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Although toxic effects of microcystins (MCs) in mammals and fish have been extensively
studied, the effects of MCs on the immune system and gut microbiota of amphibians
have not received sufficient attention. As MCs cause general damage to the vertebrate
liver and immune system and trigger an inflammatory response, and the gut microbiota
is closely related to host metabolism and immunity, we speculated that MCs can
cause changes in the immune system and gut microbiota of amphibians. To verify
this, we examined the intestinal and liver injury of Xenopus laevis exposed to
different microcystin-leucine-arginine (MC-LR) concentrations and the effects on the
gut microbiota through high-throughput sequencing of 16S rDNA of the gut microbiota
combined with histopathological analysis, enzyme activity determination, and qRT-PCR.
Our results showed that MC-LR caused focal infiltration of inflammatory cells and
increased the number of T cells and local congestion and vacuolization in X. laevis
liver, but reduced the number, density, height, and regularity of villi. These liver and
intestinal injuries became more obvious with an increase in MC-LR concentration. MC-
LR significantly decreased the activities of malondialdehyde and alkaline phosphatase
and the expression of TGF-β in the liver. Moreover, MC-LR significantly altered the
gut microbiota of X. laevis. The relative abundance of Firmicutes and Bacteroidetes in
high-concentration MC-LR groups was significantly reduced compared to that in low-
concentration MC-LR groups, whereas Fusobacteria was significantly enriched. The
metabolic gene composition of the gut microbiota in low-concentration MC-LR (≤5
µg/L) groups was significantly different from that in high-concentration MC-LR (≥20
µg/L) groups. These results deepen our understanding of the toxicity of MCs to aquatic
organisms and assessment of the ecological risk of MCs in amphibians.

Keywords: Xenopus laevis, cyanotoxin, gut microbiota, inflammation, ecological security assessment

INTRODUCTION

With the rapid development of modern industry and agricultural production, a large amount of
wastewater containing nitrogen, phosphorus, and other nutrients is discharged into natural water
bodies, such as rivers and lakes, resulting in increased freshwater eutrophication and frequent
blue-green algal blooms (BGAB) (Ni et al., 2010; Svirčev et al., 2019). Additionally, global warming
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intensifies nutrient runoff and plays an important role in the
occurrence and expansion of BGAB (Paerl et al., 2011; Michalak
et al., 2013; Paerl and Otten, 2013). The intensity, frequency, and
duration of harmful BGAB have increased worldwide (Huisman
et al., 2018; Ho et al., 2019). Many blue-green algae produce
cyanotoxins (Banerjee et al., 2021), which accumulate in natural
water after BGAB. For instance, the average concentration of
microcystins (MCs) was 11.8 µg/L (maximum concentration,
35.8 µg/L) during BGAB in Gonghu Bay, Taihu Lake, China, in
2008 (Wang et al., 2010). The peak concentration of microcystin-
leucine-arginine (MC-LR) during BGAB in 2005 was 40.6 µg/L
in typical artificial ponds in the Yangtze River Delta of China
(Hu et al., 2018). According to the guidelines of the World
Health Organization, the maximum acceptable concentration
of MC-LR in drinking water is 1.0 µg/L and tolerable daily
intake is 0.04 µg/kg body weight (World Health Organization,
1998). MCs can be transferred along the food chain and undergo
biomagnification (Banerjee et al., 2021), thereby posing health
risks to aquatic organisms, wild animals, livestock, and humans
(Xiang et al., 2019). Therefore, BGAB in eutrophic water have
become a major environmental and health problem worldwide
(Yang et al., 2020).

MCs are the most common toxins produced by BGAB. To
date, more than 240 subtypes of MCs have been reported, with
MC-LR being the most common and toxic among all (Meriluoto
et al., 2017). MC toxicity is organ-specific, with the liver being the
most important target organ (Sun et al., 2014). Acute exposure
to MCs can lead to hepatomegaly, bleeding, and even death in
animals and humans, whereas long-term exposure can lead to
chronic liver injury and inflammation (Massey et al., 2018). The
main mechanism involves regulation of liver parameters and
immunosuppression by inhibiting the production of interferon
and synthesis of cytokines (Palikova et al., 2013). Inhibition of
protein phosphatases (types 1 and 2A) damaged the liver, affected
the redox system, and caused cellular inflammation after acute
or chronic exposure (Harke et al., 2016). Moreover, MCs can
damage other organs through blood circulation, and their toxic
effects include apoptosis induction, cytoskeleton destruction,
DNA damage, inflammation, necrosis, and oxidative stress (Liu
and Sun, 2015; Zhou et al., 2015). For instance, MCs caused
oxidative stress in the kidney and damaged its structure and
function (Li et al., 2013). In addition, they caused oxidative
stress, damage, and disruption of sex hormone levels in gonad
tissues, leading to the destruction of germ cell skeleton, apoptosis,
and tumor induction (Chen et al., 2013), and showed toxic
effects in immune organs such as thymus and spleen, thereby
affecting the immune function (Lone et al., 2016). Moreover,
they could pass through the blood-brain barrier and caused
functional damage to the nervous system (Kist et al., 2012).
After intraperitoneal injection of MC-LR for 24 h and 90 min
in Sprague-Dawley rats and Balb/c mice, respectively, significant
increase in renal weight, filling of glomerular capillaries with
eosinophilic fibrous substances, and moderate vacuolation of
the proximal tubular epithelium along with slight dilation of
tubules were observed (Hooser et al., 1989). After 13 days of
acute exposure to 10 µg/kg MC-LR, the serum urea nitrogen,
creatinine, and malondialdehyde (MDA) levels in male Kunming

mice increased significantly (Xu, 2005). When tilapia were
continuously exposed to 120 µg/kg MC-LR for 7 days, the
activity of catalase (CAT), SOD, glutathione (GSH), and GR in
the kidney was decreased significantly, and the dynamic redox
balance was destroyed (Prieto et al., 2008). The hepatotoxicity
experiments of chronic and subchronic exposure to MCs showed
that chronic MC-LR immersion and exposure significantly
changed the protein expression and metabolic profile of zebrafish
liver through abnormal mitochondrial function, impaired aerobic
respiration, interference of energy metabolism, and endoplasmic
reticulum stress, eventually leading to lipid metabolism disorder
(Chen L. et al., 2017). Chronic low-dose MC-LR exposure for 3
months resulted in abnormal lipid metabolism in the liver and
serum of mice as well as inhibition of fatty acid β-oxidation
and liver lipoprotein secretion, promoting the occurrence of
liver inflammation and causing non-alcoholic steatohepatitis
(He et al., 2017). However, to date, most studies on eco-
toxicological risks of MCs have focused on mammals and fish
(Chen et al., 2016).

Amphibians play an important role in the food web. Due
to their complex life history and high skin permeability, they
are more vulnerable to environmental pollution than other
vertebrates (Wang et al., 2019). With amphibians being at a high
level in the aquatic food chain, they have been facing a great
threat of population decline and extinction in recent years. In
addition to chytridiomycosis, exposure to chemical pollutants in
their habitats has become the main reason for their population
decline (Voyles et al., 2009; Bletz et al., 2017; Xie et al., 2019).
Exposure to 2 µg/L MC-LR seriously damaged the gut tissue of
Lithobates catesbeianus tadpoles accompanied by inflammation
(He et al., 2022). MC-LR (1 µg/L) induced apoptosis in male
Rana nigromaculata testicular cells through mitochondrial and
endoplasmic reticulum pathways (Zhang et al., 2013a). Exposure
of L. catesbeianus to 1 µg/L MC-LR for 7 days resulted in multiple
organ toxicity, endocrine disorder, and impaired reproductive
function (Zhang et al., 2013b; Jia et al., 2018). Prolonged
exposure to BGAB (equivalent to approximately 1 µg/L MCs)
caused obvious oxidative damage in the liver of Pelophylax kl.
esculentus (Gavrilović et al., 2021). Although the gut microbiota
plays an important role in amphibian digestion (Chang et al.,
2016), detoxification (Zhang W. et al., 2016), development
and immunity (Dawood and Koshio, 2016), and environmental
adaptation (Bletz et al., 2017), the effects of MCs exposure on
the expression of immune factors and composition and metabolic
characteristics of the gut microbiota in amphibians have not been
sufficiently studied.

Since MC-LR exposure causes an overall damage to the
liver and immune system of vertebrates and triggers an
inflammatory response, and gut microbiota is closely related
to host metabolism and immunity, we hypothesized that
MC-LR exposure might cause changes in the liver immunity
and the structure and metabolic characteristics of amphibian
gut microbiota, which could increase with the increase in
MC-LR exposure concentration. To verify this hypothesis,
we examined the intestinal and liver injury of Xenopus
laevis under different MC-LR exposure conditions, and their
effects on the structure and metabolic characteristics of the
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gut microbiota through high-throughput sequencing of 16S
rDNA of the gut microbiota combined with histopathological
analysis of the intestine and liver, and determination of
liver enzyme activities and transcriptional regulation of
inflammatory factors.

MATERIALS AND METHODS

Experimental Design and Sample
Collection
The study proposal was reviewed and approved by the Animal
Ethics Committee of the Qilu Normal University. Synchronously
developed X. laevis tadpoles at the 49th stage were purchased
from Nasco (Fort Atkinson, WI, United States). They were
raised in Steinberg’s medium until metamorphosis into young
frogs. MC-LR exposure experiment was carried out on day 120
after fertilization. Sixty synchronously developed young frogs
were randomly divided into 10 aquariums (capacity, 15 L) with
each aquarium having six frogs and 3 L of Steinberg’s medium
containing different concentrations of MC-LR (0, 1, 5, 20, and
50 µg/L, indicated by C0, C1, C5, C20, and C50, respectively).
Two parallel aquariums were set for each MC-LR concentration.
One-third volume of Steinberg’s medium was replaced every 2
days with new medium containing corresponding concentration
of MC-LR. Frogs were cultured at the Amphibian Breeding
Laboratory of Qilu Normal University under the following
conditions: temperature, 23 ± 1◦C; humidity, 55 ± 5%; and
12 h/12 h light-dark cycle. After 8 weeks of exposure to MC-
LR (Figure 1), three frogs were randomly collected from each
aquarium, sacrificed, and fixed on an anatomical plate. Their
abdominal cavities were immediately opened (approximately
1 cm in the middle) to collect the liver and intestine, which
were divided into two parts: one part was washed with phosphate
buffer and fixed in 10% formalin for tissue sectioning, and
the other was stored at –80◦C for RT-PCR, enzyme activity
determination, and sequencing. At week 4 and 8 of the
experiment, 500 mL of culture water was collected from each
aquarium to monitor physicochemical factors.

MC-LR used in this study was purchased from Taiwan
Algal Science Inc. Its purity (≥95%) was analyzed using high-
performance liquid chromatography (HPLC; LC-10A; Shimadzu
Corporation, Nakagyo-ku, Kyoto, Japan) (Moreno et al., 2004).
Kits for GSH, MDA, CAT, and alkaline phosphatase (AKP)
were purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). All other reagents were purchased from
standard commercial suppliers.

Histological, Morphological, and
Immunohistochemical Analysis
Liver and gut tissues were fixed in 10% neutral buffered
formalin, routinely processed, embedded in paraffin wax,
sectioned (thickness, 4 µm), and stained with hematoxylin
and eosin (H&E). Histopathological assessment was conducted
using Pannoramic DESK + Pannoramic Scanner (3DHistech
Ltd., Hungary). CD4 immunofluorescence was performed to

determine the distribution of T cells in the liver and gut of
X. laevis (Yamagami et al., 2011).

Determination of Liver Enzyme Activities
To detect the levels of antioxidant and oxidative stress-related
markers, liver tissues were homogenized in sterile normal saline
in an ice bath and centrifuged at 2,500 rpm for 20 min at
4◦C to collect the supernatant. Each exposure group had three
biological replicates. The levels of GSH, MDA, CAT, and AKP in
the supernatant were determined using commercially available
kits, according to the manufacturer’s instructions (Nanjing
Jiancheng, China). Coomassie brilliant blue staining was used to
determine the protein content of each intestinal tissue sample
(Bradford, 1976).

qRT-PCR of Liver Immune-Associated
Factors
Total RNA was isolated from liver samples using One-step
RT-PCR Kit (Accurate Biology, Hunan, China), according to
the manufacturer’s protocol. Total RNA concentration was
determined using NanoDrop One spectrophotometer (Thermo
Fisher Scientific, United States). Then, 1 µg of total RNA was
reverse-transcribed into cDNA using oligo-dT primers. qRT-PCR
was performed to analyze gene expression using SYBR Green
Premix Pro Taq HS qPCR Kit (Accurate Biology, Hunan, China).
Transcriptional levels of the target genes were normalized against
that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Primers (Table 1) for target genes were designed using Oligo 7.0.
Primer synthesis and qRT-PCR amplification reaction conditions
were consistent with those reported in our previous study
(Li et al., 2022).

Gut Microbiota DNA Extraction and
High-Throughput Sequencing
Gut microbiota DNA was extracted using PowerFecal DNA kit,
as previously described (Li et al., 2022). The V4-V5 hypervariable
region of 16S rDNA was amplified using the primer pair
515F/909R and sequenced using Illumina MiSeq system at
Guangdong Meilikang Bio-Science Ltd., China, as previously
described (Xiang et al., 2018).

Raw reads were merged using FLASH 1.2.8 software (Magoc
and Salzberg, 2011) and processed using QIIME 1.9.0 pipeline
(Caporaso et al., 2010), as previously described (Xiang et al., 2018;
Li et al., 2022). LEfSe analysis was used to determine differences
in the dominant genera (Segata et al., 2011). Functional profiles of
the gut microbiota were predicted by phylogenetic investigation
of communities through reconstruction of unobserved states
(PICRUSt; Langille et al., 2013).

Data Analysis
Data are presented as the mean ± standard error (SE) for
each group. One-way analysis of variance (ANOVA) along with
Tukey-Kramer post-hoc test was conducted using R 2.5.1. Non-
parametric multivariate analysis of variance (PERMANOVA) was
performed using the R vegan package (Dixon, 2003). Principal
coordinates analysis (PCoA) was conducted using QIIME 1.9.0
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FIGURE 1 | Framework shows the experimental design of the study.

TABLE 1 | Primer sequences used for qRT-PCR.

Gene name Gene ID Primer name Primer sequence (5′→3′)

Glyceraldehyde-3-phosphate dehydrogenase 14433 mGAPDH-F CACAGACTTACACAGGGGTTGA

mGAPDH-R AGGGGTCATTGATAGCGACG

TNF-α 21926 mTnfα-F CTGTACCAGAAGCCAGAGCC

mTnfα-R CGATGGCGTTATCCTTGAGC

IL-8 20309 mIL-8-F GTGTCCTGGCAATACTGGCTCTC

mIL-8-R GGGATGGATAGGCTTGCTTTCTGTC

TGF-β 21813 mTGFβ-F GGCTGTGGATATGGAAGAAGTCAGG

mTGFβ-R GGCACTGTCATCTTCTCGCTGTC

pipeline. Principal component analysis (PCA) was conducted
using STAMP software (Parks et al., 2014). Heatmap profiles were
obtained using R pheatmap package. Differences were considered
statistically significant at p < 0.05.

RESULTS

Effect of Microcystin-LR on
Histomorphology and
Immunohistochemistry of the Intestine
and Liver of Xenopus laevis
The liver tissues of the C0 X. laevis group were evenly
stained. The shape and size of hepatocytes were consistent and
regularly arranged. The cytoplasm was vacuolar, and no obvious
inflammation was observed (Figure 2A). The liver tissues of
the C1 group treated with 1 µg/L MC-LR showed multiple
focal infiltrations of inflammatory cells (indicated by red arrows,
Figure 2B). In the C5 (5 µg/L MC-LR), C20 (20 µg/L MC-
LR), and C50 (50 µg/L MC-LR) groups, a large number of focal
infiltrations of inflammatory cells was observed in the liver tissues
(indicated by red arrows, Figures 2C–E). Moreover, in the C20
and C50 groups, local congestion was observed in the liver tissues
(indicated by blue arrows, Figures 2D,E). These results indicate
that the liver congestion and inflammation increased with an
increase in MC-LR concentration.

In the C0 group, the intestinal villi were abundant and highly
consistent. The epithelial structure of the mucosal layer was
complete. The morphological structure of the epithelial cells
was normal and closely arranged, with no obvious inflammation
in the lamina propria (Figure 3A). In the C5, C20, and
C50 groups, the number, density, and regularity of intestinal
villi decreased, and cytoplasmic vacuolization (indicated by
black arrow, Figure 3) and gaps between the base and villi
appeared locally (indicated by green arrows, Figure 3). With
an increase in MC-LR concentration, these intestinal injuries
became more obvious. Moreover, the intestinal villus height in
the MC-LR-exposed groups decreased with an increase in MC-
LR concentration, and the values for the C20 and C50 groups
were significantly different compared with the control group (C0)
(P < 0.05; Figure 3F).

CD4 immunofluorescence of the liver T cells showed
that the number of T cells in the liver increased with an
increase in MC-LR concentration, and there were significant
differences among the groups (P < 0.05; Supplementary
Figure 1).

Effect of Microcystin-LR on Liver
Enzyme Activity
MDA level in the liver of X. laevis in the C0 group was 4.97± 0.24
nmol/mgprot. In the C1, C5, C20, and C50 groups, the levels were
significantly lower (2.71 ± 0.12, 1.68 ± 0.11, 3.15 ± 0.19, and
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FIGURE 2 | Liver microstructural changes of Xenopus laevis exposed to different concentrations of MC-LR. (A–E) Indicate the liver micrographs of Xenopus laevis
exposed to 0, 1, 5, 20, and 50 µg/L MC-LR, respectively. Red and blue arrows indicate focal infiltration of inflammatory cells and congestion, respectively.

3.41± 0.57 nmol/mgprot, respectively; P < 0.05; Supplementary
Figure 2) than that in the C0 group.

GSH content in the C0 group was 38.49 ± 4.82 µmol/gprot;
the content increased in the C5, C20, and C50 groups
(59.83 ± 4.38, 44.61 ± 3.49, and 62.62 ± 1.22 µmol/gprot,
respectively), but not in the C1 group (35.92± 2.19 µmol/gprot).
Moreover, there were significant differences in GSH content in
the liver among all groups (P < 0.05; Supplementary Figure 2B)
except between the C0 and C1, C0 and C20, C1 and C20, and
C5 and C50 groups.

CAT activity in the C0 liver was 44.62 ± 0.26 U/mgprot, and
the activity increased with an increase in MC-LR concentration
(45.23 ± 0.28, 53.73 ± 0.55, and 63.73 ± 0.35 U/mgprot in the
C1, C5, and C50 groups, respectively), except the C20 group
(30.80± 0.66 U/mgprot). Except between the C0 and C1 groups,
there were significant differences in CAT level in the liver among
groups (P < 0.05; Supplementary Figure 2C).

AKP activity in C0 liver was 304.68± 2.61 U/gprot, whereas it
was significantly lower in the liver of C1, C5, C20, and C50 groups
(53.39 ± 0.66, 116.32 ± 6.52, 138.91 ± 1.29 and 105.53 ± 2.04
U/gprot, respectively; P < 0.05; Supplementary Figure 2D).

Effect of Microcystin-LR on
Transcriptional Levels of Inflammatory
Factors
Transcriptional levels of TNF-α and IL-8 in the C1, C5, C20,
and C50 groups were 0.35, 0.13, 0.93, and 2.46 times and 0.67,

0.70, 2.58, and 8.79 times that of C0 (Figures 4A,B), respectively.
Transcriptional level of TNF-α and IL-8 first decreased and then
increased with an increase in MC-LR concentration. Treatment
with low concentrations of MC-LR (1 and 5 µg/L) significantly
reduced their transcription, whereas treatment with a high
concentration of MC-LR (50 µg/L) significantly increased their
transcription (P < 0.05; Figures 4A,B). The transcriptional levels
of TGF-β in the liver of the C1, C5, C20, and C50 groups were
0.37, 0.32, 0.57, and 0.77 times that of C0 (Figure 4C), which was
significantly lower than that of the control (C0), and there were
significant differences among the groups except between the C1
and C5 groups (P < 0.05; Figure 4C).

Effects of Microcystin-LR on the Gut
Microbiota Structure and Metabolic
Characteristics
To analyze the effect of MC-LR on the gut microbiota of X. laevis,
we sequenced 16S rRNA gene amplicons of 30 samples from the
five groups (six samples in each group), and a total of 1,866,575
effective sequences were obtained. To eliminate the influence of
sequencing depth on the results, 27,580 sequences were randomly
resampled from each sample for subsequent analysis. A total
of 25,781 operational taxonomic units (OTUs) were identified.
PCoA results based on the weighted UniFrac distances showed
that the samples treated with different MC-LR concentrations
were clustered into five distinct groups according to MC-LR
concentration (PERMANOVA, F = 2.640, P = 0.030; Figure 5A).
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FIGURE 3 | Intestinal microstructural changes of Xenopus laevis exposed to different concentrations of MC-LR. (A–E) Indicate the intestinal micrographs of Xenopus
laevis exposed to 0, 1, 5, 20, and 50 µg/L MC-LR, respectively. (F) Intestinal villus height. Green and black arrows indicate the gap between the base and villi and
vesicular vacuolization, respectively. Numbers after the letter C in the group names indicate MC-LR concentrations. Different letters above boxes indicate significant
differences between the groups (P < 0.05).

FIGURE 4 | Changes in inflammatory factor gene expression in Xenopus laevis liver under different MC-LR concentration treatments. (A) TNF-α. (B) IL-8. (C) TGF-β.
Numbers after the letter C in the group names indicate MC-LR concentrations. Different letters above the bars indicate significant differences between data.

OTU numbers of the gut microbiota in the C5, C20, and C50
groups were significantly higher than those in the C0 and C1
groups, which caused the Goods’ coverage of the gut microbiota
in the C5, C20, and C50 groups to be significantly lower than

those in the C0 and C1 groups (Table 2). With an increase in MC-
LR concentration, the Shannon index of the gut microbiota first
increased and then significantly decreased (Table 2). The Chao1
indices of the gut microbiota in the C20 and C50 groups were
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significantly higher than those in the C0, C1, and C5 groups,
whereas the Simpson indices of the gut microbiota in the C20
and C50 groups were significantly lower than those in the C0,
C1, and C5 groups (Table 2). These results implied that the
presence of MC-LR in aquatic habitats significantly changed the
structure of X. laevis gut microbiota, and with an increase in
MC-LR concentration, α-diversity of the gut microbiota changed.
Moreover, our results showed that the OTU number, Goods’
coverage, and Shannon index were more sensitive than Simpson
and Chao1 indices in characterizing the change in α-diversity of
X. laevis gut microbiota.

Except a few sequences that could not be divided into
any phyla, the other sequences were divided into 64 phyla,
and Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria,
Tenericutes, Actinobacteria, and Cyanobacteria dominated
the gut microbiota (Figure 5B). The relative abundance of
Firmicutes and Bacteroidetes in the C20 and C50 groups was
significantly lower than that in the C0, C1, and C5 groups,
whereas the relative abundance of Fusobacteria was significantly
higher. There were also significant differences in other dominant
phyla among the groups (Figure 5C). At the genus level, 1046
genera were detected, of which 66 dominated the microbiota.
LEfSe results showed significant differences in all dominant
genera that could be determined at the genus level. Epulopiscium,
Anaerotruncus, and Butyricicoccus were significantly enhanced
in the C0 group; Bacteroides, Parabacteroides, PW3, Rikenella,
Dorea, Robinsoniella, Anaerorhabdus, Coprobacillus, and
Treponema were significantly enhanced in C1; Synechococcus,
Mucispirillum, Christensenella, Clostridium, Oscillospira,
Ruminococcus, Eubacterium, Fusobacterium, Rhodobacter,
Limnohabitans, Polaromonas, Polynucleobacter, Bilophila,
Desulfovibrio, Acinetobacter, Pseudoalteromonas, Vibrio, and
Mycoplasma were significantly enhanced in C5; Clavibacter,
Cetobacterium, and Citrobacter were significantly enhanced in
C20; and Flavobacterium and Acetobacterium were significantly
enhanced in C50 (Figures 5D, 6A).

Pearson correlation analysis results showed that
Parabacteroides and Ruminococcus significantly positively
correlated with TNF-α, IL-8, and TFG-β; Bacteroides,
Rikenellaceae PW3, Dorea, Fusobacterium and Desulfovibrio
significantly positively correlated with TNF-α and IL-8;
Flavobacterium and Cetobacterium significantly negatively
correlated with TNF-α and IL-8; Rikenella and Eubacterium
significantly positively correlated with TNF-α and TFG-β;
Mucispirillum, Anaerorhabdus and Coprobacillus significantly
positively correlated with TFG-β; and Epulopiscium significantly
negatively correlated with TFG-β (Figure 6B).

The prediction results of the metabolic characteristics of
X. laevis gut microbiota showed significant changes due to MC-
LR exposure. Metabolic characteristics of the gut microbiota
exposed to low concentrations of MC-LR (≤5 µg/L) were clearly
distinguished from those exposed to high concentrations of
MC-LR (≥20 µg/L) (PERMANOVA, F = 1121.7, P = 0.005;
Figure 7), and analyses based on the KEGG metabolic
subfamilies also exhibited similar results (Supplementary
Figures 3–7). Regarding lipid metabolism, high-concentration
MC-LR (≥20 µg/L) exposure significantly reduced the relative

abundance of genes involved in sphingolipid metabolism and
primary bile acid, secondary bile acid, and steroid hormone
biosynthesis, whereas it significantly increased the relative
abundance of genes involved in ether lipid, glycerolipid,
arachidonic acid, and fatty acid metabolism; biosynthesis of
unsaturated fatty acids; and synthesis and degradation of ketone
bodies (Supplementary Figure 3). Regarding carbohydrate
metabolism, high-concentration MC-LR (≥20 µg/L) exposure
significantly reduced the relative abundance of genes involved
in fructose, mannose, amino sugar, nucleotide sugar, galactose,
starch, and sucrose metabolism and pentose and glucuronate
interconversions, whereas it significantly increased the relative
abundance of genes involved in glycolysis and gluconeogenesis;
citrate cycle; and butanoate, propanoate, C5-branched dibasic
acid, glyoxylate, dicarboxylate, inositol phosphate, and pyruvate
metabolism (Supplementary Figure 4). Regarding energy
metabolism, high-concentration MC-LR (≥20 µg/L) exposure
significantly reduced the relative abundance of genes involved
in methane metabolism but significantly increased the relative
abundance of genes involved in nitrogen and sulfur metabolism
(Supplementary Figure 5). Notably, high-concentration MC-LR
(≥20 µg/L) exposure exhibited the opposite effect on the relative
abundance of genes involved in carbon fixation in prokaryotes
and photosynthetic organisms (Supplementary Figure 5).
With respect to glycan biosynthesis and metabolism, high-
concentration MC-LR (≥20 µg/L) exposure significantly reduced
the relative abundance of genes involved in peptidoglycan
and glycosphingolipid biosynthesis and glycosaminoglycan
degradation, whereas it significantly increased the relative
abundance of genes involved in lipopolysaccharide, N-glycan,
and lipopolysaccharide biosynthesis, and glycosyltransferases
(Supplementary Figure 6). In amino acid metabolism, 1
µg/L MC-LR significantly increased the relative abundance
of amino acid-related enzyme genes in the gut metagenomes
of X. laevis, whereas the relative abundance of these genes
decreased significantly with an increase in MC-LR concentration
(Supplementary Figure 7B). High-concentration MC-LR (≥20
µg/L) exposure significantly reduced the relative abundance of
genes involved in histidine, arginine, and proline metabolism and
lysine biosynthesis, whereas it significantly increased the relative
abundance of genes involved in tryptophan, cysteine, methionine,
phenylalanine, and tyrosine metabolism and lysine, valine,
leucine, and isoleucine degradation (Supplementary Figure 7B).

DISCUSSION

Liver is one of the most important target organs of MCs (Sun
et al., 2014). Acute toxicity of MCs destroys the structure
and causes swelling, aggregation, and necrosis of hepatocytes
(Yoshida et al., 1997). When cells are necrotic, integrity of
the cell membrane is destroyed and the contents are released,
causing an inflammatory reaction. MC-LR caused marked
histopathological damage to mouse liver tissues, including
lymphocyte infiltration and lipid vacuole accumulation (Fawell
et al., 1999). In this study, MC-LR induced accumulation of
lipid vacuoles in X. laevis liver, which is consistent with the
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FIGURE 5 | Changes in the gut microbiota composition of Xenopus laevis exposed to different MC-LR concentrations. (A) Principal coordinates analysis profile of
the gut microbiota composition. (B) Dominant phyla of the gut microbiota. (C) Significant differences of the dominant phyla of the gut microbiota. (D) Cladogram
showed the significantly different taxa of the gut microbiota. Numbers after the letter C in the group names indicate MC-LR concentrations. Different letters above
boxes indicate significant differences between the groups (P < 0.05).

TABLE 2 | Changes in alpha-diversity indices of Xenopus laevis gut microbiota exposed to different concentrations of MC-LR.

α-diversity index C0 C1 C5 C20 C50

OTU number 1522.67 ± 61.69b 1395.50 ± 11.11b 1825.00 ± 11.23a 1862.50 ± 32.69a 1930.33 ± 48.90a

Goods’ coverage 0.96 ± 0.00a 0.96 ± 0.00a 0.95 ± 0.00b 0.95 ± 0.00b 0.95 ± 0.00b

Shannon index 5.16 ± 0.07b 5.26 ± 0.05b 5.79 ± 0.04a 3.90 ± 0.05d 4.50 ± 0.06c

Chao1 index 5469.84 ± 313.12b 5693.84 ± 171.89b 6014.03 ± 155.78b 8082.84 ± 274.07a 7938.73 ± 429.46a

Simpson index 0.92 ± 0.00a 0.93 ± 0.00a 0.93 ± 0.00a 0.67 ± 0.01c 0.78 ± 0.01b

Different lowercase letters in the upper right corner indicate significant differences between data.

results reported by Gupta et al. (2003). Moreover, accumulation
became more obvious with an increase in MC-LR concentration.
T lymphocytes are mainly responsible for cellular immune
functions (Zapata et al., 2006). The present study showed that
the number of T cells in X. laevis liver increased with an increase
in MC-LR concentration in aquatic environment, and there were
significant differences among the groups (P < 0.05). These results
indicated that the severity of liver damage and inflammation
caused by MC-LR exposure increased with an increase in MC-
LR concentration.

MC-LR caused severe erosion of the intestinal villi, decrease
in goblet cell size, and partial loss of microvilli (Ito et al., 2000).
MC-LR also induced the release of the inflammatory cytokine

TNF-α (Christen et al., 2013), altered cell membrane fluidity,
and dysregulated intestinal membrane enzyme activity (Moreno
et al., 2003). Moreover, the intestinal villi of zebrafish treated with
MC-LR were damaged along with epithelial cell shedding and
extensive cytolysis (Chen et al., 2016). In this study, our results
showed that MC-LR exposure reduced the number, height, and
regularity of intestinal villi as well as resulted in gap between
the base and villi in X. laevis. With an increase in MC-LR
concentration, these intestinal injuries became more obvious.

MC-dependent injuries of the liver (Massey et al., 2018),
kidney (Li et al., 2013), intestine (Moreno et al., 2003), gonad
(Zhao et al., 2018), and nervous system (Kist et al., 2012)
are accompanied by oxidative stress. To protect the body
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FIGURE 6 | Heatmap profile shows significantly different dominant genera between Xenopus laevis gut microbiota with different environmental MC-LR contents (A)
and the correlation of these genera with TNF-α, IL-8, and TGF-β (B). *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 7 | PCA profile based on metabolic characteristics of Xenopus laevis gut microbiota treated with different MC-LR concentrations. Numbers after the letter C
in the group names indicate MC-LR concentrations.

Frontiers in Microbiology | www.frontiersin.org 9 May 2022 | Volume 13 | Article 895383

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-895383 May 7, 2022 Time: 19:42 # 10

Li et al. Microcystin Toxicity on Frog Gut Microbiota

from oxidative stress, the antioxidant defense system scavenges
excessive ROS free radicals through antioxidant enzymes and
non-enzymatic antioxidants such as total superoxide dismutase
and GSH. GSH level was significantly increased in the intestine
of Xenopus tropicalis treated with 0.5 µg/L MC-LR, whereas it
was significantly decreased in the intestine treated with 2 µg/L
MC-LR (Li et al., 2020). MDA level and enzyme activity and
transcriptional levels of the antioxidants CAT were increased
in zebrafish ovaries injected with MC-LR (Qiao et al., 2013),
indicating the occurrence of oxidative stress. Our results showed
that GSH content was significantly increased in the liver of
X. laevis treated with 5, 20, and 50 µg/L MC-LR, but not in
those treated with 1 µg/L MC-LR. These results indicate that
low concentration of MC-LR improved detoxification ability of
the antioxidant defense system in X. laevis intestine. However,
exposure to a high concentration of MC-LR decreased the ability
of the antioxidant defense system in X. laevis intestine. MC-
LR exposure caused an initial increase and then decrease in
the activity of AKP in the hepatopancreas of Penaeus vannamei
(Chen Y. Y. et al., 2017). In this study, similar changes were
observed for CAT content in X. laevis liver. Except the group
exposed to 20 µg/L MC-LR, CAT content increased with an
increase in MC-LR concentration in the other groups. However,
in contrast, MDA and AKP contents in X. laevis liver exposed to
MC-LR were significantly decreased compared with the control
(P < 0.05; Supplementary Figure 2). This was probably because
the responses of different species to MC-LR vary based on
their toxicity sensitivities, and the mechanism remains to be
further investigated.

TNF-α, IL-1β, and IL-8 are important markers of
inflammatory responses, and their upregulation is usually
associated with inflammatory diseases (Papadakis and Targan,
2000), whereas IL-10, TGF-β, and other anti-inflammatory
cytokines inhibit the production of pro-inflammatory cytokines
and prevent inflammation (Chen and Manning, 1996). In
this study, the expression of TNF-α and IL-8 in X. laevis liver
first decreased and then increased with an increase in MC-LR
exposure concentration, and their expression in X. laevis liver
exposed to low-concentration MC-LR (1 and 5 µg/L) was
significantly reduced, whereas their expression in X. laevis
liver exposed to high-concentration MC-LR (50 µg/L) was
significantly increased comparing to healthy control (P < 0.05;
Figures 4A,B). After MC-LR exposure, the expression of TGF-
β, an anti-inflammatory factor, was significantly lower than
that of the control group (P < 0.05; Figure 4C), which was
consistent with previous reports (Li et al., 2019; Ding et al.,
2021). These results implied that MC-LR stimulated the release
of pro-inflammatory cytokines and induced an inflammatory
response, and high concentrations of MC-LR are immunotoxic
to X. laevis.

The effect of MC-LR on the gut microbiota diversity
remains controversial. Zhang et al. (2020) reported that MC-
LR altered the gut microbial composition of freshwater crayfish
(Procambarus clarkii), reducing its richness and diversity. In
contrast, Chen et al. (2015) reported that MC-LR increased
microbiota richness in mouse cecum and colon. Our results
showed that OTU numbers of the gut microbiota in the C5, C20,

and C50 groups were significantly higher than those in the C0
and C1 groups, which caused the Good’s coverage of the gut
microbiota in the C5, C20, and C50 groups to be significantly
lower than those in the C0 and C1 groups. The Chao1 indices of
the gut microbiota in the C20 and C50 groups were significantly
higher than those in the C0, C1, and C5 groups. With an
increase in MC-LR concentration, the Shannon index of the
gut microbiota first increased and then significantly decreased,
whereas the Simpson indices of the gut microbiota in the C20
and C50 groups were significantly lower than those in the C0,
C1, and C5 groups. It was speculated that the variation in results
might be attributed to differences in species, administration
methods, or MC-LR doses.

As a key factor in the regulation of the immune system,
the gut microbiota is a rich source of pro-inflammatory
factors (Cani et al., 2007; Li et al., 2020). MC-LR probably
induced inflammation of the peripheral tissues by changing
the composition of the gut microbiota, resulting in lipid
metabolism disorder (Zhang Z. Y. et al., 2016). Local expansion
of Fusobacteria activates the host inflammatory response
and affected the barrier functions (Kostic et al., 2013), and
Proteobacteria are mainly responsible for the utilization of amino
acids in the intestine and regulation of intestinal inflammation
(Shin et al., 2015). Actinobacteria, one of the four most abundant
phyla in the gut microbiota, play an important role in the steady-
state regulation of the intestinal barrier (Binda et al., 2018).
In our study, Fusobacteria, Proteobacteria, and Actinobacteria
were detected as dominant phylums in the gut of X. laevis
(Figure 5B). The relative abundance of Fusobacteria in the
gut microbiota of the C20 and C50 groups was significantly
higher than that in the C0, C1, and C5 groups. The previous
study has shown that subacute MC-LR treatment impairs the
diversity of Bacteroidetes (Chen et al., 2015), and metagenomic
analyses of mouse gut microbiota revealed that MC-LR exposure
increased abundant ratio of Firmicutes vs. Bacteroidetes in the
gut (Zhang Z. Y. et al., 2016). Interestingly, we found that the
relative abundance of Firmicutes and Bacteroidetes in the C20
and C50 groups were significantly lower than those in the C0,
C1, and C5 groups in X. laevis with subchronic MC-LR exposure.
We speculate that it could be attribute to differences in route
and magnitude of exposure to the toxin. Additionally, significant
differences were observed in Tenericutes and Cyanobacteria
abundance among the groups (Figure 5C). The above results
suggest that the changes in X. laevis gut microbiota caused by
different concentrations of MC-LR are potentially correlated with
host inflammation.

As one of the most important symbiotic conditional fish
pathogens widely distributed in freshwater, Flavobacterium
columnare affects the health status of wild and cultured fish
and causes profound loss in aquaculture (Arias et al., 2004;
Suomalainen et al., 2009). Highly toxic strains of F. columnare
caused death of silver salmon fry (Oncorhynchus kisutch) within
24 h (Rucker et al., 1953). The expression levels of IL-
1β and IL-6 in mouse brain were positively correlated with
the abundance of Flavobacterium (Szyszkowicz et al., 2017).
This indicates that the abundance of Flavobacterium reflects
the inflammatory status of the host. Simultaneously, as a
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gram-negative bacterium, an increase in its abundance aggravates
the level of lipopolysaccharide (LPS) and inflammatory responses
(Cani et al., 2007). In this study, Flavobacterium was identified
as a dominant genus and was significantly enriched in the gut
microbiota of X. laevis exposed to 50 µg/L MC-LR. These results
indicated that 50 µg/L MC-LR exposure severely damaged the
structure and increased inflammation of the gut microbiota of
X. laevis.

Vibrio is the main bacterial pathogen in patients with acute
diarrhea (Wang et al., 2021). Bilophila and Ruminococcus
gnavus are pathogens that cause inflammatory bowel disease
(IBD) (Hall et al., 2017). R. gnavus contributed to significant
upregulation of oxidative stress-related pathways in the gut
microbiota of patients with IBD (Kumar et al., 2016; Hall et al.,
2017). Pseudoalteromonas was positively correlated with the
occurrence of asthma, rhinitis, and rhinoconjunctivitis. This is
probably because Pseudoalteromonas produces cyclodigiosin
hydrochloride, an immunosuppressant that inhibits the
proliferation of T cells. Immunosuppression overactivates the
type 2 response, which in turn increases the risk of allergies
and asthma (Spellberg and Edwards, 2001). Acinetobacter is a
common opportunistic pathogen that causes serious infections
(Munoz-Price and Weinstein, 2008). Increased Clostridia levels
are associated with inflammation (Pearson-Leary et al., 2019).
An increase in the abundance of Desulfovibrio is closely related
to metabolic diseases (Petersen et al., 2019). Fusobacterium
induced inflammation through TNF-α and NF-κB in an in vitro
cultured colorectal cancer cell line (Salvucci et al., 2021). In
steatosis, steatohepatitis, and hepatocellular carcinoma, the
abundance of Mucispirillum increases with an increase in the
degree of inflammation (Zhang et al., 2021). In this study,
Mucispirillum, Clostridium, Ruminococcus, Fusobacterium,
Bilophila, Desulfovibrio, Acinetobacter, Pseudoalteromonas, and
Vibrio were significantly enriched in the C5 group, indicating that
5 µg/L MC-LR exposure caused a large number of pathogenic
bacteria to colonize the gut microbiota of X. laevis and produce
a series of pro-inflammatory reactions. Bacteroides reduced the
L-glutathione-to-glutathione ratio and hepatocyte apoptosis,
and alleviated liver injury by inhibiting the expression of CD95
and CD95/CD95L signaling in mouse hepatocytes (Wang et al.,
2022). Short-chain fatty acids produced by Rikenella improved
the intestinal barrier by promoting cell differentiation and tight
junctions (Cani et al., 2009). Parabacteroides and Coprobacillus
were positively correlated with the severity of COVID-19 disease
(Zuo et al., 2020; Schult et al., 2022). Dorea and Treponema
were significantly enriched in the gut microbiota of patients
with autism and endometrial cancer, respectively (Walther-
António et al., 2016; Strati et al., 2017). Our results showed that
Bacteroides and Rikenella were significantly enriched in the C1
group, implying that they play an important role in maintaining
healthy energy metabolism and immune function in X. laevis.
However, the enrichment of Parabacteroides, Coprobacillus,
Dorea, and Treponema suggested that although water containing
1 µg/L MC-LR complied with the guidelines of the World Health
Organization (1998), MC-LR presence still had a certain impact
on the gut microbiota of X. laevis. This is probably due to the
complex life history and high skin permeability of amphibians
(Wang et al., 2019). These results indicated that subchronic

exposure to MC-LR significantly affected the gut microbiota
structure of X. laevis.

Previous studies have mainly performed acute toxicity
experiments. However, because aquatic organisms are exposed
to natural water for a long time, the acute poisoning
threshold concentration of MCs for them is often lower that
the concentration in the environment. Therefore, chronic or
subchronic toxicity experiments are valuable for ecological
safety assessment.

CONCLUSION

MC-LR caused focal infiltration of inflammatory cells and
increased the number of T cells and local congestion and
vacuolization in the liver of X. laevis. Simultaneously, MC-LR
reduced the number, density, height, and regularity of intestinal
villi and led to gaps between the intestinal villi and basal layer.
Moreover, with an increase in MC-LR concentration, these
injuries to the liver and intestine became more obvious. MC-
LR significantly decreased the levels of MDA and AKP and the
expression of TGF-β in the liver, whereas the expression of TNF-
α and IL-8 first decreased and then increased with an increase in
MC-LR concentration. MC-LR significantly altered the structure
and metabolic characteristics of the gut microbiota of X. laevis.
The OTU numbers of the gut microbiota in the C5, C20, and
C50 groups were significantly higher than those in the C0 and C1
groups. The relative abundance of Firmicutes and Bacteroidetes
in the C20 and C50 groups were significantly lower than those
in the C0, C1, and C5 groups, whereas the relative abundance
of Fusobacteria was significantly higher. The metabolic gene
composition of the gut microbiota of X. laevis exposed to
low MC-LR concentration (≤5 µg/L) was significantly different
from that of X. laevis exposed to high MC-LR concentration
(≥20 µg/L).
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Supplementary Figure 1 | Number of T cells in the liver of Xenopus laevis
exposed to different MC-LR concentrations. (A–E) Indicate the
immunofluorescence liver micrographs of Xenopus laevis exposed to 0, 1, 5, 20,
and 50 µg/L MC-LR, respectively. (F) Number of T cells in Xenopus laevis liver.
Different letters above boxes indicate significant differences between the groups
(P < 0.05).

Supplementary Figure 2 | Changes in the content of MAD (A), GSH (B), CAT
(C), and AKP (D) in the liver of Xenopus laevis under different MC-LR treatments.

Numbers after the letter C in the group names indicate MC-LR concentrations.
Different letters above the bars indicate significant differences between data.

Supplementary Figure 3 | PCA (A) and heatmap (B) profiles showed changes of
genes participating in the lipid metabolism. ∗∗p < 0.01; ∗∗∗p < 0.001.

Supplementary Figure 4 | PCA (A) and heatmap (B) profiles showed changes of
genes participating in the carbohydrate metabolism. ∗∗∗p < 0.001.

Supplementary Figure 5 | PCA (A) and heatmap (B) profiles showed changes of
genes participating in the energy metabolism. ∗∗p < 0.01; ∗∗∗p < 0.001.

Supplementary Figure 6 | PCA (A) and heatmap (B) profiles showed changes of
genes participating in the glycan metabolism. ∗p < 0.05; ∗∗∗p < 0.001.

Supplementary Figure 7 | PCA (A) and heatmap (B) profiles showed changes of
genes participating in the amino acid metabolism. ∗∗∗p < 0.001.

Supplementary Table 1 | Source data for the intestinal villus height and
percentage of T cells in the liver of Xenopus laevis.

Supplementary Table 2 | Source data for the merged sequences, and original
microscopy images in the Figures 2–4.

Supplementary Table 3 | Source data for the inflammatory factor gene
expression in Xenopus laevis liver.

Supplementary Table 4 | Source data for the content of MAD, GSH, CAT, and
AKP in Xenopus laevis liver.

Supplementary Table 5 | Source data for the dominant phyla and genus of the
Xenopus laevis gut microbiota.

Supplementary Table 6 | Source data for the metabolic characteristics of the
Xenopus laevis gut microbiota.
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