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Abstract

Motivation: Computationally predicting major histocompatibility complex (MHC)-peptide binding affinity is an
important problem in immunological bioinformatics. Recent cutting-edge deep learning-based methods for this
problem are unable to achieve satisfactory performance for MHC class II molecules. This is because such methods
generate the input by simply concatenating the two given sequences: (the estimated binding core of) a peptide and
(the pseudo sequence of) an MHC class II molecule, ignoring biological knowledge behind the interactions of the
two molecules. We thus propose a binding core-aware deep learning-based model, DeepMHCII, with a binding inter-
action convolution layer, which allows to integrate all potential binding cores (in a given peptide) with the MHC
pseudo (binding) sequence, through modeling the interaction with multiple convolutional kernels.

Results: Extensive empirical experiments with four large-scale datasets demonstrate that DeepMHCII significantly
outperformed four state-of-the-art methods under numerous settings, such as 5-fold cross-validation, leave one mol-
ecule out, validation with independent testing sets and binding core prediction. All these results and visualization of
the predicted binding cores indicate the effectiveness of our model, DeepMHCII, and the importance of properly
modeling biological facts in deep learning for high predictive performance and efficient knowledge discovery.

Availability and implementation: DeepMHCII is publicly available at https://github.com/yourh/DeepMHCII.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Major histocompatibility complex (MHC) molecules play a signifi-
cant role in the T-cell mediated adaptive immune response (Janeway
et al., 2005). MHC molecules first bind peptide fragments derived
from pathogens and then present the peptides to the surface of anti-
gen-presenting cells (APC). After the MHC-peptide complexes are
recognized by T-cell receptors (TCR), adaptive immune response
will be stimulated to fight against and eliminate invading pathogens.
Accurate identification of MHC binding peptides is thus crucial for
not only elucidating the mechanism of immune recognition but also
facilitating the design of peptide-based vaccine and cancer immuno-
therapy (Blass and Ott, 2021). As biochemical experiments are time
consuming and labor intensive, computational approaches for pre-
dicting MHC binding peptides have become increasingly important
and have been utilized to prioritize a small number of promising

candidates for further verification by biochemical experiments (Hu
et al., 2010; Lund et al., 2005; Mamitsuka, 1998; Udaka et al.,
2002; Zhu et al., 2006).

There are two major classes of MHC molecules: MHC Class I
(MHC-I) and MHC Class II (MHC-II). MHC-I molecules have one
chain (a) and MHC-II molecules have two chains (a and b). Human
MHC-II molecules are encoded in the human leucocyte antigen
(HLA) gene complex involving three types of molecules: DP, DQ,
DR, while mouse MHC-II are encoded in the histocompatibility 2
(H-2) (Traherne, 2008). MHC-I and MHC-II molecules play differ-
ent roles in adaptive immune response. MHC-I molecules bind a ra-
ther fixed length of short peptides (usually 8–11 amino acids) from
endogenous antigen, and these peptides are presented to cytotoxic T
lymphocytes. In contrast, MHC-II molecules bind a more diverse
length of peptides from exogenous antigen, and these peptides are
presented to helper T lymphocytes. It has also been reported that
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MHC-II peptide binding involves the B-cell mediated adaptive im-
mune response. From these aspects, predicting peptides binding to
MHC-II is more challenging than that of MHC-I (Nielsen et al.,
2010). Currently, the state-of-the-art methods for MHC-I peptide
binding prediction can achieve an area under the ROC curve (AUC)
of around 0.9, while AUC by the prediction methods for MHC-II is
usually unable to reach 0.8, particularly for MHC-II molecules with
very few or no binding peptide data (Jensen et al., 2018; Zhang
et al., 2012b), which is far from satisfactory. Moreover, quantitative
prediction of MHC peptide binding is more useful in practice than
binary classification for selecting a small number of promising can-
didate peptides. It is thus imperative to develop accurate computa-
tional methods for MHC-II peptide binding affinity prediction.

The challenges come from two sides: peptides and MHC-II mole-
cules. For the peptide side, the binding groove of MHC-II molecules
is open at both ends, which causes large variation on the length of
binding peptides, ranging from 10 to 30 amino acids (typically 12–
16). The binding groove of MHC-II has nine pockets, where one
amino acid residue of the binding core of a binding peptide fits to
one pocket normally (Janeway et al., 2005). The peptide-MHC
binding affinity is primarily determined by the interaction between
MHC-II molecules and the binding core of peptides. However, it has
been found that peptides flanking regions (PFRs) which are outside
of the binding core also affect the binding affinity (Arnold et al.,
2002; Holland et al., 2013). Thus, there are two issues for the pep-
tide side: (i) the flexibility in length and (ii) the location of the bind-
ing core. For the MHC-II molecule side, MHC-II molecules are
highly polymorphic. There are thousands of MHC-II molecules, and
each MHC-II molecule has its own binding specificity. Also, MHC
molecules are proteins to be represented by amino acid sequences
with longer and more diverse lengths than peptides. In addition, cur-
rently, only dozens of MHC-II molecules have hundreds of binding
affinity data in the immune epitope database and analysis resource
(IEDB) (Vita et al., 2019), and a vast majority of MHC-II molecules
have very few or even no binding data. Thus, there are three issues
for the MHC-II side: (i) thousands of MHC-II molecules with differ-
ent binding specificity, (ii) long and size-flexible sequences and (iii)
data scarcity for most of the MHC-II molecules. These aspects have
made it difficult to model the interaction of MHC-II peptide binding
accurately.

Computational methods for MHC-II peptide binding prediction
can be divided into two categories: allele-specific and pan-specific
(Zhang et al., 2012b). Allele-specific methods can predict only bind-
ing preferences of MHC-II molecules in the training set, while
pan-specific methods can predict binding preferences of MHC-II
molecules even with no training data of these molecules, which is
thus the focus of our work. Traditionally, pan-specific methods have
been developed by various different techniques, such as position-spe-
cific scoring matrices (Zhang et al., 2012a), artificial neural network
(ANN) (Jensen et al., 2018), kernel-based methods (Guo et al.,
2013) and ensemble learning (Xu et al., 2016). The most established
method is NetMHCIIpan [latest version for MHC-II peptide binding
prediction is NetMHCIIpan-3.2 (Jensen et al., 2018)], an ANN-
based method, which pioneered using pseudo sequence to represent
an MHC-II molecule. ANN deals with only a fixed-sized input, and
so NetMHCIIpan first estimates the binding core in a given peptide
and then trains an ANN using the estimated binding cores and the
pseudo sequences. The whole process is repeated until convergence.
However, the first estimation of the binding core might be inaccur-
ate, which affects the predictive performance heavily. Most recent
pan-specific methods use deep learning (DL), such as convolutional
neural network (CNN), long short-term memory and transformer to
learn the interaction between MHC-II molecules and peptides.
There exist four representative DL-based methods: PUFFIN (Zeng
and Gifford, 2019), DeepSeqPanII (Liu et al., 2021), MHCAttnNet
(Venkatesh et al., 2020) and BERTMHC (Cheng et al., 2021). In
spite of using advanced DL techniques, these methods concatenate
the sequence encoding of an MHC-II molecule and a peptide for the
input, which do not take advantage of important domain know-
ledge, resulting in the lacking of performance improvement and
interpretability.

We propose a novel deep learning-based method, DeepMHCII,
for accurate MHC-II peptide binding affinity prediction by incorpo-
rating biological knowledge into designing the model architecture.
Specifically, DeepMHCII is modeled, considering the following
three distinct features: (i) binding core and PFRs in each peptide;
(ii) pseudo sequence, i.e. the sequence with only crucial residues for
directly interacting with the binding core of the counterpart peptide,
in each MHC-II molecule. (iii) Interaction between a peptide and an
MHC-II molecule by the interaction between all potential binding
cores and the pseudo sequence. Note that these three features have
not been explicitly addressed by any existing methods simultaneous-
ly. Specifically, DeepMHCII generates a binding interaction convo-
lutional layer (BICL) with adaptive kernel size filters to model the
interaction between peptides and MHC-II molecules.

The performance of DeepMHCII has been thoroughly validated
by extensive experiments on four benchmark datasets under various
settings, such as 5-fold cross-validation, leave one molecule out
(LOMO), independent testing set verification and binding core pre-
diction. We compared the predictive performance of DeepMHCII
with four state-of-the-art methods: NetMHCIIpan-3.2 (Jensen et al.,
2018), PUFFIN (Zeng and Gifford, 2019), DeepSeqPanII (Liu et al.,
2021) and MHCAttnNet (Venkatesh et al., 2020). Experimental
results demonstrate that DeepMHCII outperformed all competing
methods in all experiments. The improvement was especially signifi-
cant in LOMO and independent testing set verification. For ex-
ample, DeepMHCII achieved an average AUC of 0.77 in
independent testing, which was 7% and 10% higher than that of
NetMHCIIpan-3.2 (0.719) and PUFFIN (0.70). In addition,
DeepMHCII achieved an average Pearson correlation coefficient
(PCC) of 0.560 in LOMO, which was 6.7% higher than that of
PUFFIN (0.525). All these results indicate the effectiveness of
DeepMHCII on predicting the binding specificity of unseen MHC-II
molecules. We also verified the performance advantage and inter-
pretability of DeepMHCII in identifying the binding core of peptides
and binding motifs of MHC-II molecules.

2 Methods

2.1 Problem formulation
Suppose P ¼ ðp1; p2; . . . ; pLÞ denotes the peptide sequence and Q ¼
ðq1;q2; . . . ;qL0 Þ denotes the L0-length MHC-II molecule sequence,
where each of pi and qj stands for one of the 20 types of amino acids.
The task is a regression problem to predict the binding affinity ẑ 2
½0;1� by a given pair of P and Q. The binding affinity is mainly
determined by the nine-length binding core (unknown) of the pep-
tide and the binding groove with nine pockets in the MHC-II mol-
ecule. In addition, it has been found that peptides flanking regions
(PFRs) of the binding core affect the binding affinity.

In practice, we use the 34-length pseudo sequence Q0 extracted
from Q as the representation of MHC-II molecules. Pseudo se-
quence of MHC-II refers to the important MHC residues that are
considered being crucial for peptide binding. The 34-length MHC-II
molecule pseudo sequence was first proposed in NetMHCIIpan-3.0
(Karosiene et al., 2013), which was composed of 15 and 19 amino
acid residues from a and b chains of MHC-II, respectively. These
residues were extracted from MHC-II peptide complexes in PDB
(Burley et al., 2021), which were polymorphic in MHC molecules
and found in close contact (<4 Å) with peptide binding core in at
least one MHC-II peptide complex. The 34-length MHC-II pseudo
sequence has also been used in NetMHCIIpan-3.1 (Andreatta et al.,
2015) and 3.2 (Jensen et al., 2018). Similarly, we use this pseudo se-
quence as the representation of MHC-II molecules.

2.2 Overview
The basic idea of DeepMHCII is (i) to use deep learning to explicitly
model the interaction between an MHC-II molecule sequence and a
peptide and (ii) considering the crucial residue for binding, to focus
on only the interaction between the binding core in a peptide and
counterpart important amino acid residues (pseudo sequence) in a
MHC-II molecule. Specifically, the input of DeepMHCII is a L-
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length peptide sequence P and, a 34-length pseudo sequence Q0

extracted from an MHC-II molecule sequence Q (Burley et al.,
2021; Jensen et al., 2018). Figure 1 shows the architecture of

DeepMHCII with mainly four steps: (i) we apply an embedding
layer to the peptide sequence and also another embedding layer to

the pseudo sequence of MHC-II to obtain deep semantic dense rep-
resentations; (ii) we use a binding interaction convolutional layer
(BICL) to obtain the representation of binding interaction between

the potential binding cores and the MHC-II molecule; (iii) we use
fully connected layers and a max-pooling layer to extract the inter-

action of peptide and MHC-II molecule; and (iv) we use an output
layer to obtain the predicted binding affinity.

2.3 Input layer
We use an embedding layer to encode amino acid sequences for pep-
tides and also similarly another embedding layer for MHC-II pseudo

sequences. Let L be the length of an input peptide and d be the di-
mension of amino acid embeddings.

Then, for a given pair of a peptide sequence P and an MHC-II
molecule pseudo sequence Q0; X 2 R

L�d, the output of the embed-
ding layer for P, and Y 2 R

34�d, the output of the embedding layer

for Q0, are given as follows:

X ¼ ðx1;x2; . . . ; xLÞT ; Y ¼ ðy1; y2; . . . ; y34Þ
T ;

where xi 2 R
d and yj 2 R

d are the representation of the ith amino
acid of the peptide sequence and the jth amino acid of the MHC-II

pseudo sequence, respectively.

2.4 Binding interaction convolutional layer
We use a binding interaction convolutional layer (BICL) to obtain

the representation of the interaction between peptide X and MHC-II
molecule Y by considering all possible binding cores of X.

Traditionally in sequence-based CNN, input sequences share the
same kernels (filters), while in our problem, each MHC-II molecule
has a distinguished binding preference. To address this issue, BICL

generates different kernels for each MHC-II molecule. Specifically,
letting M be the size of a binding core (¼9 in our problem), we use a

weight matrix Wk with the size of M� 34 to generate the kth kernel
as f ðWkYÞ, where f is the activation function. We can write a poten-
tial binding core of X starting with the ith residue as Xi:iþM�1. By

using Xi:iþM�1 and kernel f ðWkYÞ, the interaction between potential
binding core Xi:iþM�1 and the MHC-II molecule Y can be given as
follows:

C
ð0Þ
i;k ¼ f ðf ðWkYÞ �Xi:iþM�1 þ bkÞ;

where bk is the bias. Then the output of BICL can be written as
Cð0Þ 2 R

ðL�Mþ1Þ�hð0Þ , where hð0Þ is the number of kernels.
Considering the effect of both binding core and PFRs, we used

four different kernel sizes: 9, 11, 13 and 15. For example, kernel

size of 15 is used to consider the effect of three more amino acids
in the left and right side of binding core, respectively. For each
kernel size, we used a different number of kernels. That is, the

number of kernels for the kernel size of nine was the largest,
followed by those of 11, 13 and 15. This setting will be described

in detail in Section 3.2. Note that the padding symbol will be added
to both side of X for kernel sizes other than 9 to get the same
number of rows (number of potential binding cores) of output.

2.5 Max-pooling and output layer
We then use N fully connected layers and a max-pooling layer to ob-
tain the representation g 2 R

hðNÞ of the interaction between peptide

X and MHC-II molecule Y as follows:

C
ðnÞ
i ¼ f ðCðn�1Þ

i WðnÞ þ bðnÞÞ;

gj ¼ maxfCðNÞ1;j ;C
ðNÞ
2;j ; . . . ;C

ðNÞ
L�Mþ1;jg;

where 1 � n � N, and WðnÞ 2 R
hðn�1Þ�hðnÞ ; bðnÞ 2 R

hðnÞ and CðnÞ 2
R
ðL�Mþ1Þ�hðnÞ are the weights, bias and output of the nth fully

connected layer, respectively.
Finally, we use the output layer to obtain the predicted binding

affinity ẑ 2 ½0; 1� as follows:

ẑ ¼ rðwðoÞ � gþ bðoÞÞ;

where wðoÞ 2 R
hðNÞ and bðoÞ 2 R are the weights and bias, respective-

ly. Our training objective is to minimize the mean square error.

Practically, we trained T models with different random initial
weights and used the average over the T predicted scores as the final
prediction.

2.6 Binding core prediction
For a given pair of peptide sequence and MHC-II molecule, we re-
move max-pooling layer of DeepMHCII, use the output layer after

N fully connected layers directly to obtain the predicted score of
each nine-length potential binding core as follows:

ẑi ¼ rðwðoÞ � CðNÞi þ bðoÞÞ;

The nine-length subsequence of peptide with the highest score

(ẑk) will be recommended as the binding core of this pair.

Fig. 1. The architecture of DeepMHCII. The red arrows are processes of the binding interaction convolutional layer (BICL) and the blue arrows are processes of binding core

prediction.
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3 Experiments

3.1 Datasets
We used four publicly available benchmark datasets (BD2016,
ID2017, BD2020 and BC2015) to train and evaluate DeepMHCII
and competing methods: BD2016 and ID2017 for MHC-peptide
binding affinities, BD2020 for MHC-peptide binding classification
and BC2015 for predicting binding cores. Below, we describe more
details on each of the four datasets.

BD2016 (http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-
3.2): BD2016 contains 134 281 data points of MHC-peptide binding
affinities over 80 different MHC-II molecules, including 36 HLA-DR,
27 HLA-DQ, 9 HLA-DP and 8 H-2 molecules. BD2016 was compiled
for training NetMHCIIpan-3.2 (Jensen et al., 2018) from IEDB. The ori-
ginal, experimentally obtained IC50 binding value of each data point
was transformed into the binding affinity with the range of [0,1] by
1� logðIC50nMÞ= logð50; 000Þ. BD2016 already provides a 5-fold
cross-validation (5-fold CV) split which groups the peptides with com-
mon motifs into the same fold. Table 1 shows a summary of BD2016.

ID2017: a dataset of MHC-peptide binding affinities was com-
piled from IEDB in 2017 for evaluating different MHC-II binding
peptide prediction methods (Andreatta et al., 2018). From this data-
set, we generated an independent test dataset, ID2017, by removing
data points overlapped with BD2016 and retaining MHC-II mole-
cules with more than 50 peptides for robust performance evaluation.
There are 10 HLA-DB molecules with 857 peptides in ID2017.

BD2020: a binary classification dataset of MHC-II peptide bind-
ing, which was extracted by Venkatesh et al. (2020) from IEDB for
training MHCAttnNet. Note that BD2020 has no quantitative bind-
ing affinities. BD2020 consists of 65 954 data points for 49 HLA-
DRB molecules, where 36 035 are positive, 28 919 are negative and
5-fold CV split is also provided.

BC2015: a binding core benchmark, which was used to evaluate
the performance of NetMHCIIpan-3.2 in identifying the binding
core of an MHC-peptide complex. BC2015 consists of 51 complexes
from PDB.

We have calculated the following two probabilities to evaluate
the redundancy of the 5-fold CV split of two benchmark datasets,
BD2016 (redundancy-reduced partition) and BD2020 (random par-
tition). Outer-p is the probability that two peptides in different folds
have a common 9-mer subsequence (we focused on 9-mer, due to
the binding core length), while Inner-p is the probability that two
peptides in the same fold have a common 9-mer subsequence. As
shown in Table 2, we can clearly see that BD2016 is less redundant,
since Outer-p is only an around two percent of Inner-P for BD2016
while Outer-p and Inner-p have the same value for BD2020.

3.2 Experimental settings
DeepMHCII used the following hyperparameter values, which were
selected by 5-fold CV over BD2016: d (dimension of embeddings of
amino acids) ¼ 16. The numbers of kernels of BICL with the kernel
sizes of 9, 11, 13 and 15 were 256, 128, 64 and 64, respectively. N

(number of fully connected layers) ¼ 2 and the sizes of nodes at the
two layers were 256 and 128. f (activation function) was ReLU. We
used batch normalization (Ioffe and Szegedy, 2015) after BICL and
each of the fully connected layers. Also, we used dropout (Srivastava
et al., 2014) with the drop rate of 0.25 to avoid overfitting. During
the training process, the batch size was 128, the number of epochs
was 20 and the optimizer we used was Adadelta (Zeiler, 2012) with
the learning rate of 0.9 and weight decay of 1e�4. T (number of
trained models) was 20. We implemented DeepMHCII by PyTorch
(Paszke et al., 2019).

We compared DeepMHCII with four state-of-the-art methods:
NetMHCIIpan-3.2 (http://www.cbs.dtu.dk/services/NetMHCIIpan-
3.2) (Jensen et al., 2018), PUFFIN (https://github.com/gifford-lab/
PUFFIN) (Zeng and Gifford, 2019), DeepSeqPanII (https://github.
com/pcpLiu/DeepSeqPanII) (Liu et al., 2021) and MHCAttnNet
(https://github.com/gopuvenkat/MHCAttnNet) (Venkatesh et al.,
2020). All are neural network-based methods. Since the training
code of NetMHCIIpan-3.2 is unavailable, we used the experimental
results (on BD2016) and the trained models provided by the authors
directly. We trained PUFFIN and DeepSeqPanII on BD2016 using
the implementation by the authors. According to the original paper
and for a fair comparison, NetMHCIIpan-3.2 and both PUFFIN
and DeepSeqPanII used a bagging ensemble of 200 and 20 models,
respectively.

MHCAttnNet used the cross-entropy objective function and
binary MHC-peptide binding dataset (BD2020) for model training.
We then trained DeepMHCII with the same dataset and the cross-en-
tropy objective function and compared the performance of
MHCAttnNet obtained from the paper directly. Both DeepMHCII
and MHCAttnNet used only one single model without any ensemble.

BERTMHC (Cheng et al., 2021) also can be a competing
method, while the open-source implementation (https://github.com/
s6juncheng/BERTMHC) of BERTMHC was not consistent with the
description in Cheng et al. (2021). We have then contacted the
authors of BERTMHC, regarding this matter, but we were unable
to receive any response (https://github.com/s6juncheng/BERTMHC/
issues/8). As a result, we did not use BERTMHC in the performance
comparison.

3.3 Evaluation metrics
We set up binary classification: we used the area under the receiver
operating characteristics curve (AUC) for each MHC-II molecule
and reported the average AUC. Also to classify peptides into binders
and non-binders, a binding threshold of 500 nM was used: All
peptides with an IC50 binding value < 500 nM (0.426 after
transformation) were classified as binders. Since there are a large
number of MHC molecules, we used a binomial test to check the
statistical significance of performance difference (significance level
was P-value < 0.05). In addition, we used the Pearson correlation
coefficient (PCC) to examine the linear relationship between the
predicted binding affinity and the true value.

3.4 Experimental results
We conducted the following four experiments to validate the
predictive performance of DeepMHCII: (i) we examined the
performance of DeepMHCII and the competing methods by 5-fold
CV over BD2016. (ii) In order to validate the performance for
unseen MHC-II molecules, following NetMHCIIpan-3.2, we
conducted LOMO over BD2016 by using the above 5-fold CV
set-up. Specifically, each time, data points of only one MHC-II
molecule in the test fold were used for testing, while data points of
all other MHC-II molecules in training folds were used for training
over 5-fold CV settings. Furthermore, following the settings in
NetMHCIIpan-3.2, out of all 81 MHC-II molecules, we focused on
61 molecules with more than 40 data points and at least three bind-
ers for the robustness of performance evaluation. (iii) We performed
a performance comparison on DeepMHCII and competing methods
on ID2017, i.e. the independent test set. (iv) We examined the per-
formance of DeepMHCII using the same objective function as that
of MHCAttnNet, to examine the robustness of DeepMHCII.

Table 1. Summary statistics of BD2016

Allele No. of peptides No. of binders No. of MHCs

HLA-DR 87 363 40 756 36

HLA-DP 15 564 5135 9

HLA-DQ 28 081 9098 27

H-2 3273 894 8

Total 134 281 55 883 80

Table 2. Data redundancy of BD2016 and BD2020

Dataset Outer-p Inner-p Ratio

BD2016 4.39e�4 2.41e�2 54.9

BD2020 2.43e�3 2.43e�3 1
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3.4.1 Comparison of DeepMHCII and competing methods

under 5-fold cross-validation

Table 3 reports the average AUC and PCC over all MHC-II

molecules of 5-fold CV over BD2016 by DeepMHCII,
NetMHCIIpan-3.2, PUFFIN and DeepSeqPanII (the detailed results

of each MHC-II molecule are shown in Supplementary Table S1).
DeepMHCII outperformed all competing methods in both AUC and
PCC. For example, DeepMHCII achieved the highest AUC of 0.856,

which was followed by NetMHCIIpan-3.2 (0.847), PUFFIN (0.846)
and DeepSeqPanII (0.759). Also DeepMHCII outperformed

NetMHCIIpan-3.2, PUFFIN and DeepSeqPanII on 48, 51 and 61,
respectively, out of all 61 MHC-II molecules, all being statistically
significant (two-tailed binomial test, P-value ¼ 7:67� 10�6;

9:62� 10�8; 8:67� 10�19, respectively).

3.4.2 Comparison of DeepMHCII and competing methods under

LOMO

Also Table 3 reports the average AUC and PCC of LOMO over all

MHC-II molecules by DeepMHCII and competing methods (the
detailed results of each MHC-II molecule are shown in

Supplementary Table S2). The results are consistent with those of 5-
fold CV. DeepMHCII achieved the highest AUC and PCC of 0.785
and 0.560, respectively, which were 1.3% and 2.9%, respectively,

higher than those achieved by NetMHCIIpan-3.2, the second-best
method. Figure 2 plots the LOMO AUC results obtained by:

DeepMHCII for y-axis and (Fig. 2a) NetMHCIIpan-3.2, (Fig. 2b)
PUFFIN and (Fig. 2c) DeepSeqPanII for x-axis, where each dot cor-
responds to one MHC-II molecule. That is, if one dot appears above

the diagonal line, DeepMHCII outperformed the competing method,
regarding the MHC-II molecule corresponding to this dot.

DeepMHCII outperformed NetMCHIIpan-3.2, PUFFIN and
DeepSeqPanII on 43, 42, 51 out of all 61 molecules, respectively, all
being statistically significant (two-tailed binomial test, P-value ¼
1:87� 10�3; 4:44� 10�3 and 9:62� 10�8, respectively). We also
found that all methods tend to perform poorly on MHC molecules
of H-2. In particular, there are several molecules such as H-2-IAs

and H-2-IEk where DeepMHCII performs poorly. These may be
related to the lack of similar MHC molecules, the relatively small

amount of test data and the unknown quality of data. On the whole,
these results indicate that DeepMHCII is more robust and can deal
with unknown MHC-II alleles better than the competing methods.

Furthermore, we have reported the performance of DeepMHCII
and PUFFIN over BD2016 under a more strict LOMO, where for

each test MHC molecule, we removed the most similar molecules
from the training sets to avoid ‘easy’ predictions. Detailed results are

presented in the Supplementary material. We can see that the per-
formance of DeepMHCII is still much better than PUFFIN. We did
not use NetMHCIIpan-3.2 and DeepSeqPanII in this experiment,

since no source codes of NetMHCIIpan-3.2 are provided and the
performance of DeepSeqPanII is slower and worse than the other
three methods.

3.4.3 Comparison of DeepMHCII and competing methods on

independent testing set

Table 4 reports the performance on each MHC-II molecule of
ID2017, the independent testing set, by DeepMHCII and competing
methods. Figure 3 shows the ROC curves of DeepMHCII and com-
peting methods on the whole ID2017. DeepMHCII outperformed
all competing methods on both AUC of the whole ID2017 in
Figure 3 and average AUC over all MHC-II molecules in Table 4.
Specifically, DeepMHCII achieved the best average AUC of 0.770,
which was 7.1% higher than the second-best method,
NetMHCIIpan-3.2 (0.719), and more than 10% higher than the
other two competing methods, PUFFIN and DeepSeqPanII.
Regarding the AUC of the whole testing set, DeepMHCII achieved
the highest AUC of 0.775, which was 7.8%, 12.0% and 15.5%
higher than NetMHCIIpan-3.2 (0.719), PUFFIN (0.692) and
DeepSeqPanII (0.671), respectively. For the performance over each
MHC-II molecule, DeepMHCII outperformed NetMCHIIpan-3.2
and PUFFIN in all 10 MHC-II molecules and DeepSeqPanII in 8 out
of the ten MHC-II molecules.

3.4.4 Comparison with MHCAttnNet

We trained DeepMHCII with the cross-entropy objective function
under the same 5-fold CV split over BD2020, where this objective
function was used in MHCAttnNet (Venkatesh et al., 2020), one of
the competing methods of DeepMHCII. Table 5 shows the perform-
ance of DeepMHCII and MHCAttnNet, where following the origin-
al paper of MHCAttnNet, we used AUC over the whole test set,
instead of the average AUC per MHC-II molecule. The AUC and ac-
curacy of DeepMHCII were 4.1% and 3.0%, respectively, higher
than those of MHCAttnNet, further demonstrating the performance
advantage of DeepMHCII.

3.5 Result analysis
In order to analyze (or to interpret) the experimental results of
DeepMHCII, we conducted the following five experiments: (i) We
compared DeepMHCII with DeepSeqPanII and NetMHCIIpan-3.2
in binding core prediction over BC2015. (ii) We visualized the bind-
ing motifs of MHC-II molecules by using sequence logos (Schneider
and Stephens, 1990) and compared the sequence logos generated by
DeepMHCII with those of DeepSeqPanII and NetMHCIIpan-3.2.
(iii) To illustrate the biological perspective captured by
DeepMHCII, we analyzed the weights (of nine pockets in the bind-
ing core) of BICL in DeepMHCII. (iv) We examined the perform-
ance of DeepMHCII under different kernel sizes (5–15). (v) We
checked the time and space complexities of DeepMHCII, comparing
with those of two competing methods, PUFFIN and DeepSeqPanII.

3.5.1 Binding core prediction

The last column of Table 3 shows the results of predicting the bind-
ing core over BC2015 (more detailed results are shown in
Supplementary Table S3). Note that PUFFIN cannot predict binding
cores and thus is not shown in this column. Also note that
NetMHCIIpan-3.2 has one variant, ‘NetMHCIIpan-3.2 (without
offset)’, which uses the original prediction results to identify the
binding core. Out of all 51 pairs, DeepMHCII correctly predicted

Table 3. Performance of DeepMHCII and competing methods

Method 5-CV LOMO IEBD test Binding core

AUC PCC AUC PCC AUC No. of correct/No.

of total

NetMHCIIpan-3.2 0.847 0.679 0.775 0.544 0.719 45/51

PUFFIN 0.846 0.676 0.768 0.525 0.700 –

DeepSeqPanII 0.759 0.524 0.732 0.473 0.700 10/51

DeepMHCII 0.856 0.691 0.785 0.560 0.770 47/51
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47, being followed by NetMHCIIpan-3.2 (45), NetMHCIIpan-3.2
without offset (28) and DeepSeqPanII (10). This result highlights the

advantage of DeepMHCII of flexibly modeling the binding core and
its high interpretability over competing methods.

3.5.2 Sequence logos

We visualized the binding motifs of MHC-II molecules obtained by
each prediction method as sequence logos (Schneider and Stephens,
1990). Following the description in Nielsen et al. (2007), we first
computed the binding scores of 100 000 random peptides from
SwissProt and then selected the top 1% predicted binders to draw
sequence logos (with default settings). Since PUFFIN does not have
the ability to predict the binding core, we compared the sequence
logos generated by DeepMHCII, NetMHCIIpan-3.2 and DeepSeqPanII.
We focused on four MHC-II molecules, DRB1*04:01, DRB1*09:01,
DRB1*12:02 and DRB1*13:01, in ID2017, where DeepMHCII outper-
formed NetMHCIIpan-3.2 most. Figure 4 shows the sequence logos of
these four MHC-II molecules by different three methods. Each sequence
logo has 1st to 9th positions (pockets) in the x-axis, where at each pos-
ition, the total height [of letters (amino acids)] represents the relative in-
formation content (also importance) of the corresponding position in the
motif, and the height of each letter shows the frequency of the corre-
sponding amino acid in the position. It is widely observed and generally
thought that P1 (pocket 1), P4, P6 and P9 are four primary anchors,
which are most important for peptide binding (Rammensee et al., 1999).
All four sequence logos of DeepMHCII are consistent with this widely
accepted understanding. In contrast, DeepSeqPanII could not distinguish
these four primary anchors from other five pockets clearly, and the se-
quence logos by NetMHCIIpan3.2 contained more noise at pockets, es-
pecially non-primary pockets in DRB1*12:02 and DRB1*13:01,
making frequent amino acids at each pocket totally unclear.
Furthermore, by taking a closer look at primary anchors, we could ob-
serve clear differences among prediction methods in amino acid prefer-
ence in primary anchors. For example, P4 of DRB1*04:01 was
identified as a primary anchor by both DeepMHCII and
NetMHCIIpan-3.2, where preferred amino acids in P4 by DeepMHCII
were [DILAES] but [LIASVDM] by NetMHCIIpan-3.2. According to

Fig. 2. Performance comparison between DeepMHCII and (a) NetMHCIIpan-3.2, (b) PUFFIN and (c) DeepSeqPanII under LOMO. Each dot represents an MHC-II molecule

Table 4. Performance (AUC) of DeepMHCII and competing methods on the independent testing set

Allele No. of peptides No. of binders NetMHCIIpan-3.2 PUFFIN DeepSeqPanII DeepMHCII

DBR1*01:01 100 81 0.880 0.834 0.733 0.882

DBR1*03:01 99 61 0.588 0.620 0.536 0.629

DBR1*04:01 142 91 0.787 0.762 0.748 0.863

DBR1*07:01 94 72 0.800 0.728 0.732 0.814

DBR1*09:01 62 45 0.793 0.796 0.654 0.889

DBR1*11:01 94 72 0.614 0.629 0.699 0.657

DBR1*12:02 59 48 0.661 0.742 0.824 0.788

DBR1*13:01 57 47 0.538 0.472 0.591 0.615

DBR1*15:01 96 81 0.767 0.683 0.751 0.799

DBR1*15:02 54 41 0.760 0.735 0.730 0.764

Average 0.719 0.700 0.700 0.770

Fig. 3. ROC curves by ID2017

Table 5. Performance of DeepMHCII and MHCAttnNet on BD2020

Method Accuracy AUC

MHCAttnNet 0.755 0.758

DeepMHCII 0.786 0.781
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SYFPEITHI (Rammensee et al., 1999), an MHC binding motif database,
P4 allows amino acid E. This information is consistent with the sequence
logo of DeepMHCII. Overall, DeepMHCII could generate better se-
quence logos than the competing methods.

3.5.3 Analyzing weights of BICL

We examined the importance of each position in the binding core by
checking the absolute value of the weight (obtained by BICL) for
each position of the binding core. For each pocket, we summed the
absolute weight values for each model and computed the mean and
standard deviation from all T¼20 models of DeepMHCII. Table 6
shows the mean and standard deviation of each pocket. The values
of positions 1, 4, 6 and 9 (which are in boldface) were much larger
than other positions, being consistent with that P1 (pocket 1), P4,
P6 and P9 are primary anchors (Rammensee et al., 1999). From this
result, we can see that DeepMHCII could learn biological know-
ledge from data well, showing the validity of DeepMHCII from a
biological perspective.

3.5.4 Ablation experiments

We examined DeepMHCII with the single kernel size k, selecting k
from 5, 7, 9, 11, 13 and 15, where we call DeepMHCII trained by
the kernel size of k as DeepMHCIIk (Note that original DeepMHCII
uses four different kernel sizes: 9, 11, 13 and 15 at once). Table 7
reports the performance of 5-fold CV over BD2016 by
DeepMHCIIk. We have three findings: (i) DeepMHCII9 outper-
formed DeepMHCII5 and DeepMHCII7 significantly. Specifically,

Fig. 4. Sequence logos by DeepMHCII, NetMHCIIpan-3.2 and DeepSeqPanII

Table 6. Weights of BICL for nine pockets of the binding core

Pocket Weight

P1 243.21 6 10.14

P2 230.51 6 10.22

P3 232.19 6 8.48

P4 256.36 6 10.48

P5 232.00 6 10.86

P6 251.38 6 10.02

P7 239.53 6 9.44

P8 227.72 6 9.80

P9 253.76 6 10.55

i226 R.You et al.



DeepMHCII9 achieved PCC of 0.676, which was followed by
DeepMHCII7 (0.651) and DeepMHCII5 (0.637). This is consistent

with that the standard binding core is with nine amino acids.
(ii) DeepMHCII11, DeepMHCII13 and DeepMHCII15 achieved a

similar performance, which was higher than DeepMHCII9. For ex-
ample, both DeepMHCII13 and DeepMHCII15 achieved PCC of
0.686, which was higher than DeepMHCII9 (0.676). This suggests

that peptide franking region has some positive effect on MHC-II
peptide binding. (iii) DeepMHCII achieved the best performance

with AUC of 0.856 and PCC of 0.691 among all compared methods.
All these results confirm that the high performance of DeepMHCII
was obtained by incorporating biological knowledge into the model

design.
In addition, we compared DeepMHCII with a vanilla CNN,

which uses a convolutional layer instead of BICL on the peptide and
concatenates representations of the peptide and allele directly. As
shown in Table 8, we can see that the performance of DeepMHCII

is much better than CNN.

3.5.5 Time and space complexity

Table 9 shows the amount of time necessary for training and predic-

tion of DeepMHCII and competing methods. All methods were run
on a single Nvidia Titan X (pascal). The amount of time for training
DeepMHCII is equivalent to that for training PUFFIN and is much

smaller than that for training DeepSeqPanII, which is based on re-
current neural networks. More notably, for prediction, DeepMHCII

is significantly faster than both PUFFIN and DeepSeqPanII. We fur-
ther examined the size of The trained model between DeepMHCII
and competing methods. As shown in the last column of the table,

the size of DeepMHCII is only 1.4 Mbytes, which is far smaller than
those of PUFFIN (24.1 Mbytes) and DeepSeqPanII (15.3 Mbytes).
This is a practically sizable difference.

4 Conclusion and discussion

We have proposed a new deep learning model, DeepMHCII, for pre-
dicting peptide-MHC binding affinity, the binding core and import-
ant pockets in the binding core. Considering the biological
properties behind peptide-MHC binding, DeepMHCII has explicitly
incorporated the interaction processes between a peptide and an
MHC-II molecule through interaction convolution layers, which
makes us biologically understand the peptide-MHC binding core
and predict the binding affinity.

Extensive experiments with four large-scale datasets have dem-
onstrated that DeepMHCII significantly outperformed all four state-
of-the-art competing methods under a wide variety of settings.
Furthermore, DeepMHCII captured the motifs more precisely than
the compared methods, verifying the high performance in predicting
the binding core and also the important pockets. All these results
proved the usefulness of DeepMHCII in terms of the high accuracy
but also precise biological discovery and high scientific interpretabil-
ity. A limitation of our study might be that we focus on peptide
binding prediction other than epitope prediction, where the MHC
binding peptide must be recognized by TCR. Possible future work
would be to incorporate more biological knowledge into our model
design to develop high-performance deep learning methods for epi-
tope prediction (Blass and Ott, 2021).
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