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CODA: Integrating multi-level 
context-oriented directed 
associations for analysis of drug 
effects
Hasun Yu1,2, Jinmyung Jung1,2, Seyeol Yoon1,2, Mijin Kwon1,2, Sunghwa Bae1,2, Soorin Yim1,2, 
Jaehyun Lee1,2, Seunghyun Kim1,2, Yeeok Kang3 & Doheon Lee1,2

In silico network-based methods have shown promising results in the field of drug development. Yet, 
most of networks used in the previous research have not included context information even though 
biological associations actually do appear in the specific contexts. Here, we reconstruct an anatomical 
context-specific network by assigning contexts to biological associations using protein expression 
data and scientific literature. Furthermore, we employ the context-specific network for the analysis 
of drug effects with a proximity measure between drug targets and diseases. Distinct from previous 
context-specific networks, intercellular associations and phenomic level entities such as biological 
processes are included in our network to represent the human body. It is observed that performances 
in inferring drug-disease associations are increased by adding context information and phenomic level 
entities. In particular, hypertension, a disease related to multiple organs and associated with several 
phenomic level entities, is analyzed in detail to investigate how our network facilitates the inference of 
drug-disease associations. Our results indicate that the inclusion of context information, intercellular 
associations, and phenomic level entities can contribute towards a better prediction of drug-disease 
associations and provide detailed insight into understanding of how drugs affect diseases in the human 
body.

Drug development requires a great deal of money and time. It generally takes about 15 years and 1 billion US 
dollars and on top of that, more than 85% of drug candidates fail to be approved for the market1. High costs and 
attrition rates have to do with testing animals in preclinical trials and humans in clinical trials2. Recently, several 
in silico methods using biological networks, which represent biological systems with biological entities and their 
associations, have been developed for resolving these problems3–5. These in silico network-based approaches have 
attempted to facilitate the analysis of drug effects, in which constructing biological networks is deeply involved.

With the recent wealth of high-throughput data and literature being available, many databases collecting 
various types of biological associations such as protein-protein interactions, gene regulatory interactions, or 
gene-disease associations have been constructed6–10. Furthermore, the reconstruction of biological networks with 
the consideration of biological context has also been challenged by several studies11–15 because biological net-
works have heterogeneity depending on different biological contexts, especially anatomical contexts. For example, 
protein-protein interactions can be heterogeneous across tissues because of diverse gene and protein expressions 
in different anatomical contexts. Recently, many tissue-specific metabolic models or protein-protein interaction 
networks have been reconstructed by combining the network that has no anatomical context such as ReconX9 or 
BioGRID8 with expression data in the specific anatomical contexts16.

Although previous approaches have reconstructed anatomical context-specific networks successfully, there are 
still some imperfections in the previous networks in describing the human body system. Each context-specific 
network of previously constructed networks is isolated because intercellular associations are not included in the 
previous networks. Thus, these networks would not be appropriate for studying diseases that are related to the 
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interplay of biological entities in different organs. In addition, although some previous research contained phe-
nomic level entities such as biological processes or diseases in their networks, most of these works ignored the 
anatomical context information in their associations. However, biological associations of phenomic level entities 
are also dependent on anatomical contexts. For example, renin is associated with hypertension in kidney and 
sodium ion transport process is associated with hypertension in kidney.

In this study, we construct CODA (Context-Oriented Directed Associations) by integrating context-oriented 
directed associations. The CODA network covers both molecular level entities and phenomic level entities with 
anatomical contexts. In addition, our constructed network contains not only organ-specific intracellular associa-
tions but also intercellular associations which can be used in the analysis of diseases related to multi-organs. Using 
the CODA network, drug-drug target associations with anatomical contexts, and the network-based method 
using the proximity measures, we quantify the effects of drugs on diseases. From this analysis, we demonstrate 
the usefulness of unique characteristics of our network for the analysis of drug effects.

Results
Integration of context-oriented directed associations. We build the CODA network by integrating 
various types of biological associations with their anatomical contexts. We start with collecting associations with-
out anatomical contexts and then add anatomical contexts for these associations with expression data or scientific 
literature, with the exception of intercellular associations. Entire associations in CODA are stored in a modified 
version of Bio-Synergy Modeling Language (BSML) format17, which is presented in Methods and Supplementary 
Fig. 1, with selected ontologies and dictionaries (Supplementary Table 1). A method overview for constructing 
CODA network is illustrated in Fig. 1.

Various types of associations among molecular level entities without anatomical context are retrieved from 
three databases: signaling interactions from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways7, 
metabolic reactions from KEGG pathways, gene regulatory networks from KEGG pathways and TRANSFAC10, 
and protein-protein interactions from KEGG pathways and BioGRID8. Totally, 194,206 associations among 
19,390 genes or proteins, 1,542 compounds, and 322 protein complexes are collected. We add anatomical context 
to these associations among molecular level entities by protein expression data from the Human Protein Atlas 

Figure 1. Overview of constructing the CODA network. (a) Associations including both molecular level 
entities and phenomic level entities are gathered from diverse databases, BioGRID, KEGG pathways, 
TRANSFAC, GO, PhenoGO, CTD, and EndoNet. All of the associations do not include anatomical contexts at 
first except for intercellular associations from EndoNet. (b) Anatomical contexts are assigned to associations 
among molecular level entities by using protein expression data from HPA. For associations including 
phenomic level entities, anatomical contexts are added to the associations using MeSH of their reference 
literature. Intercellular associations have anatomical context ab initio. (c) As a result, constructed CODA 
network consists of not only organ/cell type specific networks but also intercellular associations. Diverse 
associations among molecular level entities and phenomic level entities with anatomical context are contained 
in CODA network.



www.nature.com/scientificreports/

3Scientific REPORts | 7: 7519  | DOI:10.1038/s41598-017-07448-6

(HPA) data16. Similar to previous studies for reconstructing anatomical context-specific networks with expres-
sion data11–13, we assume that a protein-protein interaction would happen in parts of a human body if its two 
proteins or genes are expressed in the same parts of a human body. For directed associations such as activation 
or expression, our hypothesis is that the directed associations would take place in a body part if the left entity of 
the association is expressed in the body part in which there is a direction from the left entity to the right entity. In 
the case of metabolic reactions, we think that metabolic reactions would be present in a body part if enzymes of 
the metabolic reactions are expressed in the body part. To connect each anatomical context-specific network, we 
add intercellular associations from the EndoNet database18 which contains intercellular endocrine associations 
in the body. Detailed information about collected intercellular associations is described in the Methods section.

We also extract associations including phenomic level entities: associations between genes and Gene Ontology 
(GO) terms19, biological processes and molecular functions, from Gene Ontology Consortium; associations 
between genes and diseases from gene-disease associations of the Comparative Toxicogenomics Databases 
(CTD)6; associations between GO terms and diseases from PhenoGO20. The way we assemble these associa-
tions is described in the Methods section. We collect 195,496 gene-GO term associations, 18,524 gene-disease 
associations, and 5,966 GO term-disease associations without anatomical contexts. The reference literature of 
the associations is used to add anatomical contexts to these associations. Referring to the previous method21, 
we hypothesize that if the abstract of the reference of an association is related to an organ, the association would 
exist in the organ. Thus, an association is assigned to an organ if the name of the organ exists in Medical Subject 
Headings (MeSH)22 of the reference PubMed identification numbers (PMID) of the associations.

Finally, the CODA network contains a total of 5,864,692 associations with anatomical contexts among mul-
tifarious biological entities: 646,262 gene or protein entities, 83,546 compound entities, 7,447 protein complex 
entities, 9,800 biological processes, 4,206 molecular functions, and 3,586 diseases. Anatomical contexts in CODA 
network cover 70 organ-cell type pairs and blood. Detailed statistics of CODA are shown in Supplementary Data 
files: the number of associations with regard to anatomical contexts of their entities (Supplementary Data 1), the 
number of associations depending on their entity types (Supplementary Data 2), and the number of entities for 
each entity type (Supplementary Data 3).

Inference of drug-disease relationships. We analyze the effects of drugs on diseases by calculating the 
extent of drug-disease associations. To this end, we exploit disease entities in the CODA network and drug-drug 
target associations from a chemical-gene association file of CTD (Supplementary Fig. 2). Similar to the above 
method that is used to allocate anatomical contexts to associations including phenomic level entities, the ana-
tomical contexts revealing where the drug has effects on its target in the body are assigned to each drug-target 
association by using the MeSH of reference literature. We quantify the extent of the associations between a drug 
and a disease by calculating the score based on the average length of shortest paths between drug targets and 
the disease, which is analogous to the closest measure showing the best performance among various proximity 
measures as described in the previous work4 (see details in the Methods section). Based on the scores, we distin-
guish between unknown drug-disease associations and known drug-disease associations that are gathered from a 
chemical-disease association file of CTD by filtering associations having direct evidence.

Using the CODA network performs better. To demonstrate the utility of the CODA network, we com-
pare the performances of inferring known drug-disease associations based on the average length of the shortest 
paths from targets of drugs to diseases in four networks: (i) a network without context information and excluding 
gene-GO, GO-disease associations (NoGO_NoCO in Fig. 2, the similar network used in the previous work)4, (ii) 
a network without context information and including gene-GO, GO-disease associations (GO_NoCO in Fig. 2), 
(iii) a network with context information and excluding gene-GO, GO-disease associations (NoGO_CO in Fig. 2), 
(iv) a network with context information and including gene-GO, GO-disease associations (CODA in Fig. 2), i.e., 
CODA. We calculate scores of 2,193 drugs for various types of 79 diseases after filtering (see Methods section and 
Supplementary Data 4). Figure 2 shows that using the CODA network exhibits the best average performance. 
Using the CODA network yields the best performance among the four networks in 35 diseases of whole the 79 
diseases (Fig. 2 and Supplementary Data 5).

Related organs for each disease category. To see whether the anatomical contexts of the CODA net-
work are well allocated, we extract representative organs for nine disease categories used in our inference of 
drug-disease associations. Table 1 shows the top three organs that frequently appear in anatomical contexts of 
diseases in the categories. Table 1 reveals that many anatomical contexts for disease categories are assigned well: 
hippocampus, cerebellum, and cerebral cortex for nervous system diseases; myocardium and kidney for cardio-
vascular diseases; skeletal muscle and myocardium for musculoskeletal diseases; lung, lymph nodes, and bronchi 
for respiratory tract diseases; liver, kidney, and spleen for digestive diseases; skin for skin and connectivity tissue 
diseases; liver, kidney, and myocardium for nutritional and metabolic diseases. Entire anatomical contexts for 
whole diseases are listed in Supplementary Data 4.

Inference of drug-disease relationships for each disease category. We identify the categories of 
diseases where the CODA network performs the best. To this end, we analyze AUROCs for the categories of dis-
eases. Figure 3 shows the performance of predicting known drug-disease associations for nine disease categories 
of 79 diseases from MeSH tree. Using the CODA network yields the best performance in average and shows the 
best performance in four disease categories, neoplasms, cardiovascular diseases, nervous system diseases, and 
respiratory diseases. The categories where the CODA network shows the best predictions have relatively accurate 
representative organs (Table 1).
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Hypertension as a case study. To investigate how the addition of anatomical context and phenomic level 
entities generates better predictions, we select hypertension as a case study. Hypertension is a medical condition 
in which the elevated blood pressure in arteries persists. Hypertension is chosen because of three reasons: (i) 
hypertension is known for being involved in multi-body parts such as kidney, myocardium, and adrenal glands, 
(ii) the mechanism of hypertension is associated with intercellular associations like renin-angiotensin system23, 
(iii) some GO terms like ‘sodium ion binding’ are related to the mechanism of hypertension24. These reasons are 
relevant to the novelties of our CODA network and thereby the above result of using the CODA network outper-
forms the results of using other networks in the case of hypertension as shown in Fig. 4. Detailed information 
about hypertension in the CODA network is presented in Supplementary Data 4 and the scores and ranks of 
drugs by the four networks for hypertension are exhibited in Supplementary Data 6.

Examples of usefulness of anatomical context. We find some instances of drugs which show the use-
fulness of anatomical context information in the identification of related drugs for hypertension. Nebivolol, which 
is clinically used for managing hypertension and has a known association with hypertension in a chemical-disease 
association file in CTD, acquires a high score only if we exploit context information. How nebivolol receives a 
high score in CODA network is described in Fig. 5a. Nebivolol is associated with beta-1 adrenergic receptor in 
muscle cells in myocardium, and beta-1 adrenergic receptor has an association with hypertension in muscle cells 
in myocardium. It is identical to known mechanisms of actions of nebivolol25,26. Oral contraceptives (OC) also has 
a known association with hypertension in CTD. There is a report that OC can cause significantly increased risks 
of hypertension27,28. OC gets a high score in CODA as it impacts on renin in both microtubules and mesangial 
cells of kidney and renin is connected to hypertension in kidney (Fig. 5b). It can be mechanisms of OC-induced 
hypertension though the exact mechanism is not verified yet.

Figure 2. Performance comparison of CODA with other networks. (a) A bar graph for average AUROC values 
of inferring drug-disease relationships by using the four kinds of networks is shown. (b) A violin plot for 
AUROC values of inferring drug-disease relationships by using the four networks is revealed.

Disease category Representative organs

Neoplasms Liver, Lung, Colon

Nervous System Diseases Hippocampus, Cerebellum, 
Cerebral Cortex

Hemic and Lymphatic Diseases Bone Marrow, Spleen, Kidney

Cardiovascular Diseases Myocardium, Kidney, Lung

Musculoskeletal Diseases Adrenal Glands, ‘Muscle, 
skeletal’, Myocardium

Respiratory Tract Diseases Lung, Lymph Nodes, Bronchi

Digestive System Diseases Liver, Kidney, Spleen

Skin and Connective Tissue Diseases Skin, Colon, Lung

Nutritional and Metabolic Diseases Liver, Kidney, Myocardium

Table 1. The representative organs of each disease category. Representative organs mean the three most 
commonly assigned anatomical contexts for the diseases in the category.
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Distinct from previous context-specific networks, the CODA network includes intercellular associations as 
well as intracellular associations. In our analysis, some drugs get higher scores in CODA on account of the short-
est paths including intercellular associations. For instance, resveratrol, which is known to have an association with 
hypertension according to CTD, is connected to hypertension through the shortest paths including intercellular 
associations. One of them is as follows: resveratrol affects TNF in epithelial cells in bronchi, TNF in epithelial 
cells in bronchi affects TNFRSF1A in hepatocytes in liver, TNFRSF1A is associated with EGFR in hepatocytes 
in liver, EGFR is associated with ATP2B1 in hepatocytes in liver, and ATP2B1 in hepatocytes in liver is associ-
ated with hypertension (Fig. 5c). In the previous experiment, resveratrol treatment decreases the expression of 
inflammatory cytokines such as TNF whose activation is related to the development of pulmonary hypertension 
in MCT-treated rat29,30. It is closely akin to the shortest path from resveratrol to hypertension in the CODA net-
work. Also, ethinyl estradiol gets a higher score by CODA because of the path including intercellular associations 
(Fig. 5d) and it is likewise known for affecting blood pressure31.

Figure 3. AUROC values for nine disease categories.

Figure 4. AUROC values of hypertension.
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Uses of phenomic level entities for inferring known drug-disease associations. Some drugs 
known for having associations with hypertension in a chemical-disease association file in CTD obtain higher 
scores by using entities of GO terms. For example, a score of lovastatin is higher in the CODA network than 
in a context-specific network without associations including GO terms. In the CODA network, lovastatin is 
connected to hypertension through these shortest paths: lovastatin affects CDKN1B in both microtubules and 
mesangial cells of kidney, CDKN1B is associated with SGK1 in microtubules and mesangial cells of kidney, SGK1 
is associated with sodium ion transport in microtubules and mesangial cells of kidney, and finally sodium ion 
transport is associated with hypertension in microtubules and mesangial cells of kidney (Fig. 6a). Sodium ion 
transport, which is one of the biological processes in GO and is related to hypertension24, is known for mecha-
nisms of actions of lovastatin for preventing hypertension32. Another example is dobutamine, which is associated 
with hypertension in CTD and gets higher scores using the networks with gene ontology entities than using the 
networks without gene ontology entities. The shortest paths from dobutamine to hypertension in the CODA 
network are like these: (i) dobutamine affects AKT1 in muscle cells in myocardium, AKT1 is associated with 

Figure 5. Usefulness of context information for inferring known drug-disease associations. (a) Illustration of 
the path from nebivolol to hypertension in the CODA network. Nebivolol affects beta-1 adrenergic receptor 
in muscle cell in myocardium and beta-1 adrenergic receptor is associated with hypertension in muscle cell in 
myocardium. (b) The shortest path from Oral contraceptives (OC) to hypertension in CODA. OC affects renin 
in kidney and renin is associated with hypertension in kidney. (c) One of the shortest paths from resveratrol’s 
targets to hypertension in CODA. Resveratrol has an effect on hypertension through intercellular associations. 
(d) One of the shortest paths from targets of ethinyl estradiol to hypertension. Ethinyl estradiol affects CTGF 
in glandular cell in uterus, CTGF in glandular cell in uterus affects ITGAV in microtubule in kidney, ITGAV in 
microtubule in kidney is associated with FN1 in microtubule in kidney, and FN1 in microtubule in kidney is 
associated with hypertension.
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TMP4 in muscle cells in myocardium, TMP4 is associated with ‘calcium ion binding’ in muscle cells in myo-
cardium, ‘calcium ion binding’ is associated with hypertension in muscle cells in myocardium; (ii) dobutamine 
affects NOS2 in muscle cells in myocardium, NOS2 is associated with ATP2A2 in muscle cells in myocardium, 
ATP2A2 is associated with ‘calcium ion binding’ in muscle cells in myocardium, ‘calcium ion binding’ is associ-
ated with hypertension in muscle cells in myocardium (Fig. 6b). Dobutamine may be related to the increase of 
calcium33, which is detected in hypertension patients24. Thus, these paths can be a possible mechanism of that 
how dobutamine affects hypertension.

Novel drug-disease associations by CODA. Several drugs, which receive relatively high scores in CODA 
but are not associated with hypertension in CTD, can be new drug-disease associations like novel candidates of 
drug repurposing or side effects. Estradiol, 17-beta-isomer of estradiol, has the shortest path from its target NOS2 
to hypertension through NOS2, ATP2A2, and ‘calcium ion binding’ in muscle cells in myocardium (Fig. 7a). 
Although estradiol is not contained in the list of drugs related to hypertension from CTD, there is previous 
research showing that estradiol can reduce the blood pressure34. Genistein obtains high scores with context infor-
mation because it is connected to hypertension across body parts through its target in CODA: genistein affects 
FGF1 in fibroblasts in skin, FGF1 in fibroblasts in skin affects FGFR1 in muscle cells in myocardium, FGFR1 is 
associated with UBC in muscle cells in myocardium, UBC is associated with CTGF in muscle cells in myocar-
dium, and finally CTGF is associated with hypertension in muscle cells in myocardium (Fig. 7b). Although the 
mechanism of action of genistein has not been identified yet, genistein is known for having the potentiality for 
being used in treating hypertension35 and this path can be the mechanisms of actions of genistein.

Discussion
Here, we construct the CODA network and employ the context-specific network for the analysis of drug effects. 
Every entity in our network has an anatomical context. The above results manifest increased performances in the 
prediction of drug-disease associations with anatomical context information and imply that anatomical contexts 
can be used to predict effects of drugs in the body. The network used in our analysis is distinguished from other 
context-specific networks in two ways: (i) the inclusion of intercellular associations, (ii) the presence of phenomic 
level entities. Past context-specific networks did not include intercellular associations and, consequently, they 
are not appropriate for studying multi-organ diseases. Our analysis reveals that the existence of intercellular 
associations is indeed useful to explore the association between drugs and hypertension whose pathophysiology 
is related to several body parts and intercellular interactions among them. In addition, most of the previous 
context-specific networks only contain molecular level entities such as genes or metabolites and therefore, these 
networks cannot be directly used to predict the effects of drugs on diseases. Furthermore, our results indicate that 
the inclusion of GO terms, biological processes and molecular functions, has the potential for increasing perfor-
mance in the inference of drug-disease associations.

Our analysis suggests that our network can be exploited to understand mechanisms of actions of drugs in the 
human body. As presented in the above results, the CODA network enables us to better understand how drugs 
affect diseases by searching the paths from the drugs to the diseases on the network with the consideration of ana-
tomical contexts: for example, a drug affects its target in a liver, the target in liver impacts on a gene in kidney, the 

Figure 6. Uses of GO terms in the CODA network to infer known drug-disease associations. (a) The path from 
lovastatin to hypertension in CODA. Lovastatin is associated with hypertension through a biological process, 
sodium ion transport, in kidney. (b) The path from dobutamine to hypertension in CODA. Dobutamine is 
associated with hypertension through a molecular function, calcium ion binding, in myocardium.
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gene in kidney influences a biological process in kidney, and finally the biological process in kidney has an effect 
on a disease in kidney. This kind of analysis can give researchers a better interpretation of drug effects in the body.

In several areas, our network can become more advanced and accurate. Assigning contexts more precisely 
can produce better results. For example, the assignment of anatomical contexts for gene-disease associations, 
gene-GO term associations, GO term-disease associations, and drug-target associations from literature was per-
formed in the abstract level and it could bring out false positive associations. If the allotment of an anatomical 
context is fulfilled in the sentence level, some of false positives could be filtered out. Addition of other expression 
data can not only reduce false positives but also extend the coverage of body parts in CODA. Other entity types 
like symptoms and other association types such as disease-disease associations or GO-symptom associations also 
can be added and it can give us better understanding of drug effects.

The analysis of drug effects in this study can be improved in some portions as well. Though we preserve origi-
nal association types such as activation or inhibition in the CODA network, types of associations that can be used 
to decide whether a drug brings about a disease as a side effect or treats a disease5 are not considered in this study. 
Also, we do not discriminate associations among molecular level entities and associations including phenomic 
level entities even though these associations are in different scale. In further studies, we plan to analyze drug 
effects in our network with different edge weights depending on edge types.

Methods
BSML format. Every biological association from various public resources is transformed to Bio-Synergy 
Modeling Language (BSML) format as described in the Supplementary Fig. 1, which was initially introduced 
in the previous work17. This BSML format was invented to represent biological interactions with a rule-based 
modeling, which basically consists of a triplet (‘object’, ‘association’, ‘object’). Each ‘object’ is comprised of three 
elements, i.e. ‘function’, ‘entity’ and ‘anatomy’. In this study, we assign ‘abundance’ to a ‘function’ term for every 
‘object’ because all of the ‘objects’ that we collect from the source databases do not contain any kind of ‘function’. 
In this work, an ‘entity’ is a molecular level entity or a phenomic level entity, i.e. molecular level entities such as 
genes, metabolites, or complexes and phenomic level entities such as GO terms or diseases. A related anatom-
ical context of ‘entity’ is assigned as an ‘anatomy’ term, such as cell types and organs. In this study, rather than 
employing the ‘namespace’ term, which was introduced in the previous BSML format17, whole ‘entity’, ‘anatomy’, 
and ‘organismal context’ are mapped to a corresponding ontologies and dictionaries, which are collected and 
constructed by us: genes and proteins to Entrez gene ID36; metabolites in metabolic reactions and compounds to 
the STITCH (Search Tool for Interacting Chemicals)37; phenomic level entities such as GO terms and diseases are 

Figure 7. Inference of novel drug-disease associations by using CODA. (a) The path from estradiol to 
hypertension in muscle cell in myocardium in CODA. This path includes ‘calcium ion binding’, a molecular 
function, which is one of the novelties of CODA network. (b) The path from genistein to hypertension. 
Genistein affects FGF1 in fibroblast in skin at the first time and finally has effects on hypertension in muscle cell 
in myocardium through an intercellular association from FGF1 in fibroblast in skin to FGFR1 in muscle cell in 
myocardium.
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mapped to Unified Medical Language System (UMLS) ID38; organisms in the organismal context and organs and 
cells in the anatomical context to Medical Subject Headings (MeSH)22. The ontologies and dictionaries we used 
are described in Supplementary Table 1.

Associations among molecular level entities without anatomical context. We collect intracellular 
association data among molecular level entities covering diverse types from KEGG pathways7, TRANSFAC10, and 
BioGRID8. KEGG pathways were downloaded using KEGG Markup Language (KGML) files for 286 human path-
ways by using KEGGgraph R package39. We include eight types of relations and metabolic reactions whose entries 
are genes, metabolites, or complexes. Among 16 relation types in KEGG pathways, we exclude some relation 
types by some criteria: the number of relations are small, the meaning or direction of relations are ambiguous, the 
relation types are overlapped with ‘reaction’ in KEGG, or no mapped relations to our association dictionary. As a 
result, eight relation types, ‘methylation’, ‘ubiquitination’, ‘N/A’. ‘state change’, ‘missing interaction’, ‘indirect effect’, 
‘compound’, and ‘hidden compound’, are filtered out.

We also extract gene regulatory associations from TRANSFAC resulting in 8,059 regulations between 837 
regulators and 2,657 target genes. The regulators include 534 transcription factors and 303 microRNAs, and each 
type of regulators is involved in 5,611 and 2,448 regulations for 1,983 and 1,128 target genes respectively.

In order to retrieve a large-scale human protein-protein interaction network, protein-protein interactions are 
extracted from BioGRID. To consider only physical interactions, we use interactions which have interaction type 
codes: psi-mi:“MI:0407” (direct interaction), psi-mi:“MI:0915” (physical association), psi-mi:“MI:0914” (associa-
tion), psi-mi: “MI:0403” (colocalization). All interactions are represented as “interact” in the association ontology. 
BioGRID uses Entrez identifier to refer to all proteins that can be directly mapped to the BSML gene/protein 
ontology. The total number of unique PPIs from BioGRID is 157,248.

Adding anatomical context to associations among molecular level entities. To construct ana-
tomical context-specific molecular interactions, we combine collected intracellular interactions and protein 
expression data from the Human Protein Atlas (HPA)16. We download protein expression profiles for normal 
tissue data. Proteins in HPA having Ensembl gene identifier are mapped to our ontology which is based on Entrez 
gene ID using “org.Hs.eg.db” package in R. Tissue and cell types, which are not mapped to our ontology, are 
filtered out. Finally, we use expression data from 70 organ-cell type pairs (Supplementary Data 1) and construct 
anatomical context-specific network among molecular level entities for these 70 organ-cell type pairs with the 
addition of the blood-specific network for the inclusion of intercellular associations as described in the next 
section.

Intercellular associations. Intercellular molecular associations are extracted from EndoNet18. EndoNet 
is a manually curated database for intercellular regulatory interactions, which are mediated by secreted mes-
sengers. The secreted messengers are mostly hormones, but they also include growth factors, cytokines, and so 
on. EndoNet contains a secreted messenger, a receptor, and a cell/tissue/organ as entity types. It provides inter-
actions from secreted messengers to receptors and the most of these interactions are intercellular interactions. 
The locations where the interactions occur are also provided. Locations consist of cells and organs and we take 
account of the locations as anatomical contexts. The intercellular associations in EndoNet occur directly or via 
blood. Since the 70 organ-cell type pairs do not include blood, we add the blood-specific network, which contains 
whole associations among molecular level entities, to CODA network as a channel of intercellular associations. 
In the case of the associations occurring directly between one location and another location, the interaction is 
translated to an activation from the location to the other location like ‘a hormone < one location > activate a 
receptor < another location >’. In the case of the associations occurring via blood, to precisely describe the bind-
ings, an interaction is divided into two processes: a translocation from one location to blood, and an activation 
from blood to another location. For example, ‘a messenger < one location > translocate a messenger < blood >’, 
and ‘a messenger < blood > activate a receptor < another location >’. Messengers, receptors, and locations are 
mapped to our ontology with exact matching and manual curation and the intercellular associations that occur 
in the 70 organ-cell type pairs from HPA and blood are included in our CODA network. Total 5,925 intercellular 
associations are extracted from EndoNet.

Associations including phenomic level entities without anatomical context. Gene–disease asso-
ciations are retrieved from the Comparative Toxicogenomics Database (CTD)6. We filtered gene-disease asso-
ciations which have direct evidence (marker/mechanism or therapeutic). CTD uses Entrez identifiers to refer 
to genes/proteins and MeSH identifiers to refer to diseases. We map genes and diseases with our constructed 
ontologies. In order to connect genes to GO terms, we collect genes and their functional annotation from the 
Gene Ontology database19. We extract biological processes and molecular functions among functional annotation 
categories. Genes are represented as Entrez Gene IDs and GO terms are mapped to UMLS IDs. To collect GO 
term-disease associations, we use PhenoGO20. PhenoGO is a database providing phenotypic contexts (the dis-
ease, cell type, tissue, and organ) to gene ontology terms. We only use associations which have disease context to 
biological processes and molecular functions. PhenoGO uses UMLS or MeSH identifier to refer to diseases. Thus, 
we convert MeSH IDs to UMLS IDs and map to BSML disease ontology. GO terms are mapped to our ontology 
using UMLS IDs.

Assigning anatomical context to associations including phenomic level entities. To assign ana-
tomical contexts to associations including phenomic level entities, we refer to the previous work21. Similar to the 
method in the previous study, we use reference PubMed IDs, which correspond to the papers from which the 
associations are generated, of each association from CTD, GO, and PhenoGO to add anatomical contexts to the 
associations. PubMed is manually indexed with Medical Subject Headings (MeSH) vocabularies from National 
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Library of Medicine. The MeSH terms for organs from the reference literature of associations are assumed to 
determine the context information of the associations. To use these associations with anatomical contexts in our 
analysis, we make two adjustments. Firstly, organs that are not contained in the 42 organs or blood are discarded. 
Secondly, since it is hard to get the anatomical context at the cell type level in this way, we duplicate associations 
in organs for each cell type in the 70 organ-cell type pairs.

AUROC analysis. To quantify the degree of drug-disease associations in the network, we refer to the prox-
imity measure in the previous study4. We calculate a score between a drug R having drug targets ri and a disease D 
based on the inverse value of the average length of the shortest paths from its target to the disease in four network 
we used through equation (1).

=
∑ =

Score R D
d r D

( , ) 1
( , ) (1)N i

N
i

1
1r

r

where Nr is the number of targets of the drug R. We identify the shortest path based on Breadth-first search algo-
rithm in R project. To avoid an infinite loop, the maximum length of the shortest path is restricted to 30. In this 
analysis, the protein-protein interactions are regarded as bi-directional and other association types are considered 
as having a direction from a left entity to a right entity. Metabolic reactions are excluded in this analysis because 
metabolites are not connected to any GO term and disease in our network.

We calculate scores between drugs and diseases in four networks: (i) a network without anatomical context 
information and removing associations including GO term-related associations, (ii) a network without anatom-
ical context information and including GO term-related associations, (iii) a network with anatomical context 
information and removing GO term-related associations, (iv) a network with anatomical context information 
and including GO term-related associations. Only the associations having direct evidence in a chemical-gene 
association file from CTD were used to calculate scores between drugs and diseases. To obtain the scores in the 
network with anatomical context information, we add anatomical contexts to drug-target associations with the 
same method, which is applied to assign anatomical contexts to the associations including phenomic level enti-
ties, by using MeSH of abstracts where the associations come from.

Based on the calculated scores between drugs and diseases, we use Area Under Receiver Operating 
Characteristic (AUROC) values to validate whether our CODA network can increase the performance of infer-
ring known drug-disease associations. We identify drugs affecting diseases for the diseases which have more than 
ten associations with drugs in a chemical-disease association file. We did not predict drugs for otorhinolaryn-
gologic diseases (C09 in MeSH trees), eye diseases (C11 in MeSH trees), male urogenital diseases (C12 in MeSH 
trees), female urogenital diseases and pregnancy complications (C13 in MeSH trees), ‘congenital, hereditary, and 
neonatal diseases and abnormalities diseases’ (C16 in MeSH trees), animal diseases (C22 in MeSH trees), ‘patho-
logical conditions, signs and symptoms’ (C23 in MeSH trees), and chemically-induced disorders (C25 in MeSH 
trees) because of some reasons: the current version of our network does not include the eye, nose, and throat, 
cannot discriminate genders, and does not delineate animal diseases; ‘pathological conditions, signs and symp-
toms’ are at a quite different level compared to other disease categories; our network illustrates a status in which 
no drugs or chemicals are taken and some diseases in the chemically-induce disorders such as ‘drug-related side 
effects and adverse reactions’ do not have any explicit drug and disease information so that we cannot determine 
specific disease based on the disease name. AUROC values are calculated with receiver operating characteristic 
curves which are drawn by the true positive rate and false positive rate with different thresholds.
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