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Abstract

In response to the COVID-19 global pandemic, recent research has proposed creating deep

learning based models that use chest radiographs (CXRs) in a variety of clinical tasks to

help manage the crisis. However, the size of existing datasets of CXRs from COVID-19+

patients are relatively small, and researchers often pool CXR data from multiple sources, for

example, using different x-ray machines in various patient populations under different clini-

cal scenarios. Deep learning models trained on such datasets have been shown to overfit to

erroneous features instead of learning pulmonary characteristics in a phenomenon known

as shortcut learning. We propose adding feature disentanglement to the training process.

This technique forces the models to identify pulmonary features from the images and penal-

izes them for learning features that can discriminate between the original datasets that the

images come from. We find that models trained in this way indeed have better generaliza-

tion performance on unseen data; in the best case we found that it improved AUC by 0.13

on held out data. We further find that this outperforms masking out non-lung parts of the

CXRs and performing histogram equalization, both of which are recently proposed methods

for removing biases in CXR datasets.

Introduction

The Coronavirus Disease (COVID)-19 pandemic has exposed many vulnerabilities in public

health systems around the world. Artificial intelligence (AI) is poised to address some of these

challenges with potential applications including early disease detection, clinical management

tools, disease modeling, and vaccine research [1]. Screening patients for COVID-19 based on
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chest radiograph (CXR) imaging is one potential AI application, and deep learning models

have been developed to distinguish COVID-19 pneumonia from normal findings and even

rule out other types of pneumonia with high accuracy [2–4]. Due to the increasing practice of

reporting results prior to peer review in the setting of a novel pandemic, many additional mod-

els have been reported as preprint papers [5–11].

The main challenge with training these deep learning models has been the shortage of

COVID-19 CXR imaging data. Several public datasets are available, but most are small (100-

200 patients). A recent review assessed many AI diagnostic and prognostic models for

COVID-19 using the prediction model risk of bias assessment tool (PROBAST) and found

that all but one of the 51 studies were at high risk for analysis bias, mainly overfitting due to

small sample size [12]. Larger databases have typically pooled images from different patient

populations at multiple research sites and hospitals, or even from different countries [7, 13,

14]. These unbalanced datasets often contain images with source-specific identifiers (antero-

posterior versus posteroanterior positioning, imaging device type, image size, etc) that the

models can misidentify as relevant features.

The most common approach for developing COVID-19 CXR diagnostic models is to use

transfer and representational learning techniques to adapt classification models that were

trained on labeled CXR datasets (to classify pre-COVID-19 pulmonary findings), or on unre-

lated image datasets, to the new task [2, 4, 15]. However, due to the problems mentioned

above—small datasets or larger datasets with a latent imbalance—leads to learned models that

suffer from a phenomenon summarized as “shortcut learning” [16]. Here, the models will

identify dataset-specific features rather than pulmonary specific features in order to distin-

guish between classes, and the reported performance of these models may not be generalizable

to other patient populations. Indeed, recent research proves exactly this [17] and further

shows that some shortcuts can persist in external datasets. The problem now becomes, “how to

train highly-parameterized deep learning models on publicly available data, without learning

shortcuts that are present in such data?” A recent study proposed two preprocessing tech-

niques to solve this problem: histogram equalization, to correct for issues such as contrast dif-

ferences between images, and lung masking to remove potential source-specific information

located outside of the lung area [18].

In this paper, we sought to evaluate the use of feature disentanglement [19], a multi-task

training approach for deep neural networks, to prevent shortcut learning in the context of clas-

sification of COVID-19 CXR images. Models trained with this method are forced to learn fea-

tures that can identify COVID-19+ CXRs and are penalized for learning features that can

identify what sub-population a CXR is from. We further sought to compare feature disentan-

glement to the previously proposed histogram equalization and and lung masking methods.

Finally, we sought to test all three methods on the ultimate goal of improving model generali-

zation performance on unseen data. We have released source code to reproduce the models

and results found in this paper: https://github.com/microsoft/xray-feature-disentanglement.

Methods

Datasets

We used two CXR datasets: the open-source COVIDx dataset [20] and a dataset received from

the China Consortium of Chest CT CC-CCII [21]. These are both image classification datasets

that share the same three class labels for CXR images: “normal” (Normal)—collected from

patients without pneumonia, “common pneumonia” (Pneumonia) CXRs—collected from

patients with pneumonias other than from COVID-19, and “novel COVID-19 pneumonia”

(COVID-19+). We treated the source dataset of each image as its domain label. Specifically,
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there are five domain labels: one for each of the sub-datasets in the COVIDx dataset. See

Table 1 for a breakdown of the number of class labels of each type per dataset. Below we

describe each dataset in more detail.

The COVIDx dataset is a conglomeration of CXR samples from five other datasets: the

COVID-CHESTXRAY dataset (also referred to as the COHEN dataset in related work) [22], the Fig 1

COVID-19 CXR dataset [23], the ACTUALMED COVID-19 CXR dataset [24], the Kaggle RSNA

Pneumonia Detection Challenge dataset [25], and the SIRM samples from the Kaggle COVID-

19 radiography database [26]. The samples are divided among three classes: “normal” control

images, non COVID-19 pneumonia images, and COVID-19+ images. We used the scripts pro-

vided on the COVIDx GitHub repository to create the dataset. We then merge the training

and test sets and filter out all but the first sample for each patient. The label counts in Table 1

for this dataset therefore equal the number of patients.

The CC-CCII dataset is a large CT dataset encompassing CT images from retrospective

cohorts from the China Consortium of Chest CT Image Investigation (CFC-CCII) [21]. This

datasets has samples from Sun Yat-sen Memorial Hospital and Third Affiliated Hospital of

Sun Yat-sen University, The First Affiliated Hospital of Anhui Medical University, West

China Hospital, Guangzhou Medical University First Affiliated Hospital, Nanjing Renmin

Hospital, Yichang Central People’s Hospital, and Renmin Hospital of Wuhan University. The

dataset we use in this paper consists of CXRs taken from a subset of the patients included in

the CT dataset. These images have been labeled with the same classes as in COVIDx.

Ethics statement. The COVIDx dataset is publicly available. The CC-CCII xray images

were collected by Dr. Jun Shen from Sun Yat-sen Memorial Hospital. All patient information

Table 1. Dataset overview. Counts of disease label type per dataset. The COVIDx dataset is made up of 5 sub-datasets and the CC-CCII dataset is used as a held-out test

set.

Normal Pneumonia COVID-19+

COVIDx (totals) 8,851 6,040 421

COVID-CHESTXRAY – 28 289

Fig 1 – – 35

ACTUALMED – – 51

SIRM – – 46

RSNA 8,851 6,012 –

CC-CCII 11,604 18,236 1,690

https://doi.org/10.1371/journal.pone.0274098.t001

Fig 1. Overview of the feature disentanglement modeling approach. We propose to learn a model that

simultaneously predicts the class label and domain label for a given CXR image. The parameters of the model are

updated to extract representations that contain information about the class label but not about domain label.

https://doi.org/10.1371/journal.pone.0274098.g001
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for the CC-CCII dataset are de-identified and anonymized before the authors received the

data, and consent was obtained from all participants. The usage of the x-ray images in the

CC-CCII dataset for our validation studies have been approved by the Sun Yat-sen Memorial

University IRB. The CT images in the CC-CCII are publicly available. IRB approval was

obtained before the start of the study.

Model training

Formally, we trained a model, f(g(x; θ); ϕ), where x is a CXR. This model is decomposed into a

feature-extractor, g(x; θ) = z, parameterized by θ, and classifier, f(z; ϕ), parameterized by ϕ.

The feature-extractor is responsible for creating an embedding, z, for a given CXR, and the

classifier is responsible for predicting the label from a given embedding. This representation is

helpful in transfer learning settings where frozen feature-extractor models (i.e. models with

fixed θ) that have been pre-trained on large CXR datasets can be used to reduce overfitting

when relatively few labeled samples are available.

We fit f(z, ϕ) over a dataset, D ¼ ðxi; yclassi; y
domain

iÞ
N
i¼1

, where each image contains a class
label and a domain label. The class labels are clinically relevant; for example, they describe

whether a CXR is from a normal (Normal) patient, a patient with common pneumonia (Pneu-

monia), or from a patient that may exhibit novel COVID-19 pneumonia (COVID-19+). The

domain labels are not clinically relevant. They encode information about how the sample was

collected, such as the clinical site and patient cohorts. In our experiments the domain labels

encode which dataset a sample originally came from. An ideal classifier would not be sensitive

to how a sample was collected but would rely on pulmonary features present in the different

types of class labels. However, for the reasons we outline in the Introduction, classifiers can

overfit to spurious signals in CXRs leading to poor generalization when applied to new

imagery.

We fit f(z; ϕ) in two optimization settings: a straightforward baseline setting and a feature

disentanglement setting in which we force the classifier to learn data representations that are

not useful in predicting the domain labels, while remaining useful for predicting the class
labels:

Baseline. In this setting, we learned ϕ� by minimizing a negative log-likelihood loss,

Lðŷclass; yclassÞ, between the class predictions, ŷclass, and the class labels, yclass, over D in a stan-

dard setup:

�
�
¼ arg min

�

X

x;yclass2D

Lðf ðgðxÞ;�Þ; yclassÞ
ð1Þ

Our hypothesis was that, in this setting, even simple classifiers will overfit to spurious features

and exhibit poor generalization performance.

Feature disentanglement. In this setting we assumed that we can further decompose f
into a feature extractor, fe(z; ϕe) = z0, and two classification heads, fcðz0;�cÞ ¼ ŷclass and

fdðz0;�dÞ ¼ ŷdomain—see Fig 1 for an overview of this setup. We then follow the methodology

proposed in [19] for training f in a multi-task setting to transform the initial embedding z into

a compressed form z0 that is useful for predicting the class label and not useful for predicting

the domain label for a given CXR. Formally, we defined the empirical error with a class loss as

above, and an additional domain loss:

Eð�e; �c; �dÞ ¼
X

x;yclass2D

Lcðfcðfeðz;�eÞ;�cÞ; y
classÞ � l

X

x;ydomain2D

Ldðfdðfeðz;�eÞ;�dÞ; y
domainÞ

ð2Þ
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Note that the error is defined as the difference between the summed class loss and summed

domain loss. Larger loss values in the second term will contribute to the overall minimization

of the total error which influence the model to learn a compressed representation that is not
predictive of the domain labels. λ is a hyperparameter that controls the relative influence of the

domain loss on the error. We optimized for parameters, ϕ, according to:

ð�
�

e ; �
�

c Þ ¼ arg min
�e ;�c

Eð�e; �c; �dÞ ð3Þ

�
�

d ¼ arg max
�d

Eð�e; �c; �dÞ ð4Þ

As described in [19], this can be solved by iterating using gradient-based optimization with

an additional “gradient reversal layer” inserted between fe and fd in the structure of the model

(see Fig 1). We considered a modification wherein after each training epoch we optimize for

�
�

d, over the whole training set, for the current, fixed values of ϕe. Put simply, we trained fd(z0;
ϕd) to convergence at the end of each epoch. As a consequence, the updates to ϕe in the next

epoch of training are done with respect to the domain loss computed at a local minimum for

the domain classifier. We found empirically that this helped reduce variance in results between

training runs. This modification is cheap when the parameters of the original feature extractor

remain frozen and the intermediate representations, z, are cached—which was always the case

in our experiments.

Lung masking and histogram equalization preprocessing

Motivated by the same points that we are [18], proposed two preprocessing methods for elimi-

nating signal in CXR imagery that a classifier might overfit to: lung masking and histogram

equalization. Lung masking uses a model to remove the non-lung parts of CXR images with

the assumption that features from the imagery surrounding the lungs should not be used in

predictive models of lung diseases. Histogram equalization is a common technique in com-

puter vision used to improve the contrast of grayscale images. If histogram equalization is

applied to each image in a dataset of CXR image, then a classification model will not be able to

exploit relative differences in the contrast of images in its decisions.

These methods can be used in combination with our proposed method for feature disentan-

glement. In our experiments we used the recent SOTA lung VAE model [27] to create lung

masks and implementation of histogram equalization from OpenCV [28].

Experimental setup

Our method depends on a feature extractor model, g(x; θ), to create an initial set of embed-

dings. We considered three different pre-trained CNNs for this role:

Torchxrayvision pretrained DenseNet121 We used the DenseNet121 model [29] weights

released in the torchxrayvision package [30, 31]. This model has been trained on CXR

imagery, collected before the COVID-19 pandemic, with multi-task pulmonary disease

labels from different datasets. We extracted a 1,024 dimensional feature vector for a given

CXR by applying global average pooling after the last convolutional layer in the DenseNet.

ImageNet pretrained DenseNet121 We also used the DenseNet121 model [29] weights from

the PyTorch torchvision library [32]. This model has been trained on ImageNet, and the

only difference in implementation from the torchxrayvision version is that the first convo-

lutional layer operates over 3 channel images instead of 1 channel images. We duplicated
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input values across the 3 input channels in order to run this model on CXR imagery. We

extract features from this DenseNet in the same way as above.

COVID-Net We used the COVID-Net model and the “COVIDNet-CXR Large” pretrained

weights from the same repository that proposed the COVIDx dataset [20]. We extract a

2,048 dimensional feature vector for an input CXR by applying global average pooling after

the last convolutional layer in the COVID-Net architecture. This is in contrast with the

methodology from [20], who flatten the representation after the last convolutional layer to

get a 460,800 dimensional representation.

In all experiments we reported average and standard deviation results from 5×10-fold

cross validation. In the experiments testing whether we can identify domain labels from pre-

trained model representations, we stratified by the domain label in order to ensure that there

are samples from each dataset in training and testing splits. In the experiments where we

measure domain generalization, we report results on the out-of-sample CC-CCII data, we

used the out-of-sample data as an additional test set in the cross-validation folds used to test

in-sample performance. Specifically, we split the training set into 10-folds, trained a model

on data from 9 folds, then tested on the held-out fold, as well as the entire out-of-sample

dataset.

Our classification problems are all multi-class; we reported an unweighted average of the

area under the ROC curve (AUC) calculated individually for each class in a one-versus-rest

manner and average per class accuracy (ACC). Both methods are not sensitive to the class

imbalance which we observe in both our class and domain tasks.

In the experiments where we measure domain generalization of the Baseline models, i.e.

the models trained without feature disentanglement, we fit an additional logistic regression

model on the domain labels, from the representations generated by g(x; θ). This additional

step happens after fully training the f(g(x); ϕ) and will allow us to measure how much informa-

tion about the domain labels the encoder model uses.

When using feature disentanglement, we set fe(z) as a fully connected model with the fol-

lowing structure: Dense(256)! BatchNorm!Dense(64)! BatchNorm, where both dense

layers are followed by a ReLU nonlinearity. We set both fc(z0) and fd(z0) as logistic regression

layers. We trained with the AdamW optimizer using AMSGrad and an initial learning rate of

0.001. We divided the learning rate by a factor of 10 if the validation class loss has stagnated for

over 10 epochs and stopped training either the third time this happens, or after 200 total

epochs.

We also decayed λ throughout training; we set λ0 = 10 and use the following update rule

evaluated each epoch (where t is the epoch) to calculate λ:

l 
l0

1þ ðl0 � 1Þ t
200

� �3

This moves λ from λ0 to 1 over the course of the maximum 200 epochs of training. We did not

thoroughly test this schedule against other choices. We simply aimed for the domain loss to

guide training in the initial epochs of training, and for the class loss to converge to a local mini-

mum in the later epochs of training.

Finally, all of our experiments are fully reproducible by setting the seed of the random num-

ber generators in all component software packages. We varied this seed over the 5x restarts in

our experiments.
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Experiments and results

Identifying domain labels from pre-trained model representations

In Table 2 we show that all of our existing models extract representations that contain enough

information, even when run on masked/equalized imagery, for discriminating between

domain labels throughout the COVIDx dataset (i.e. determining which sub-dataset from

COVIDx a sample belongs to), and domain labels throughout only COVID-19+ samples (i.e.

determining where a COVID-19+ sample comes from out of the sub-datasets in COVIDx or

the CC-CCII dataset). For example, we find that a DenseNet121 pre-trained on ImageNet

extracts features from unmasked CXR images that are sufficient to train a logistic regression

model that can identify the source dataset among samples from the COVIDx dataset with a

held-out average AUC of 0.95 ± 0.02. The same embeddings can be used to train a logistic

regression model that can identify the source dataset given COVID-19+ sample, among the

constituent datasets of COVIDx and CC-CCII with a held out AUC of 0.97 ± 0.01. While the

preprocessing steps help to reduce this performance, the linear models still perform much bet-

ter than random guessing, suggesting that overfitting to domain signals in the embedded rep-

resentations is trivial.

Class and domain performance

In Table 3 we show the within-dataset and generalization performance of models, f(z; ϕ),

trained on top of the different feature extractors. Similar to Table 2, the models that are trained

in a standard way have high performance on the domain task, and correspondingly high per-

formance on the actual task labels. At the same time, the poor performance of these models on

the out-of-sample dataset, CC-CCII, shows that they are overfitting to the training dataset. For

example, a model trained on top of torchxrayvision unmasked image embeddings performs

similar to random guessing—random guessing performance is 0.33 average accuracy, while

this model gets 0.34 average accuracy. Lung masking and histogram equalization improves

generalization performance in all cases, however we hypothesize that this may throw out sig-

nals that are relevant to the task.

On the other hand, we observe that training f(z; ϕ) with feature disentanglement results in

better generalization performance with both unmasked or masked/equalized images in all

cases. ImageNet embeddings of masked/equalized images and feature disentanglement train-

ing results in the best generalization performance on CC-CCII. Interestingly, training with

Table 2. Results showing how well logistic regression classifiers can identify which sub-dataset a CXR is from within the COVIDx dataset, and how well classifiers

can identify which dataset a “COVID-19+” CXR is from across both the COVIDx and CC-CCII datasets. We report AUC values as averages of the one-vs-all binary

AUCs between all classes, and accuracy (ACC) as the average accuracy over all classes. We observe that the representations generated by the classifiers, even from masked/

equalized inputs, contain enough information to accurately identify the sources of the imagery in both cases.

COVIDx datasets All COVID-19+ samples

Unmasked Images Embedding size AUC ACC AUC ACC

Pixel intensity histogram 256 0.75 ± 0.03 0.36 ± 0.04 0.83 ± 0.03 0.47 ± 0.07

Torchxrayvision embedding 1024 0.93 ± 0.03 0.54 ± 0.09 0.93 ± 0.03 0.59 ± 0.07

ImageNet embedding 1024 0.95 ± 0.02 0.53 ± 0.07 0.97 ± 0.01 0.66 ± 0.09

COVID-Net embedding 2048 0.89 ± 0.05 0.39 ± 0.05 0.91 ± 0.03 0.45 ± 0.04

Masked/equalized Images Embedding size AUC ACC AUC ACC

Pixel intensity histogram 256 0.57 ± 0.06 0.27 ± 0.06 0.75 ± 0.02 0.25 ± 0.04

Torchxrayvision embedding 1024 0.76 ± 0.05 0.35 ± 0.07 0.88 ± 0.02 0.42 ± 0.08

ImageNet embedding 1024 0.84 ± 0.02 0.34 ± 0.04 0.91 ± 0.02 0.50 ± 0.10

COVID-Net embedding 2048 0.71 ± 0.04 0.26 ± 0.04 0.85 ± 0.04 0.35 ± 0.05

https://doi.org/10.1371/journal.pone.0274098.t002
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feature disentanglement on masked/equalized images is not always better than training with

feature disentanglement on unmasked images. This supports the idea that lung masking and

histogram equalization might throw out relevant task signals. In all cases, training with feature

disentanglement dramatically reduces the domain signal in learned representations. For exam-

ple, the domain performance of the model tuned with torchxrayvision embeddings of

unmasked images is 0.94 AUC, while using feature disentanglement reduces this to 0.56 AUC.

The increase in performance from training with feature disentanglement is variable across the

pre-trained model used to generate the initial representation. We observe the smallest differ-

ence in generalization performance with the COVID-Net pre-trained model which was ini-

tially trained on unmasked images from the COVIDx dataset—a smaller dataset than either

ImageNet or the CXR dataset used by torchxrayvision—and may not function as an effective

feature extractor.

Further experiments are needed to determine if unfreezing the parameters of the feature

extractor model during training with feature disentanglement is beneficial. We specifically

avoid this as we have already found that it is possible to overfit to the training set with a small

fully connected model on top of pre-trained embeddings, as well as learn representations that

are not predictive of the within-dataset domain labels. Performance gains of fine-tuning

through the feature extractor would only be potentially visible through increases in generaliza-

tion performance, i.e. on the CC-CCII dataset. By correlating such design decisions with

CC-CCII performance. We would risk manually overfitting to CC-CCII, and want to avoid

doing so in this work.

Feature visualization

In Fig 2 we show the UMAP embeddings of the learned feature representations from the mod-

els trained on the torchxrayvision embeddings for images from the COVIDx dataset. This

Table 3. Results showing within-dataset class performance, within-dataset domain performance, and out-of-sample class performance from training models with

the COVIDx dataset. The task performance (task AUC and task accuracy) shows how well classifiers are able to distinguish between “Normal”, “Pneumonia”, and

“COVID-19+” disease labels, while the domain performance (domain AUC) shows how well classifiers are able to distinguish which sub-dataset an image belongs to. We

report AUC values as averages of the one-vs-all binary AUCs between all classes, and accuracy (ACC) as the average accuracy over all classes. In all cases class performance

(both within-dataset and out-of-sample) is reported from the classifier trained on samples within-dataset, while domain performance is reported from an additional classi-

fier trained to predict domain labels on top of the learned representations, z0, as a measure of how much domain information the representation contains. We observe that

using feature disentanglement decreases within-dataset domain performance as expected, and increases out-of-sample class performance—i.e. improves generalization

performance.

COVIDx CC-CCII

Torchxrayvision Embeddings Task AUC Domain AUC Task AUC Task ACC

Unmasked 0.97 ± 0.01 0.94 ± 0.02 0.55 ± 0.03 0.34 ± 0.04

Masked/equalized 0.92 ± 0.01 0.85 ± 0.03 0.65 ± 0.02 0.42 ± 0.02

Unmasked + Disentanglement 0.90 ± 0.03 0.56 ± 0.07 0.68 ± 0.04 0.49 ± 0.02

Masked/equalized + Disentanglement 0.87 ± 0.02 0.53 ± 0.06 0.71 ± 0.03 0.47 ± 0.02

ImageNet Embeddings

Unmasked 0.96 ± 0.01 0.97 ± 0.02 0.64 ± 0.02 0.37 ± 0.01

Masked/equalized 0.94 ± 0.01 0.88 ± 0.03 0.67 ± 0.03 0.41 ± 0.03

Unmasked + Disentanglement 0.85 ± 0.03 0.57 ± 0.07 0.73 ± 0.03 0.43 ± 0.02

Masked/equalized + Disentanglement 0.85 ± 0.03 0.57 ± 0.04 0.73 ± 0.03 0.46 ± 0.02

COVID-Net Embeddings

Unmasked 0.96 ± 0.01 0.93 ± 0.02 0.59 ± 0.02 0.38 ± 0.01

Masked/equalized 0.89 ± 0.02 0.80 ± 0.04 0.63 ± 0.02 0.44 ± 0.02

Unmasked + Disentanglement 0.92 ± 0.02 0.53 ± 0.10 0.67 ± 0.03 0.41 ± 0.02

Masked/equalized + Disentanglement 0.83 ± 0.02 0.52 ± 0.07 0.62 ± 0.01 0.45 ± 0.00

https://doi.org/10.1371/journal.pone.0274098.t003
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shows how the representations learned without feature disentanglement clearly separate the

images from the RSNA dataset from the images from the other datasets, despite not being

trained to do this. This is because the RSNA dataset contains most of the samples with “nor-

mal” and “pneumonia” disease labels, versus the other datasets, which contain “COVID-19+”

samples. Therefore, when a model is trained to separate these classes, it finds features that are

correlated with which component dataset an image is from. Such biases can be trivial, such as

a different in contrast between the dark and light portions of the image, the position/size of the

lungs, markings on the CXR, etc. The same distinction between datasets is not clear when fea-

ture disentanglement is used because the learned representations are forced to not be predic-

tive of dataset. As a result, the distinction between “COVID-19+” and “pneumonia” labels

becomes less clear when feature disentanglement is used, however, as we show in Table 3, this

can improve the generalization ability of the model.

Discussion

Accurate automated diagnosis of COVID-19 pneumonia based on CXRs has been a research

focus since the start of the pandemic, given its potential use in emergency departments, urgent

care, and resource-limited settings. The development of such devices has been limited by the

availability and quality of COVID-19+ datasets, which are typically aggregated from various

sources to increase the number of COVID-19+ examples. In this study we show that previously

proposed techniques, such as isolating the pulmonary region and harmonizing images taken

from different x-ray machines, fail to prevent deep learning models from relying on features

that are specific to a particular dataset or image source (e.g. scanner machine type, age of

patient, external artifacts in the image). These models are likely to underperform in real-world

clinical settings when analyzing images that lack the identifying data the models have learned

to rely on.

Since the COVID-19 outbreak, various researchers have developed automated COVID-19

CXR diagnosis models. Most previous studies have used transfer learning approaches and

compared classification performances obtained between several popular CNN architectures,

but all have relied on datasets made up of COVID-19+ CXRs sourced from around the web

[12]. For COVID-19 negative cases, data are typically sampled from other open CXR datasets.

Fig 2. UMAP projections of features learned from models trained with and without feature disentanglement on

unmasked imagery. Each point represents a CXR from the COVIDx dataset. The top row colors points by their

domain label—which subdataset of the COVIDx dataset they are in—while the bottom row colors points by their

disease label. We observe that without feature disentanglement, the learned representations easily separate datasets—

despite not being trained for this task—however, with feature disentanglement, the learned representations do not

clearly separate datasets.

https://doi.org/10.1371/journal.pone.0274098.g002
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However, if any bias is present within these datasets, the model could learn the underlying

biases, rather than learning COVID-19 related features. Therefore, we have presented an appli-

cation of feature disentanglement for predicting COVID-19 infection even when training on

public datasets containing CXRs from multiple sources. The model showed superior perfor-

mance when tested on a new and unfamiliar dataset, suggesting that it was relying on COVID-

19 specific pulmonary findings. We applied visualization techniques to show that our model

relied on imaging features that were not specific to particular groupings of CXR images in the

training data, further suggesting that the model is capable of performing well when analyze

CXR data from unfamiliar sources.

Although we show that our approach produces a model that is more successful when chal-

lenged with real-world data, our work is still limited by the lack of public datasets available for

testing, and we used a private dataset from the CC-CCII to test generalization performance.

Future work should investigate the effects of fine-tuning these models with and without feature

disentanglement approaches, and the effects of controlling for multiple imaging data sources

in an expanded multi-task setting. Finally, when larger CXR datasets that are paired with clini-

cal outcomes become available, further exploration of the use of feature disentanglement for

extracting small sets of clinically relevant features from CXRs should be investigated. However,

the diagnostic performance of any diagnostic model should be carefully evaluated in a real-

world setting before clinical implementation. Misdiagnosis of COVID-19 can lead to inappro-

priate care, failure to treat, increased transmission, and many other serious outcomes. Clini-

cians should be aware of potential limitations and biases when incorporating model

predictions into their clinical assessment.

Finally, our approach has potential clinical applications beyond automated diagnosis. CXR

diagnostic models that rely on relevant pulmonary findings may be also useful for the develop-

ment of prognostic models, by combining the CXR information with other clinical and demo-

graphic data to predict which patients are at risk for severe disease.
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