive messages for evaluating and managing

patients with CAD, which are very beneficial for clinical

workers. However, in considering the limitations of our meta-

analysis, further large-scaled multicentered prospective studies

are warranted to demonstrate the predicting role of the blood

CXCL12 level in CAD prognosis, especially to elucidate its role

in predicting specific MACEs.
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