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Superconductivity from the condensation of
topological defects in a quantum spin-Hall insulator
Yuhai Liu1, Zhenjiu Wang2, Toshihiro Sato2, Martin Hohenadler2, Chong Wang3, Wenan Guo 1,4 &

Fakher F. Assaad2

The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of

condensed matter physics. While a QSH state from spin-orbit coupling can be fully under-

stood in terms of band theory, fascinating many-body effects are expected if it instead results

from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac

fermions where a QSH state is dynamically generated. Our tuning parameter further allows

us to destabilize the QSH state in favour of a superconducting state through proliferation of

charge-2e topological defects. This route to superconductivity put forward by Grover and

Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the

possibility to study DQCPs without a second length scale associated with the reduced

symmetry between field theory and lattice realization and, by construction, is amenable to

large-scale fermion quantum Monte Carlo simulations.
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In the Kane-Mele model for the quantum spin-Hall (QSH)
insulator1, the original SU(2) spin symmetry is explicitly
broken by spin-orbit coupling. Here, we instead consider the

case where this symmetry is preserved by the Hamiltonian but
spontaneously broken by an interaction-generated QSH state2. At
the mean-field level, the latter is characterised by an SO(3) order
parameter constant in space and time and a band structure with a
non-trivial ℤ2 topological index1,3,4. Long-wavelength fluctua-
tions of this order parameter include in particular the Goldstone
modes that play a key role for phase transitions to, e.g., a Dirac
semimetal. Such a transition, illustrated in Fig. 1a, is described by
a Gross-Neveu-Yukawa field theory5,6 with QSH order encoded
in a mass in the underlying Dirac equation. Fluctuations can also
take the form of topological (‘skyrmion’) defects that correspond
to a non-trivial winding of the order parameter vector. Due to the
topological band structure of the QSH state, such skyrmions carry
electric charge 2e7: as illustrated in the Supplementary Discus-
sion, the insertion of a skyrmion in a system with open bound-
aries pumps a pair of charges from the valence to the conduction
band through the helical edge states. The condensation of sky-
rmion defects—which coincides with the destruction of the QSH
state—represents a route to generate a superconducting (SC)
state.

A direct QSH-SC phase transition (Fig. 1a) is an instance of a
deconfined quantum critical point (DQCP)8–10, the concept of
which relies on the topological defects of one phase carrying the
charge of the other phase. Defect condensation then provides a
mechanism for a continuous transition between two states with
different broken symmetries (SO(3) for QSH, U(1) for SC) that is
forbidden by Landau theory. Despite considerable numerical
efforts11,12, DQCPs remain a subject of intense debate. Important
questions include their very nature—weakly first order or con-
tinuous10—and the role of emergent symmetries13. One of the
difficulties lies in the fact that previous lattice realisations12,14,15

involve antiferromagnetic (AFM) and valence bond solid (VBS)
phases. For the widely studied square lattice, the VBS state breaks
the discrete ℤ4 rotation symmetry, whereas the field theory has a
U(1) symmetry. The latter is recovered on the lattice exactly at the
critical point, but in general the ℤ4 symmetry breaking term is
relevant. The additional length scale at which the ℤ4 symmetry
becomes visible obscures the numerical analysis. In the field
theory, this translates into the notion that quadruple skyrmion
addition (monopole) events of the AFM SO(3) order parameter
are irrelevant at criticality but proliferate slightly away from this
point to generate the VBS state8,16,17. Hence, the theory is subject
to a dangerously irrelevant operator. This complication is com-
pletely avoided in the model introduced here, where the DQCP
separates QSH and SC rather than AFM and VBS phases. QSH
and AFM order are both described by an SO(3) order parameter.
However, instead of the ℤ4 symmetry broken by the lattice VBS
state, the SC phase breaks the same global U(1) gauge symmetry
(charge conservation) on the lattice and in the continuum.

Therefore, the number of fat skyrmion defects7 with charge 2e is
conserved and monopoles are absent.

The exciting prospects of (i) SC order from topological defects
of a spontaneously generated QSH state and (ii) a monopole-free
realisation of a DQCP motivate the search for a suitable lattice
model amenable to quantum Monte Carlo simulations without a
sign problem. Such efforts are part of the recent surge of designer
Hamiltonians aimed at studying exotic phases and phase transi-
tions18–24. In this article we introduce and solve a model that
realises the quantum phase transition between QSH and SC
states.

Results
Model. Our starting point is a tight-binding model of Dirac
fermions in the form of electrons on the honeycomb lattice with
nearest-neighbour hopping (see Fig. 1b), as described by the
Hamiltonian

Ĥt ¼ �t
X
hi;ji

ðĉyi ĉj þH:c:Þ: ð1Þ

The spinor ĉyi ¼ ð̂cyi;"; ĉyi;#Þ, where ĉyi;σ creates an electron at
lattice site i with spin σ. Equation (1) yields the familiar graphene
band structure with gapless, linear excitations at the Dirac
points25. A suitable interaction that generates the above physics is

Ĥλ ¼ �λ
X
⬡

X
hhi;jii2⬡

iνijĉ
y
i σĉj þH:c:

0
@

1
A

2

: ð2Þ

The first sum is over all the hexagons of a honeycomb lattice
with L × L units cells and periodic boundary conditions. The
second sum is over all pairs of next-nearest-neighbour sites of a
hexagon, see Fig. 1b. The quantity vij= ±1 is identical to the
Kane-Mele model1; for a path from site i to site j (connected by
Rij, see Fig. 1b) via site k, νij ¼ êz � ðRik ´RkjÞ=jêz � ðRik ´RkjÞj
with êz a unit vector perpendicular to the honeycomb plane.
Finally, σ= (σx, σy, σz) with the Pauli spin matrices σα.

The rationale for this choice of interaction is easy to
understand. Without the square, and taking just one of the three
Pauli matrices, Eq. (2) reduces to the Kane-Mele spin-orbit
coupling that explicitly breaks the SO(3) spin symmetry. In
contrast, the latter is preserved by Ĥλ but spontaneously broken
by long-range QSH order. For λ > 0, the model defined by Ĥ ¼
Ĥt þ Ĥλ can be simulated without a sign problem by auxiliary-
field quantum Monte Carlo methods26–28. In the following, we set
t= 1 and consider a half-filled band with one electron per site.

A mean-field decomposition of Eq. (2) with order parameter

field N⬡ ¼ P
hhi;jii2⬡ iνijĉ

y
i σ ĉj þH:c:

D E
suggests a transition

from the Dirac semimetal to a QSH state at a critical value
λc1 > 0. However, it is highly non-trivial if the associated saddle
point is stable. In fact, s-wave pair hopping processes arise upon
expanding the square in Eq. (2) and can lead to super-
conductivity29. The exact phase diagram can be obtained by
quantum Monte Carlo simulations. Remarkably, as illustrated in
Fig. 1a, we find two distinct phase transitions. First, from the
semimetal to a QSH state at λc1, then from the QSH state to an s-
wave SC at λc2 > λc1.

Order parameters. The semimetal-QSH transition involves the
breaking of spin rotation symmetry and is expected to be in the O
(3) Gross-Neveu universality class for N= 8 Dirac fermions (two
sublattices, two Dirac points, σ= ↑, ↓). The local vector order
parameter takes the form of a spin-orbit coupling,

Ô
QSH
r;δ ¼ iĉyrσ ĉrþδ þH:c:; ð3Þ
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Fig. 1 Phase diagram and model. a Schematic ground-state phase diagram
with semimetallic, QSH, and SC phases. b Illustration of nearest- and next-
nearest neighbours and the vector Rij on a honeycomb lattice plaquette
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where r corresponds to a unit cell labelling a hexagon, and r+ δ
runs over all next-nearest neighbours. Because this order para-
meter is a lattice regularisation of the three QSH mass terms in
the Dirac equation, long-range order implies a mass gap1. To
study the phase transition, we computed the associated suscept-
ibility

χOδ;δ0 ðqÞ ¼
1
L2
X
r;r0

Z
0

β

dτeiq�ðr�r0ÞhÔr;δðτÞÔr0;δ0 ð0Þi: ð4Þ

Here, hÔr;δðτÞi ¼ 0 by symmetry for finite L and we concentrate
on the largest eigenvalue of χOδ;δ0 (q) (see Supplementary Notes),
henceforth denoted as χO(q). To detect the transition, we consider
the renormalisation-group invariant correlation ratio

1� χOðQþ ΔqÞ
χOðQÞ ¼ RO

χ L1=ν λ� λOc
� �

; L�ω
� �

ð5Þ

with jΔqj ¼ 4πffiffi
3

p
L
, the ordering wavevector Q= 0, the correlation

length exponent v and the leading corrections-to-scaling expo-
nent ω. We set the inverse temperature β= L in our simulations
based on the assumption of a dynamical critical exponent z= 130.
In contrast to previous analyses of Gross-Neveu criticality31,32 we
use susceptibilities rather than equal-time correlators to sup-
presses background contributions to the critical fluctuations.

Numerical results. The results for the semimetal-QSH transition
are shown in Fig. 2. The finite-size estimate of the critical value,
λQSHc1 ðLÞ, corresponds to the crossing point of RQSH

χ for L and L+ 6.
Extrapolation to the thermodynamic limit (inset of Fig. 2a) yields
λQSHc1 ¼ 0:0187ð2Þ: As shown in the Supplementary Fig. 4, the
single-particle gap is nonzero for λ>λQSHc1 . The correlation length

exponent was estimated from11

1
νOðLÞ ¼

1
log r

log
d
dλR

O
χ λ; rLð Þ

d
dλR

O
χ λ; Lð Þ

 !�����
λ¼λOc ðLÞ

ð6Þ

with r ¼ Lþ6
L . A similar equation can be used to determine the

exponent η from the divergence of the susceptibility (χO∝ L2−η) at
criticality (see Sl). Aside from a polynomial interpolation of the data
as a function of λ for each L, this analysis does not require any
further fitting and, by definition, converges to the correct exponents
in the thermodynamic limit with rate L−ω. While existing estimates
of the critical exponents vary31–33, the values 1/v= 1.14(9) and η=
0.79(5) from Fig. 2 are consistent with v= 1.02(1) and η= 0.76(2)
from previous work32. This suggest that the semimetal-QSH tran-
sition is in the same universality class as the semimetal-AFM
transition31,32,34.

To detect SC order, we used the order parameter

ÔSC
r;~δ

¼ 1
2

ĉy
rþ~δ;"ĉ

y
rþ~δ;# þH:c:

� �
ð7Þ

where r þ ~δ runs over the two orbitals of unit cell r. As before, we
computed the corresponding susceptibility and used β= L in
anticipation of z= 1. Figure 3 shows that, within the very small
error bars, the critical value for SC order λSCc2 ¼ 0:0332ð2Þ and the
critical value for the disappearance of long-range QSH order
λQSHc2 ¼ 0:03322ð3Þ are identical, suggesting a direct QSH-SC
transition. At this transition, the single-particle gap remains of
order one and we find no evidence for a first-order transition for
the available system sizes (See Supplementary Fig. 4).
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Fig. 2 Gross-Neveu semimetal-QSH transition. a Correlation ratio RQSHχ [Eq.
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The observed s-wave symmetry of the SC state emerges directly
from the perspective of Dirac mass terms. In 2+ 1 dimensions
and for N= 8 Dirac fermions, there exist numerous quintuplets
of anti-commuting mass terms that combine different order
parameters in a higher SO(5) symmetry group35. A well-known
example relevant for DQCPs are the three AFM and two VBS
mass terms. Here, the three QSH mass terms form a quintuplet
with the two s-wave SC mass terms. The resulting SO(5) order
parameter allows for a very natural derivation of the Wess-
Zumino-Witten term36,37, crucial for the DQCP, by integrating
out the (massive) Dirac fermions38.

As argued in the introduction, the QSH-SC problem is free of
monopoles, so that our lattice model represents an improved
model to study the DQCP. Although simulations for fermions are
limited to smaller system sizes than for bosons, severe size effects
due to monopoles11 can be expected to be absent. Figure 4 shows
a finite-size analysis for the correlation length exponent and the
anomalous dimension, based on either the QSH or the SC
correlation ratio. The resulting estimates ηQSH= 0.21(5) and
ηSC= 0.22(6) are compatible with those from loop models12

where ηAFM= 0.259(6) and ηVBS= 0.25(3). An alternative
analysis described in the Supplementary Methods yields similar
values. Given the very similar anomalous dimensions ηQSH and
ηSC of QSH and SC fluctuations, the ratio of the QSH and SC
susceptibilities is expected to be a renormalisation group
invariant, as confirmed by Fig. 4c. However, a crossing of
different curves at λc2 is a necessary but not a sufficient condition
for an emergent SO(5) symmetry at the DQCP. In fact, a
continuous transition with emergent SO(5) symmetry can be
essentially excluded here in the light of the condition η > 0.52
from the conformal bootstrap method39. The latter also yields a
bound of 1/v < 1.957 for a unitary conformal field theory with
only one tuning parameter40 that is satisfied by 1/vSC= 1.8(2)
and 1/vQSH= 1.7(4) from Fig. 4a but not by the value 1/v= 2.24
(4) reported before11. Simulations of the monopole-free model on
even larger lattices are required for a conclusive answer.

Discussion
Our model provides a realisation of a QSH insulator emerging
from spontaneous symmetry breaking. The corresponding SO(3)
order parameter permits both long-wavelength Goldstone modes
and topological skyrmion defects. By means of a single parameter
λ, we can trigger continuous quantum phase transitions to either
a semimetal or an s-wave SC state. For the semimetal-QSH
transition, the critical exponents are consistent with Gross-Neveu
universality31,32. The QSH-SC transition is of particular interest
since it provides a monopole-free, improved model of deconfined
quantum criticality with only one length scale. The mechanism
for SC order from the QSH state is the condensation of skyrmion
defects of the QSH order parameter with charge 2e. For the QSH-
SC transition, our values of the anomalous dimension match
those of previous work on the AFM-VBS transition12,15, which
are inconsistent with results from conformal bootstrap studies if
an SO(5) symmetry emerges at the critical point (as supported by
numerical and analytical studies). One possible resolution is the
scenario of ‘pseudo-criticality’ where the fixed point lies slightly
outside the accessible parameter space and the RG flow becomes
very slow10,12,41,42. In contrast, our estimate of 1/v is still within
the conformal bootstrap bound40, although a bound-violating
result is not completely ruled out given the numerical uncertainty.
Consequently, it is of considerable interest to exploit the full
potential of quantum Monte Carlo methods in order to access
even larger lattices. Other promising approaches that can shed
further light on DQCPs make use of a lattice discretisation
scheme based on projection onto a Landau level, so that models
with explicit SO(5) symmetry can be considered43.

In traditional realisations of deconfined criticality in spin
models, the finite-size analysis is subtle due to the dangerously
irrelevant perturbation (the monopoles)11. The absence of the
latter is a major advantage of the fermionic model studied here
and makes the interpretation of the finite-size scaling relatively
straightforward. A monopole-free realisation of DQCPs is
impossible in traditional spin models because of a quantum
anomaly10 for the SO(3) × U(1) symmetry in the effective field
theory. Essentially, this anomaly rules out any (local) lattice
realisation of DQCP with exact SO(3) × U(1) symmetry. In the
standard setting, what is being realised on the lattice is SO(3) ×ℤ4

(ℤ4 being the lattice C4), and the full SO(3) × U(1) is emergent
only in the infrared limit, leaving the U(1)→ℤ4 anisotropy as a
dangerously irrelevant perturbation. (In fact even the SO(3) ×ℤ4

is still anomalous. This anomaly is matched by the non-onsite
nature of lattice rotation symmetries44). In contrast, the model in
our work has the exact U(1) symmetry (charge conservation). In
terms of anomalies, this is possible because of the existence of
microscopic degrees of freedom (the fermions) that carry ‘frac-
tional’ symmetry quantum numbers (half-spin and half-charge in
terms of Cooper pair charges). In a more formal language, the
anomaly is eliminated by properly extending the global symmetry
(hence allowing smaller representations such as spin-1/2). An
even simpler extension of the symmetry that eliminates the
anomaly is SU(2) × U(1), meaning that microscopically there are
charged spinless bosons, together with both charged and neutral
spin-1/2 bosons. A challenge for future studies is to find a rea-
sonably simple Hamiltonian that realises a DQCP and is amen-
able to sign-free bosonic QMC simulations in, e.g., the stochastic
series expansion representation45.

The SC phase generated from skyrmion defects motivates
further investigations. Its vortex excitations carry a spin-1/2
degree of freedom7, so that in the quantum critical fan thermal
melting produces a gas of charged spinons46. It is also possible to
add an independent attractive Hubbard interaction to explore a
semimetal-QSH-SC tricritical point (as opposed to the recently
discovered semimetal-AFM-VBS tricritical point24) with
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predicted SO(5) Gross-Neveu criticality47,48. The vector form of
Ĥλ makes it straight forward to reduce the SO(3) QSH symmetry
to U(1) and thereby investigate an easy-plane realisation of
DQCPs with a U(1) × U(1) symmetry on the lattice. Work along
these directions is in progress.

Methods
Quantum Monte Carlo. We employed the ALF49 implementation of the auxiliary-
field finite-temperature quantum Monte Carlo method26–28. The interaction term
is written as a perfect square with negative prefactor (λ > 0), allowing for a
decomposition in terms of a real Hubbard-Stratonovitch field. For each field
configuration, time-reversal symmetry holds and the eigenvalues of the fermion
matrix occur in complex conjugate pairs50–52. At low temperatures, the scales of
the imaginary-time propagation do not fit into double precision real numbers and
we have used methods to circumvent this issue 53. The imaginary-time dis-
cretisation was Δτ= 0.2. For reasons explained in the Supplementary Notes, we
chose a symmetric Trotter decomposition that minimises discretization errors.
Reported errors and error bars in figures correspond to standard errors.

Data availability
The datasets generated during the current study are available from the corresponding
author on reasonable request.

Code availability
ALF49 is open-source software that is available from the corresponding author on
request.
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