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Abstract: Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with
patients displaying neurological regression and autism spectrum features. The affected individuals
are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-
CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations
(classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other
genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological
basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However,
later research highlighted its importance in other cell types of the brain including glia. In this
regard, scientists benefitted from modeling the disease using many different cellular systems and
transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human
postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism.
MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal
brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease
conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a
regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide
an overview of recent advances in understanding the underlying mechanism of disease in RTT and
the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the
role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory
mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.

Keywords: epigenetics; DNA methylation; MeCP2 isoforms; MeCP2E1; MeCP2E2; BDNF; miR132;
brain development; Rett syndrome; RTT pathobiology

1. Introduction to Rett Syndrome

Rett Syndrome (RTT) is a neurological disease in females that is commonly diagnosed
in female infants by 1–2 years of age. The disease mainly affects brain development and the
symptoms progress as the patient grows up. In most cases, children seem to be normal at
the time of birth and up to six months of age, after which they start exhibiting specific symp-
toms of the disease. RTT patients display a wide range of neurological and developmental
impairments that require continuous care throughout their life. While RTT is commonly
considered a monogenic disorder caused by methyl-CpG-binding protein 2 (MECP2) gene
mutations, in a small percentage of cases, the disease is associated with mutations in some
other genes. In this review, we will mainly focus on Rett Syndrome caused by MECP2
mutations. This includes the history of the disease, clinical characteristics of RTT patients,
MeCP2 as an epigenetic factor, MeCP2 mutations and homeostasis regulation, MeCP2
targets focusing on BDNF-miR132 and relevant signaling pathways, as well as disease
pathobiology.
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2. History of Rett Syndrome

Over half a century ago in 1954, Dr. Andreas Rett who was a pediatrician from Austria
noticed similar winding hand motions in two young girls waiting for a visit in his clinic.
The clinical and developmental histories of these two patients were also similar. With
further investigations, Dr. Rett found 6 other girls with the same disorder in his own
practice and 22 patients during his travels throughout Europe. Twelve years after that
eye-catching coincidence in the waiting room of his clinic, Dr. Rett reported the clinical
entity in the German medical literature [1]. Seventeen years later, Dr. Bengt Hagberg, a
neurologist from Sweden, in collaboration with his colleagues, attributed Rett’s name to
this Syndrome, mainly overlooked because of the language of the first report. The medical
community recognized Rett Syndrome through an English report of 35 RTT cases that were
reported by Dr. Hagberg in 1983 [2]. In 1992, the MECP2 gene was first reported by Dr.
Adrian Bird and his team at the University of Edinburg, UK [3]. Seven years later, MECP2
mutation was discovered to be the underlying cause of RTT pathophysiology by Dr. Huda
Zoghbi and colleagues. They showed that mutations in the MECP2 gene are causative for
the majority (over 90%) of RTT cases [4]. Soon after finding the genetic basis of RTT, in
2001, the first animal model of RTT became available [5]. Since then, several groups have
worked to elucidate the pathophysiology of the disease and have run trials for therapeutic
purposes [6].

3. Clinical Features, Diagnosis, and Histopathology of RTT

Rett syndrome is a neurodevelopmental disorder that progresses with age and is
mainly seen in females (1:10,000 live female-births) [7]. Classical RTT is caused by MECP2
mutations with relatively well-defined characteristics, while atypical RTT is characterized
by early onset of seizers and developmental delay. Atypical RTT can be seen in patients
with genetic mutations in other genes, such as cyclin-dependent kinase-like 5 (CDKL5) and
FOXG1 [8,9]. In classical RTT, neurodevelopmental progression seems to be normal during
the first six to eighteen months, although subtle symptoms such as muscle hypotonia
and deceleration of head growth are usually present earlier in their life but frequently
ignored. Delay, stagnation, or regressions in motor development are among the most
frequent complaints that bring patients to medical attention. General growth delay, weight
loss, and a weak posture caused by muscle hypotonia are other common findings at this
stage [10,11].

As RTT progresses, stereotypic hand wringing or washing movements replace pur-
poseful use of hands. Abnormal gait with lack of coordinated movements of the upper
extremities in addition to social withdrawal and loss of verbal communications are other
common symptoms in RTT patients. The autistic features such as poor response to environ-
mental stimulations become less prominent and are replaced by signs of mental retardation
as the child grows up [7]. RTT patients also suffer from autonomic perturbations including
breathing abnormalities (e.g., breath holding, periods of hyperventilation, and apnea) [12],
cardiac arrhythmias (prolonged QT syndrome) [13], and gastrointestinal dysfunction [14].

Seizures ranging from easily controlled to intractable epilepsy are common in RTT
and could be seen in more than 80% of cases [15]. Age of onset of seizures depends on
the type of MECP2 gene mutation, and its severity tends to decrease after the teenage
years and into adulthood [15]. Ataxia (gross lack of coordination in muscle movements)
and gait apraxia (inability to perform learned movements) accompany mental detriment.
Devastating motor dysfunction makes RTT patients wheelchair-bound during the teenage
years and as they enter adulthood. Parkinson-like features could be added to the clinical
manifestations. Skeletal deformities such as scoliosis and osteopenia in RTT patients are
partly caused by locomotor difficulties and sedentary state. Decreased muscle tone can
also be responsible in this process [14]. Despite poor physical condition, RTT patients
typically survive into adulthood (70% up to 45 years) and even up to 70 years of age.
Cardiorespiratory compromise is the leading cause of death in RTT [16]. The three main
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atypical forms of RTT are well-maintained speech irregularity, seizure with an early onset,
and the congenital variant [7,17].

Gross and Microscopic Features of RTT

Microcephaly is the main finding in gross pathology of Rett Syndrome. RTT pa-
tients show a normal head circumference at birth but begin to display deceleration after
2–3 months. The reduction in brain weight is not universal, and cerebral hemispheres are
relatively smaller compared to the cerebellum and compared to non-RTT conditions [18].
Prefrontal, posterior frontal, and anterior temporal brain regions show smaller volumes
in neuroimaging, while posterior temporal and posterior occipital regions are relatively
preserved [19,20]. In general, microscopic evaluations of RTT brains have not recognized
degeneration, demyelination, or gross malformative processes. A reduction in gross brain
volume is associated with small and compacted neurons that also suffer from decreased
dendritic complexity, reduced neurites, and a lower level of synaptic density in the cerebral
cortex [21]. Reduced melanin and tyrosine hydroxylase staining in the midbrain and
substantia nigra, and altered contour and appendages in neurons of the globus pallidus
are examples of findings in other regions of the brain in RTT Syndrome [22,23]. Vagal
tone abnormalities that have been found in functional studies of the vagus nerve are in
line with the autonomic impairments in RTT. Aberrations in serotonin receptors as well
as substance P content have also been reported in brain stem studies [18] Substance P is a
neuropeptide acting as a neurotransmitter and neuromodulator, best reported for its role
in the transmission of pain stimuli in the peripheral nervous system, but it participates in
behavioral responses as well as neuronal survival in the central nervous system [24]. The
altered sensitivity of Rett Syndrome patients to pain can be related to the abnormality in
substance P. There are also studies that suggest a role for MeCP2 in pain perception [25–27].

4. Genetic Basis of Rett Syndrome: Link between Genotype and Phenotype

RTT is an X-linked disease and predominantly affects females; however, it can also be
seen in three groups of male patients. Patients in the first group have a mutation that causes
classical RTT in females, though these boys have severe neonatal encephalopathy and a
lifespan of less than one year and commonly die early during childhood. The diluting
effect of X chromosome aneuploidy (Klinefelter syndrome; 47 XXY)) or somatic mosaicism
may be associated with a milder phenotype, similar to atypical RTT [28,29]. The second
group presents mutations which are different from typical/classical mutations in female
patients but are more compatible with life into adulthood. The last group shows mutations
in genes other than MECP2 such as CDKL5 or FOXG1 and are associated with RTT-like
symptoms in males [30].

De novo mutations in the MECP2 gene positioned in the X-chromosome (Xq28) are
the source of 95% of cases of typical RTT and over half of atypical RTT events [31]. In
general, the majority of such de novo mutations occur in the germline of the father [32,33],
which partially explains the female predominance of RTT. In rare familial cases of Rett
Syndrome, maternal skewing of X-chromosome inactivation (XCI) could pass the same
MECP2 gene mutation from an asymptomatic female carrier to her children [34]. Hav-
ing one copy of X-chromosome, most male patients present severe symptoms including
infantile encephalopathy and death during early childhood [34]. From more than 4600
identified variants in the MECP2 gene, over 70% have an association with RTT. How-
ever, the causative role of MECP2 mutation has not been shown for all of them. Eight
of these mutations account for about 47% of all mutations that include three mutations
in the methyl-CpG-binding domain (R106W, R133C, and T158M), one mutation in the
intervening domain (ID) (R168X), and four mutations in the transcriptional repression do-
main (R255X, R270X, R306C, and R294X) (Figure 1). Some of the identified RTT-associated
MECP2 mutations impact MeCP2 protein stability, which may be partly involved in disease
biology [35–37]. As indicated, mutations in two other genes, FOXG1 and CDKL5, can cause
atypical forms of RTT [38].
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RTT patients exhibit a high range of symptomatic variation, from mild to very severe
symptoms. While dividing RTT into classical and atypical forms has decreased the differ-
ences within each category, there is still phenotypic variation in each group and even in
one patient over time. X-chromosome inactivation is suggested as one of the main contrib-
utors of phenotypic variability [39]. While most classical RTT patients show balanced XCI
pattern in the brain [40], non-random XCI has also been reported [41]. Somatic mosaicism
is another potential source of phenotypic variability [42]. Finally, specific types of MECP2
mutations can also affect protein functions differently and can lead to different severities of
phenotypes. For instance, severe RTT caused by T158M mutation (affecting the methyl-
CpG-binding domain of MeCP2) may be due to interrupted MeCP2 binding to methylated
DNA, resulting in changes in the transcriptional control of its target gene [43,44], whereas
C-terminal deletions may be associated with milder phenotypes [45].
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4.1. Mutations in the N-Terminal Domain

From the hundreds of MECP2 mutations found in RTT patients, less than 1% target
exon 1, which means MeCP2E1 dysfunction is sufficient to cause Rett Syndrome [46–48].
While MeCP2E2-specific mutations have not been described in RTT, it has been shown that
the expression of MeCP2E2 can improve some of the RTT phenotypes in Mecp2-null mice.
Isoform-specific MeCP2 transgenic lines were used in this study to rescue neurophenotypes
exhibited by Mecp2-null mice (Mecp2−/Y) [49]. Mutations affecting parts of the N-terminal
domain (NTD) region, which are shared by both MeCP2 isoforms, have been described in
RTT patients [38].

4.2. Mutations in the Methyl-CpG-Binding Domain

Thr158, Arg133, and Pro152 within the MeCP2 methyl-CpG-binding domain (MBD)
region are three common spots for RTT-related mutations. T158M located in the MBD
region of the protein is the most frequent mutation that can cause RTT (approximately 9%).
R133C and R106W from the MBD region are ranked 7th and 10th in the list of RTT-causing
mutations [38].

4.3. Mutations in the Intervening Domain

The intervening domain is the region that links MBD and Transcription Repression
Domain (TRD) and is the location for R168X, a truncating mutation that is the second most
common mutation in RTT patients [38]. A few mutations in the ID region of MeCP2 such
as R190H and R190C have been also associated with Schizophrenia [50,51]. One of the
RTT brain samples in our recent studies was shown A201V mutation. This is the 21st most
common MECP2 mutation found in 0.61% of RTT patients. However, it is unclear if it has a
cause effect in this syndrome or is just a polymorphism found in association with RTT [38].
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4.4. Mutations in the Transcriptional Repression Domain

TRD binds with partner proteins such as co-repressor Sin3a, histone deacetylases
(HDACs) [52], and NCoR/SMRT co-repressor [53]. R255X, R270X, and R294X, the three
most common truncating mutations after R168X (from ID), are located within TRD. More-
over, R306C, which is the second most common missense mutation after T158M (from
MBD), is located in TRD [38]. Because of the R306C mutation, MeCP2 loses its interaction
with NCoR/SMRT [53].

4.5. Mutations in the C-Terminal Domain

The MeCP2 C-terminal domain (CTD) might play a role in binding to histones [54].
This domain also contains S421, a serine residue that can become phosphorylated during
neural activity [55], resulting in transcriptional activation of the Brain-derived neurotrophic
factor (Bdnf ) [56]. L386fs, the most common frameshift mutation in RTT patients, is located
in CTD. E397K, which is the sixth most common RTT-associated substitution, is also located
in CTD.

5. Biological Systems to Study Rett Syndrome

RTT has a monogenic cause resulting from mutations in the single MECP2 gene [4]. This
has motivated the generation of many RTT transgenic animals [5,57,58] and cellular [59–61]
model systems for the disease. Based on their genetic modifications, the models can be
categorized as (1) Mecp2-deficient models such as Mecp2 constitutive knockout mice [5,58]
or brain region/cell type-specific deletion of Mecp2 [62,63], and (2) Mecp2 mutant models
such as knock-in mouse models with specific Mecp2 mutations [64,65]. These animal
models show different phenotypes and have different lifespans [66]. While very useful, one
may need to be aware of some potential caveats in the interpretation of RTT animal model
studies. First, while Mecp2-heterozygous female mice are more directly representative of
RTT condition, male Mecp2-null mice are easier to work with and are more frequently used.
Second, compared to humans, mice show noticeable symptoms for MeCP2 loss-of-function
later in the course of development [67].

With regards to in vitro human RTT cellular model systems, MeCP2-deficient cultured
neurons derived from either human-induced pluripotent stem (iPS) cells or embryonic
stem cells have been used [59,60]. Murine cellular model systems include differentiated
cells from embryonic stem cells or primary neural stem cells [67]. For detailed information
on different RTT model systems, we refer the readers to excellent recent reviews [68–79].

6. Epigenetic Regulation Mechanisms and Role in Controlling MeCP2 Homeostasis Network

MeCP2 is an epigenetic factor and is among the most-studied proteins that are in-
volved in epigenetic control. Epigenetic mechanisms regulate gene expression without
direct change in the underlying DNA sequences. Such mechanisms include chromatin
remodeling, DNA methylation, RNA modifications, histone post-translational modifi-
cations (PTM), and the activity of different types of regulatory RNAs [80]. It has been
shown that epigenetic mechanisms play major roles in development, aging, and disease
conditions [80,81]. Below, we provide a brief description of the most-studied mechanisms
of epigenetic regulation, epigenetic control of MeCP2, and its homeostasis network.

6.1. Chromatin Remodelling

In eukaryotic cells, the genomic material is composed of DNA and DNA-bound
proteins (called histones), together making up the “chromatin” structure. A 147-bp stretch
of DNA folded around a histone octamer (consisting of 2 H2A-H2B dimers and 2 copies
of each histone H3 and H4) and the histone octamer, forming the basic and repetitive
unit of the chromatin structure, known as a “nucleosome”. A stretch of 20-to-50 bp linker
DNA associates the nucleosomes together. This linker DNA is accessible to DNA binding
proteins, but nucleosomes are considered negative regulators of gene transcription. It has
been shown that a group of proteins can modulate gene expression through repositioning
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of nucleosomes and remodeling of the chromatin in the promoter of specific genes [82].
This process has been shown to be important during neurodevelopment [83–85].

6.2. Histone Post-Translational Modifications

The N-terminal tail of histones mainly includes amino acids that are subjected to
various PTMs. Specific amino acids such as lysine are commonly the target for acetylation,
phosphorylation, methylation, sumoylation, and ubiquitination, whereas arginine can be
methylated or ADP-ribosylated [86,87]. These histone marks can affect transcriptional
activity of the genes by recruiting co-activator or co-repressor complexes [88]. Various
histone PTMs play key roles in important processes such as demarcating euchromatin and
heterochromatin regions. For example, facultative heterochromatin, which contains selec-
tively silenced genes, is enriched for H3K27me3, whereas the constitutive heterochromatin
with permanently repressed genes (like centromere) contains abundant H3K9me3 [89–92].

6.3. Noncoding RNAs

In the human genome there are approximately 21,000 protein-coding genes, which is
similar to less complex species; however, there are tens of thousands of noncoding RNAs
(ncRNAs) that play regulatory roles in physiological complexity of humans and other
mammals [93]. Small RNAs (approximately 20–30 nucleotides in length) include small
interfering RNA (siRNA), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs)
that modulate gene expression in a way that is specific to their target sequences. Long
ncRNAs (typically >200nt) are among the important players of transcriptional regulation
at multiple levels [85,94,95].

6.4. DNA Methylation

DNA methylation is perhaps one of the most important types of epigenetic modi-
fications primarily characterized as the attachment of a methyl group at the 5th carbon
of a cytosine, known as 5-methyl cytosine (5-mC). This methylation is commonly in the
context of cytosine guanine dinucleotide (CpG). DNA methylation can also happen in
the non-CpG context, targeting other nucleotides (adenine, guanine, and thymine) [91].
While DNA methylation first was recognized as a marker for gene inactivation, later, it
became clear that, in the context of 5-hydroxy methyl cytosine (5-hmC), it could activate
gene expression [91,96]. Epigenetic modifications are mediated by specific enzymes known
as writers, recognized by effector proteins known as readers, and the reversible marks can
be removed by another set of enzymes called erasers [80].

6.5. Writers of DNA Methylation

The process of DNA methylation is facilitated by DNA methyl transferase (DNMT)
enzymes that include DNMT3A and DNMT3B. These enzymes are in charge of de novo DNA
methylation, while DNMT1 is the maintenance DNMT. DNMT enzymes are important for
proper development, and their impairments are reported in different diseases. For instance,
DNMT1 mutation is associated with “hereditary sensory neuropathy with hearing loss and
dementia type IE” [97,98].

6.6. Erasers of DNA Methylation

DNA demethylation can occur in a passive way when methylation marks dilute and
fade from one cell division to the next. This happens in early stages of development in
which production of DNMTs has not yet started and the DNMT1 that originated from
oocytes is diluted by cell division. There is also an active DNA demethylation catalyzed
by the activity of the Ten-eleven translocation (TET) family of proteins that transform a
5-methylcytosine into a 5-hydroxymethylcytosine, which could undergo multiple steps
to finally become an unmethylated cytosine [80,91,97]. DNA methylation is read and
interpreted by different families of proteins that recognize this epigenetic modification and
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bind to it. The Methyl-CpG-binding protein (MBP) family include multiple members, with
MeCP2 being the prototype member of this group of proteins [81,99].

6.7. Methyl-CpG-Binding Protein Family

This family of DNA methylation readers is characterized by a methyl-CpG-binding
domain that facilitates protein binding to methylated DNA. From its 11 members, MeCP2,
MBD2, and MBD3 are preferably associated with methylation of the promoters and gener-
ally suppress gene transcription. MBD1 mostly functions through histone modification
and heterochromatin formation, and MBD4 takes part in DNA repair. Dysregulation or
mutations of MBD proteins are present in a variety of cancers as well as neurologic disor-
ders such as RTT [81,100,101]. MeCP2 is the best-studied member of a family of proteins
that bind to methylated CpG DNA templates without sequence specificity. While the first
member of this group (MeCP1) needs at least 12 symmetrical methylated CpG, the second
and most abundant protein of this group (MeCP2) is able to bind a single methylated CpG
pair [102,103].

6.8. MECP2/Mecp2 Gene Structure and MeCP2 Protein

In humans, the MECP2 gene is located on the long arm of the X-chromosome (Xq28),
while in mice, it is positioned at the XqA7.3. In mice (Mecp2) and humans (MECP2), the
gene consists of 4 coding exons and 3 introns. Three polyadenylation sites in its 3′UTR
result in mRNA transcripts with varying lengths. The two translational start sites at exon
one and two give rise to the common splice variants of the protein that differ only at their
N-terminal domains. The MeCP2E1 isoform results from the coding sequences of exons 1,
3, and 4, and its transcripts are reported to be the main isoform in the brain. MeCP2E2 is
encoded by exons 2, 3, and 4, and its transcript level has been reported to be higher than
MECP2E1 in the liver, placenta, prostate gland, and skeletal muscles [46].

MeCP2 protein is composed of 5 major functional domains including an N-terminal
domain, a methyl-CpG-binding domain, an intervening domain, a transcription repression
domain, and finally a C-terminal domain, as shown in Figure 1. Three AT hook domains,
which exist within ID, TRD, and CTD, make binding to AT-rich DNA possible [104]. In
general, MeCP2 is known to as a nonstructured and disordered protein due to its major
unstructured format (approximately 60%) [105]. From the two MeCP2 isoforms, MeCP2E1
(previously called MeCP2B or MeCP2α) has 21 distinctive residues at its N-terminal region
and an acidic isoelectric point (pI) of 4.24. The other isoform that was discovered first,
MeCP2E2 (previously called MeCP2A or MeCP2β), has 9 exclusive residues at the N-
terminal region and a basic pI of 9.5. The two MeCP2 isoforms show differential chromatin
binding activities [106].

Dr. Bird and his team suggested that the presence of an upstream open reading frame
in MECP2E2 could have an inhibitory effect on protein translation and could result in more
abundant MeCP2E1 [107]. However, due to the unavailability of specific antibodies and
reagents that recognize endogenous MeCP2E1 and MeCP2E2 isoforms, research was limited
to their transcript analysis until nine years ago when our team reported the first generation
and validation of the MeCP2E1-specific isoform antibody [108], and subsequently, we
reported both E1- and E2-specific antibodies [109]. Using these newly developed tools at the
time, our lab reported that MeCP2E1 has a relatively uniform distribution across different
brain regions such as the cortex, hippocampus, thalamus, brain stem, and cerebellum, while
MeCP2E2 is differentially enriched in various brain regions of a mouse [109]. Our results
revealed that MeCP2E1 has an earlier onset of expression in the brain during development
and that MeCP2E2 is expressed later during brain development, peaking postnatally
with a brain region-specific pattern of detection. Recently, we analyzed this least-studied
difference between MeCP2E1 and MeCP2E2 isoforms in the human brains [110].
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6.9. MeCP2 Expression and Regulation

Even though the brain-specific role of MeCP2 has been broadly studied in the context
of neurological characteristics of RTT, MeCP2 has been found in different organs from
the lung and spleen with high expression levels to the liver, heart, and small intestine
with lower expression levels [40]. In the brain, MeCP2 is detected in neurons, neural stem
cells, glia including astrocytes and oligodendrocytes [43,111–113], and microglia [114].
Selective MeCP2 deficiency in these cell types has caused neuronal abnormalities, which
could be then resolved by re-expression of MeCP2 in these cells [115,116]. In general, DNA
methylation is an important mechanism by which MeCP2 isoforms are regulated in murine
neural stem cells, neurons, and astrocytes as well as in different regions of the brain in
adult mice in a cell type- and sex-dependent manner [96,109,113,117–119].

In terms of its function, MeCP2 was originally considered an inhibitor of gene regula-
tion through interaction with a co-repressor complex composed of mSin3A, a transcrip-
tional repressor, and HDACs. Such regulatory role can lead to compaction of the chromatin
structure and gene silencing [120,121]. NCoR/SMRT is another, more recently found co-
repressor complex that has a specific binding domain in the TRD region of MeCP2 [53]. In
contrast to primary findings, researchers have shown that MeCP2 can also be a transcrip-
tional activator by recruiting cAMP response element-binding protein (CREB) [122]. It has
been also suggested that MeCP2 can play the role of a transcription activator when it binds
to 5-hydroxymethylcytosine, which is a common modification of DNA in the brain and
is enriched in active genes [123]. Other studies suggest that MeCP2 can play the role of
a global regulator of chromatin. The MeCP2 level in neurons is almost similar to that of
histones. In addition, it can bind to non-methylated DNA [124] and compact nucleosomes
in a manner similar to histone H1 [125]. MeCP2 may also affect its targets such as DLX5 by
making a loop in DNA [126] (Figure 2).
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MeCP2 is regulated transcriptionally and post-transcriptionally by multiple mecha-
nisms. Positive and negative regulatory factors upstream of the MECP2 promoter region
can regulate its expression. There are also silencers and enhancers in the region that can act
as cis-regulatory elements for the MECP2 gene [113,128]. In addition, there are polyadenyla-
tion sites at 3′UTR of the MECP2/Mecp2 gene which are responsible for different lengths of
transcripts in a tissue-specific manner. Trans-acting factors involved in polyadenylation can
bind to these sites [129,130]. Similar to other genes, epigenetic factors such as microRNAs
and histone PTMs can also affect MeCP2 regulation [81]. Our lab has already shown how
DNA methylation can affect the expression of Mecp2 isoforms during in vitro neural stem
cell differentiation [113]. Furthermore, we have reported how an environmental insult such
as ethanol exposure can cause misexpression of Mecp2/MeCP2 in differentiating brain cells
through deregulation of two types of DNA methylation (5-mC and 5-hmC) [96]. Recently,
we reported that not only MeCP2 but also other DNA methylation-related factors show
strain- and sex-specific regulation in mice [117–119].

7. MeCP2 Target Genes: A Focus on BDNF and Its Related Signaling Cascades

Studies on MeCP2 target genes show little overlap, and association of these target
genes with RTT has not been established in most cases [127]. MeCP2 is capable of having
either an activator or a repressor effect on these studied targets not only as a transcriptional
regulator but also as an epigenetic modulator that can affect RNA splicing and chromatin
structure as explained earlier [81]. Genes such as Dlx5, Fgf2–5, Fut8, and Nf1 have shown
alterations in splicing observed in an RTT mouse-model (Mecp2308/y) [131]. Brain-derived
neurotrophic factor is an important and perhaps the most studied target of MeCP2. Its
cross-talk with MeCP2 has been studied mainly in animal models [56,132]. MicroRNAs
(miRNAs) are other important targets for MeCP2 and its regulations. Several miRNAs
have shown altered expressions in RTT mouse models [96,133].

7.1. Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor is a well-known member of the neurotrophin family
of growth factors. Neurotrophins together with tropomyosin receptor kinases (TRKs) and
low-affinity nerve growth factor receptor (p75) (also called p75 neurotrophin receptor
(p75NTR) regulate survival, maturation, and differentiation of neurons and participate
in synaptic development and neural plasticity [134–136]. In general, neurotrophin genes
have multiple 5′ exons with their main regulatory elements (promoters) that would recruit
RNA polymerase machinery to initiate transcription of distinct mRNAs. A 3′ exon that
is common among all transcripts includes an open reading frame encoding the precursor
peptide pre-pro neurotrophin. Despite similarities among the gene structures of different
neurotrophin family members, the BDNF/Bdnf gene has one of the most complex struc-
tures, which is closely conserved between humans and rodents. Mice, rats, and humans
have at least eight homologous exons in common, which are regulated by alternative
upstream promoters. The multi-promoter character of BDNF/Bdnf is suggestive of the
additional flexibility of BDNF expression in response to a diverse range of stimuli [137].

The human BDNF gene spans about 70 kb on chromosome 11 within the region
p13-14 and includes 11 exons (known as I–IX, plus Vh and VIIIh). Some exons have
different subsets that are labeled a, b, c, and d. The protein coding sequence is located
within exon IX, and different upstream promoters of alternatively spliced exons yield
several BDNF/Bdnf transcripts. There are two polyadenylation sites for exon IX that double
the number of transcripts by generating short and long splicing variants. Despite the
existence of different transcripts, all the mRNAs encode for a single protein. The apparently
redundant generation of transcripts controls the requirements of context- and cell type-
specific demands [138]. For example, while exons I, IV, V, VII, and IX in a mouse are
activated by DNA methylation, a different group of exons (III, VIII, and IX) are induced
by inhibitors of histone deacetylase [139]. In addition, it has been shown that transcript
variants with short 3′UTR stay in the soma and regulate neuronal survival, while transcripts
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containing the long 3′UTR are preferentially localized in the dendrites to modulate synaptic
plasticity [140–142].

7.1.1. BDNF Signaling

BDNF binds the tropomyosin-related kinase B (TrkB) with specific/high affinity. This
leads to TrkB dimerization and auto-phosphorylation, activating several downstream signal
transduction cascades. That includes the mitogen-activated protein kinase (MAPK) which
promotes neural differentiation, the phosphatidylinositol 3-kinase (PI3K) that promotes
growth and survival of neurons, and the phospholipase Cγ (PLCγ) pathway that promotes
synaptic plasticity [143]. Similar to other neurotrophins, BDNF can also bind to p75 (also
known as p75NTR). p75NTR is part of the tumor necrosis proteins that can activate several
signaling pathways including programmed cell death, when p75NTR is activated in the
absence of TrkB signaling [144].

The cooperation of p75NTR and TrkB receptors increases the affinity of mBDNF for
the complex, and the pro-survival, growth-related signaling will be enhanced [145,146]. On
the contrary, when p75NTR forms a heterodimer with sortilin (a transmembrane protein
that regulates neurotrophin sorting), the resulted complex acquires a higher affinity for
Pro-BDNF. Cell-death signaling will then be activated through the induction of several
proapoptotic pathways [147]. Therefore, the biological role of the pro-peptide is beyond
the traditional assistance in folding of the mature protein. It has been shown that the
BDNF pro-peptide is biologically active as a synaptic modulator that facilitates long-term
depression when directly binding the p75NTR receptor [148]. From different downstream
signaling cascades, the PLCγ pathway has been suggested to mediate rapid BDNF-related
effects that happen within seconds to minutes, while the other two (MAPK and PI3K) work
more slowly through changes in gene transcription [145].

When TrkB becomes phosphorylated at Tyr490 and Tyr515, its affinity for Src homol-
ogy 2 domain containing adaptor protein (Shc) increases. Upon binding to the specific
phosphorylated sites, the growth factor receptor bound protein 2 (Grb2) is recruited. Grb2
makes a complex with Son of Sevenless (SOS), which is an exchange factor for the RAS
protein. RAS acts upstream of ERK (extra cellular signal-regulated kinase1/2) in the MAK
cascade, activating RAF protein Ser/Thr kinase. That in turn leads to the activation of MEK
(MAP kinase/ERK kinase), which can activate ERK1/2. Active ERK can then transfer to the
nucleus, activating transcription factors such as CREB. The phosphorylated CREB can bind
to the Bdnf /BDNF promoter, inducing its transcription. The BDNF-ERK-CREB signaling
pathway plays a major role in cell survival, synaptic structure, and plasticity [149–152].
TrkB phosphorylation at Tyr816 generates inositol 1, 4, 5-triphospahte (IP3) and diacyl-
glycerol (DAG). IP3 is responsible for Ca2+ release from internal sources, leading to the
activation of Ca2+/calmodulin-dependent protein kinases. This results in CREB phospho-
rylation, and a cascade is initiated that continues similar to the MAPK pathway [153,154].
Activation of PI3K by BDNF can be associated with the combined action of RAS [155] that
can also activate AKT, an important kinase that phosphorylates mTOR (mammalian Target
of Rapamycin). The signal transduction cascades that activate the mTOR pathway are
involved in the regulation of protein translation, and that is where BDNF may become
involved in local protein synthesis [156,157]. Of note, studies from our team showed an
impaired mTOR pathway in the human RTT brain with compromised multi-step regulation
of the processes that control ribosome biogenesis. Such abnormalities were found in the
cerebellum of RTT patients with common (T158M and R255X) and uncommon (G451T)
mutations. A regulator of ribosomal RNA processing (Nucleolin) was found to be ab-
normally redistributed in the neurons of the cerebellum of a T158M patient compared
to a control. This was obviously detected in the neurons of the molecular, granular, and
Purkinje cell layers of the cerebellum in this patient. To our surprise, null Mecp2-deficient
male and heterozygote female mice showed no abnormalities in the Nucleolin neuronal
distribution in the cerebellum [158]. This study suggested that a lack of the Mecp2 gene
in transgenic mice may not fully recapitulate all molecular deficiencies of the human RTT
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brain, highlighting the importance of side-by-side analysis of RTT model systems and
postmortem brain from RTT patients.

7.1.2. BDNF/Bdnf Regulation

Membrane depolarization in neurons could be induced by sensory stimuli [159–161],
activation of glutamate receptors [162–164], or seizure [165], with a positive regulatory role
on BDNF transcription. It has been shown that binding of cAMP response element-binding
protein (CREB) to cAMP/Ca2+-response element (CRE) in promoter IV of the human BDNF
gene is critical for activity-dependent transcription from this promoter. Human promoter
IX can be also induced by neuronal activity. CRE and PasRE (basic helix-loop-helix-PAS
transcription factor response element) contribute to the induction of this promoter [166].
BDNF/Bdnf transcription is reported to be regulated at least in part by epigenetic factors.
Decreased methylation of cytosine residues in CpG dinucleotides at BDNF/Bdnf promoter
IV has been shown in transcription induction of the gene by neuronal activity. That is
where MeCP2 can play its role as a transcriptional regulator by binding to methylated
DNA in the region of BDNF/Bdnf promoter IV [56].

A few studies have examined histone modifications as another epigenetic regulator
of BDNF transcription. For instance, an increase in histone methyl transferase H3K4 tri-
methylation, a marker of active chromatin, has been shown at BDNF promoters I and IV
during BDNF upregulation in the course of transition from the fetal to childhood and/or
young adult stages [167]. MicroRNAs (discussed in next section) are among the epigenetic
regulators that can modulate BDNF expression. Several microRNAs have been studied
in this regard. It has been shown that miR-1, miR-106, miR-155, and miR191 can suppress
BDNF gene expression by binding to the BDNF 3′UTR [168]. There is a long list of miRNAs
predicted to target BDNF, and miR132 has been reported to regulate BDNF [169].

7.1.3. Role of MeCP2 in BDNF Regulation

There is still controversy about BDNF regulation by MeCP2. Earlier studies were
more in favor of a repression model. It was reported that membrane depolarization
could release MeCP2 from its binding site at Bdnf promoter IV, resulting in Bdnf tran-
scriptional activation [56,170]. MeCP2 phosphorylation at Ser421 [55] and decreased DNA
methylation at Bdnf promoter IV [132] induced by neuronal depolarization cause MeCP2
dissociation along with its co-repressors (Sin3a and HDAC1) from Bdnf promoter IV. Other
studies showed reduced Bdnf transcript and protein in the Mecp2-null mice (hemizygous
Mecp2tm1.1Jae mutant males of the Jaenisch strain and cre93 Mecp2−/y), suggesting an activa-
tor role for MeCP2 in Bdnf transcription [171,172].

There are other models that suggest a dual role for MeCP2 in BDNF regulation,
explaining these discrepancies [173]. Based on a model studied in SH-SY5Y neuroblastoma
cells, MeCP2 remains bound to its target genes and the regulatory complexes, which are
recruited by its phosphorylation and may activate or repress expression of these target
genes [174]. MeCP2 phosphorylation is not the only contributing factor in this dual
operating model. Other epigenetic mechanisms can also play a role. For instance, it has
been shown that transcription of some of the microRNAs that target the 3′UTR of Bdnf
transcripts are controlled by MeCP2 [96]. Furthermore, changes in MeCP2 might affect
not only the expression of BDNF/Bdnf at the transcription level but also the translation or
stability of the BDNF protein. That might explain some of the discrepancies between the
different models that have studied BDNF at the transcript or protein levels [175].

7.1.4. BDNF and Pathophysiology of RTT

Studies on RTT mouse models have shown reductions in BDNF expression after the
first 3–4 postnatal weeks at the same time that RTT-like features start to appear. The de-
crease manifests first in caudal parts of the brain (brainstem and cerebellum), and gradually,
the entire brain is involved [173]. There are controversial results about compromised BDNF
levels in the brain of RTT patients. While two reports show that the level of BDNF protein



Biomolecules 2021, 11, 75 12 of 27

in cerebrospinal fluid (CSF) and serum of RTT patients is comparable with unaffected
controls [176,177], there are other studies that describe lower transcript levels of BDNF in
RTT brain samples compared to controls. Technical limitations especially for the assess-
ment of protein levels might be the reason behind the disparities [178,179]. Recent work
from our team shows that BDNF transcripts are significantly reduced in RTT brains while
the protein levels remain unchanged, with differential detection pattern at least in the
Purkinje cells of the cerebellum [110,180]. In addition to the aforementioned arguments, the
functional magnitudes of impaired BDNF function are not fully comprehended. Transgenic
approaches to generate mouse models with Bdnf loss-of-function have established that
Bdnf -deficiency leads to comparable phenotypes such as Mecp2 deficiency, smaller brain
and nerve cells (neurons) with neurite arborisation, compromised hippocampal long-term
potentiation in Bdnf -deficient or Trkb-deficient mice [181], irregular breathing, and im-
paired locomotion [182,183]. Moreover, Bdnf overexpression in Mecp2-deficient male has
enhanced survival and locomotor utility in these mice [171].

Exogenous BDNF is not a practical therapeutic choice for a neurodevelopmental dis-
order like Rett Syndrome as it does not cross the blood–brain barrier (BBB) [184]. However,
Insulin-like Growth Factor 1 (IGF-1) is a major activator of the same signaling pathways
as BDNF [185,186] with the ability to cross the BBB [187] and therefore has been used in
different clinical trials as a therapeutic agent for RTT [188–192]. These trials have shown
variations in results [193], which could be due to the complexity of RTT condition.

7.1.5. BDNF and Cellular Origin of Detection in the Human Brain

Although BDNF was first isolated from the brain [194], it does not necessarily prove
that neurons are its primary cellular origin. Indeed, it has been almost 20 years that
in vitro investigations have revealed that endothelial cells of cerebral microvasculature
would also produce BDNF [195,196]. After being overlooked for years, more recent in vivo
research experiments have shown that BDNF is produced by endothelial cells of the adult
cerebrovasculature [197,198]. Even a 50-time greater BDNF expression level has been
reported from cerebral endothelial cells compared to cortical neurons [199]. Based on a few
other research studies, removal of cerebral endothelial cells significantly decreases BDNF
levels in the brain [200]. Furthermore, different studies have shown that glia including
astrocytes and oligodendrocytes synthetize and release BDNF [201,202]. The noticeable
astroglial/endothelial pattern of BDNF staining that we recently reported [180] spreads
the previous findings in the animal models and cell culture systems to different regions
of RTT and control human brains. At the same time, it adds more questions to the role
of MeCP2-BDNF cross-talks in RTT pathophysiology because most model systems have
focused on neurons as the main source of BDNF, which has been complemented by our
recent findings [110].

Besides the cellular source of BDNF, its impairment in RTT patients is another contro-
versy that a recent study from our team has approached from a postmortem human brain
angle. In our recent study, we showed lower BDNF transcripts in RTT brains. However,
BDNF protein (investigated by Western blot, ELISA, and IHC) did not follow the same
trend. Surprisingly, we detected higher BDNF levels in the Purkinje cells of an RTT cere-
bellum. In this regard, we found a low predictive value for the transcripts relative to the
matching protein [110,180], which is not uncommon and could result from a complex regu-
latory mechanism in the human brain [203]. However, it is noticeable that the anti-BDNF
antibody that we used for Western blot and IHC was capable of detecting pro-BDNF and
the mature protein. The coating antibody of the ELISA kit also detected both mature BDNF
and pro-BDNF. While the Western blot experiment differentiates between pro-BDNF and
mature BDNF by molecular size, ELISA and IHC show the combination of both protein
forms.

Considering the inhibitory character of Purkinje cells as GABAergic neurons, we
might relate more intense immunolabeling of these cells in RTT brains to a higher level
of pro-BDNF, which has a reverse function compared to the mature BDNF [148]. From
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the two approach of studying BDNF in the human brain by quantitative Western blot and
qualitative IHC analysis, we reported that lower levels of mature BDNF protein and higher
levels of pro-BDNF in the cerebellum are actually in line with the IHC findings [110,180].
BDNF detection rises upon hypoxia or conditions like neuroinflammation [204,205]. Such
conditions contribute to the pathogenesis of different neurological disorders but have not
yet been explored in postmortem human RTT brain tissues. Our recent report not only
contributed to the pathobiology of RTT in clinically relevant patient brain tissues but also
is important from a therapeutic point of view, mainly by considering the endothelial cells
as a major source of BDNF in human brains that might allow us to circumvent the blood–
brain barrier and to focus on increasing BDNF levels in the brain through its nonneuronal
sources.

7.2. MicroRNAs

MicroRNAs (miRNAs) are members of the noncoding RNA family with a length
of approximately 22–23 nucleotides that can regulate a vast number of biological events
through gene silencing. In the genome, miRNA genes can be localized within the introns
of coding genes (host genes) or in areas without known coding activity either as a single
gene or as clusters of genes [206]. The process of miRNA biogenesis is tightly controlled in
a temporal and spatial manner, and its deregulation has been shown to be associated with
several human diseases [207].

7.2.1. Role of miRNAs in Central Nervous System Development

There are still many points to be clarified about how miRNAs regulate their target
genes. However, we know that miRNAs affect the process of nervous system development
during embryonic patterning and into neural differentiation and plasticity [208]. More
recent studies have also shown the important role of miRNAs in adult synaptic plasticity
and cognition [206]. Time-specific spatially restricted or cell type-specific miRNAs can
play roles in cell fate determination of neuronal precursor cells toward neurons or glial
cells. This happens mainly during embryonic development for neurons and continues
early postnatally for glial differentiation. Regulatory RNAs such as miRNAs are also
associated with adult neurogenesis in specific adult brain regions such as subgranular
zone with roles in learning and memory. In addition, miRNAs are involved in glial and
neural cell type determination. These regulatory molecules also play a role in the migration
of newly formed neurons to their specific destinies and neuronal polarization, which
refers to functional separation of neuron processes to axonal and dendritic compartments.
Axonal formation and dendrite branching are other areas that neuronal miRNAs may
regulate. They also affect maturation of neurons through connection with proper targets.
The dynamic structure and function of synapses give them the ability to respond to external
stimuli. This process recognized as synaptic plasticity is also affected by miRNA reaction
to activity-dependent pre- and postsynaptic physiology [208].

In summary, several studies have highlighted the regulatory role of miRNAs in
every aspect of neural development, and their impairments have been observed in several
neurologic disorders such as schizophrenia, autism, and RTT [206].

7.2.2. The Role of miR132 and its Effects on Neural Structure and Function

Among the many miRNAs that are present in the central nervous system, miR132 is
expressed in an activity-dependent manner. This microRNA has an extremely conserved
sequence among vertebrates and is regulated by CREB as the transcription factor [209]. The
miR132 not only affects neuronal morphology, but it also controls neuronal function. One
supporting evidence for such an activity comes from a study that shows that BDNF-induced
axonal branching in mouse retina can be promoted by miR132 [210]. This activity-regulated
miRNA also regulates dendritogenesis in mice and chicks [211,212]. The miR132 also plays
a role in dendritic spine morphogenesis, affecting synaptic plasticity [213,214]. Deregula-
tion of miR132 has been shown to be associated with different neurological disorders, as
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expected from its role in neuronal development and function. Downregulation of miR132
in the brain of patients with Huntington’s disease, schizophrenia, and bipolar disorder are
a few examples [215,216].

The location and function of miR132 is not limited to neurons. Its level changes
in immune-related contexts and there is increasing evidence for miR132 involvement in
inflammatory processes. For example, inflammatory conditions induce the miR132 level in
different cell types such as monocytes, mast cells, and lymphatic endothelial cells. There
are also reports suggesting that hormone and nutrition condition can regulate miR132 [217].
Furthermore, the function of miR132 encompasses areas like tumorigenesis. For instance,
miR132 level has been shown to decrease in pancreatic cancer or to increase in chronic
lymphoblastic leukemia when compared to the noncancerous condition [218,219].

7.2.3. Homeostatic Regulation of MeCP2 by miR132

Multiple polyadenylation sites of the MECP2/Mecp2 gene result in transcription with
short (approximately 1.8 kb) or long (approximately 10 kb) 3′UTRs. The main transcript in
the brain is the longer form with highly conserved miRNA response elements (MRE) for
several miRNAs including miR132. The smaller transcript does not have these sites [220].
While the basal level of miR132 is low before birth, it has been shown that this microRNA
contributes to BDNF-mediated neurite outgrowth in rat neonatal neurons. On the other
hand, miR132 introduction into rat primary cortical neurons negatively affects the protein
level of MeCP2 [221]. Forskolin and KCl treatment both induce miR132 through the
CREB pathway, leading to a decreased MeCP2 level. The unchanged level of mRNA in
this study is in favor of a post-transcriptional effect [169]. The authors also showed that
MeCP2 overexpression as well as miR132 blocking could increase BDNF III transcript while
BDNF I without binding site for MeCP2 or miR132 MRE did not change. In addition, in
the Jaenisch Mecp2-knockout mice, both Bdnf IV and miR132 were decreased. Findings
from the same authors that show MeCP2 increases BDNF levels together with reports
that BDNF activates miR132 expression leads to the suggested homeostasis network that
MeCP2 induces BDNF, which itself induces miR132 that represses MeCP2 protein. From
several studied miRNAs that can bind the 3′UTR of Mecp2, miR132 is the only one which is
enriched in the brain [169].

Another study has shown that, during the fetal stages, miRNAs other than miR132
(for example, miR483) can suppress MeCP2 protein. However, miR132 can fine-tune the
MeCP2 level in the postnatal stages [222]. MeCP2 regulation by miR132 through binding
to evolutionary conserved binding sites has been studied in animal models in different
contexts from RTT [169] to drug abuse [223] and pain transmission [224]. However, the
limited number of studies on human cells or brain samples is not consistent with the results
from animal models [222]. The two main isoforms of MeCP2 are identical in 96% of their
amino acids. The MeCP2E1 isoform is slightly longer (498 amino acids in human) with 21
unique N-terminal amino acids. The MeCP2E2 isoform, which is 12 amino acids shorter,
has 9 unique N-terminal amino acids [46,107]. While the MeCP2E1 isoform is present in all
vertebrates, the MeCP2E2 isoform is only found in mammals [37]. The predominance of the
MeCP2E1 isoform in the brain and the brain region-specific expression of the two isoforms
has already been shown in mice brain by independent groups including us [40,107,109]. In
addition, the half-lives of the two isoforms have been predicted to be very different [225].

The fact that two isoforms of MeCP2 are highly similar and observations where
the capacity of MeCP2E2 overexpression prevents key RTT-like phenotypes in RTT mice
models [49] point towards a functional overlap between the two isoforms. However, the
facts that mutations that only affect MECP2E1 can cause RTT and that Mecp2e1-specific
knockout can generate RTT mouse models [226,227] suggest that MeCP2E2 is not capable
of compensating for the lack of MeCP2E1 in vivo.

Due to limited availability of the human brain samples and technical difficulties in
controlled assessments of these samples, the distribution and level of the two MeCP2
isoforms have remained largely unexplored in the human brain. Moreover, research
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into MeCP2 regulatory systems has mainly targeted animal models. A regulatory loop
composed of MeCP2, BDNF, and miR132 has been suggested to exist in the rat brain. The
miR132 is a neuronal-specific microRNA (highly conserved among vertebrates [217]) that
inhibits MeCP2. Expression of this microRNA is induced by BDNF, which is controlled
itself by MeCP2 [169]. Although a well-received study in the field, the conservation of this
regulatory loop has not been studied in the human brain.

8. Lessons Learned from the Human Brain on MeCP2-BDNF-miR132 homeostasis
Regulatory Components

The earliest MeCP2 expression in the normal human brain is at 10 gestational weeks,
reported in the brain stem and cerebral cortex in the subcortical and Cajal–Retzius neurons.
MeCP2 will appear subsequently in the thalamus, in the midbrain, and in the basal ganglia.
The MeCP2 levels in the hippocampus and cerebellum are not high and show lower
levels during early development. However, upon cellular maturation in neurons, most of
these cell types in these regions express MeCP2. That might explain the delay in clinical
manifestation of RTT in the course of development [40]. The MeCP2 protein shows a
nuclear pattern of distribution, while slight cytoplasmic detection has been reported in
some neuronal cells. Post-translationally modified proteins have been suggested to be the
source of this cytoplasmic fraction. Since the earliest immunohistochemistry (IHC) studies,
a consistent challenge has been the inconstant level of MeCP2 staining within the same
neuronal cell types [18]. Laser scanning cytometry has confirmed that there are cells with
both low and high MeCP2 levels [228]. It is possible that such detected differences result
from either neuronal activity or the possibility of postmortem degradation of the MeCP2
protein [18,40]. Regarding other protein labeling, some increase in the glial fibrillary acidic
protein (GFAP) has been reported in RTT brains. However, it is not clear whether this is a
primary or secondary phenomenon to the main RTT pathology [18].

Recently, our team reported that, in the human RTT brain, MECP2 isoforms are
significantly reduced compared to age-and sex-matched controls [110]. Our findings
were in the same line with earlier research reporting significantly lower levels of MECP2
transcripts [180], impaired structure and function of MeCP2 protein in neuronal [18,58,229],
or nonneuronal RTT samples (e.g., peripheral blood) [230]. However, we did not find a
clear association between the MECP2E1/E2 transcript and MeCP2E1/E2 protein levels [110].
BDNF and its precursor did not show any concordance with the BDNF transcript either. In
general, the multi-layer regulation of protein levels in the human brain can partly explain
the low projecting value of transcript correlation for the corresponding protein(s) [203].
Post-transcriptional and post-translational control mechanisms, in addition to cell type-and
tissue-specific monitoring systems that control protein stability, turn-over, and expression,
could be part of the possible causes [40].

Our recent analysis of human postmortem RTT brains showed that BDNF has similarly
significant lower transcript levels compared to controls, but surprisingly, the protein level
was comparable to control brains. However, our report on the formalin-fixed brain samples
revealed yet another layer of complexity about the MeCP2-BDNF regulatory network.
Based on our recently reported results on BDNF labeling, different cells of the brain were
positive for BDNF. Such cells included astrocytes, neurons, and endothelial cells. All
these cells can possibly contribute to MeCP2 homeostasis as sources of production and
expression of BDNF. Hence, it is probably too naïve to think that one simple regulatory
mechanism controls MeCP2-BDNF homeostasis without taking into account the cell type
of origin for each protein.

In contrast to the negative regulatory role of miR132, supported by experiments in
rodents [169], we observed that lower MECP2E1/MECP2E2 transcripts in the human RTT
brains accompany a lower level of miR132 in the amygdala, hippocampus, and frontal
cortex but not in the cerebellum. Our findings in general did not suggest the existence of a
conserved role for miR132 on MECP2/MeCP2 homeostasis in the human brain. However,
our data pointed out that cerebellum is different from the other brain regions by showing
similar levels of miR132 in RTT and control brains [110]. The differences that we observed
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inter-regionally in the MeCP2-BDNF-miR132 homeostasis regulatory network in human
brains could have partly originated from different cellular compositions of each brain
region versus the other part of the brain, suggesting that there are more complex regulatory
mechanisms in each brain region with their specific functional role in the context of a whole
human brain without a unifying mechanism to control this regulatory network.

We also showed that postmortem delay could have affected the results of previous
human RTT brain studies regarding MeCP2 immunostaining of neurons [180]. Our re-
search also provided more evidence for changes in astroglial cells in the course of Rett
Syndrome [180].

9. Therapeutic Strategies for RTT

The monogenic character of classical RTT and the reversibility of the symptoms in
preclinical models have brought optimism to the therapeutic research for this devastating
disease. The availability of rodent models showing quantifiable symptoms such as abnor-
mal breathing makes evaluations of therapies more translatable when compared to the
behavioral disorders of more common conditions such as non-symptomatic autism [231].
Our understanding of MeCP2 function and the outcome of its deficiency on the function
of neuronal circuit and behavior is the basis for potential therapeutic approaches. Such
strategies would include (1) molecular methodologies to replace gene/protein or to reacti-
vate the wild-type allele from the epigenetically silenced and inactive X-chromosome and
(2) pharmacologic strategies tailored towards MeCP2 downstream molecules and events
(target genes or molecular functions) to restore their role in neuronal circuits [232].

9.1. Molecular Treatments and Gene Dosage Concerns

An excess of MeCP2, a condition similar to what happens in boys with MECP2
Duplication Syndrome (MDS), leads to RTT-like neurological dysfunction presenting with
seizure and hypoactivity [233,234]. Therefore, any molecular therapy that targets MECP2
directly to normalize the protein must keep the level of protein within its narrow acceptable
limits by avoiding MeCP2 over dosage [231]. In general, neurons with proper MeCP2
levels would have normal neuronal structures while neurons with reduced MeCP2 levels
are associated with autism. On the other hand, neurons with MeCP2 loss- or gain-of-
function are affected in RTT and MDS, respectively (Figure 3). In fact, there might be a
relation between the MeCP2 level of expression or genetic mutation with neuronal structure
characteristics that has been evidenced by studies on mouse models of RTT Syndrome and
detected deficiencies in synaptic plasticity using in vitro and in vivo murine and human
systems [191,235–244]. Figure 3 provides a simple illustration of the neuronal structures in
MeCP2-associated neurodevelopmental disorders based on the reported impact of MeCP2
levels in the indicated in vitro and in vivo systems [191,235–244].

9.2. Activating MECP2 on the Inactive X-Chromosome

This novel method has been already studied in another neurodevelopmental disorder
(Angelman syndrome), and the Mecp2-EGFP fluorescent reporter mouse is a useful tool
for high-throughput, small-molecule screening. Other than the cost and stability concerns
for this procedure, the availability of active and safe compounds that diffuse across the
blood–brain barrier is another limitation in restoring MeCP2 levels across the relevant
cell types. Furthermore, targeting MECP2 specifically or the entire inactive X is another
concern in this method [231,245,246].
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9.3. Gene-Editing Strategies

The first attempt to study a gene therapy for Rett Syndrome was reported over a
decade ago by Dr. Rastegar and colleagues [111]. We showed that viral vectors carrying
the endogenous Mecp2 promoter could be effective for gene therapy delivery by recapitu-
lating the endogenous expression pattern of MeCP2 in neurons and glia [111]. Editing or
replacement an abnormal gene has also become available through adeno-associated virus
(AAV) vectors. In this case, IV delivery of an AAV9 vector carrying the Mecp2 cDNA has to
some extent normalized the symptoms of male and female RTT mice [231,247]. Delivering
Mecp2 expression homogenously and within the narrow normal range is one of the main
challenges for gene therapy [231]. About 35% of RTT patients with in-frame premature
stop codons might benefit from compounds that allow the readthrough of nonsense muta-
tions [248]. It has been shown to be effective in cultured R168X (most common RTT-causing
truncated mutation) mouse fibroblasts [109,249].

9.4. Challenges of Protein Replacement

Homogenous and continuous delivery of appropriate level of MeCP2 across the
BBB is the major challenge for protein replacement. Ensuring adequate penetration of
the protein at the cellular and subcellular levels up to the nucleus and making sure that
posttranslational modifications occur in a regular manner are other obstacles to overcome
in this method [231].

9.5. Targeting Downstream Signaling Pathways of MeCP2

Classical neurotransmitter and neuromodulator signaling; growth factor signaling
such as BDNF and IGF-1; as well as metabolic signaling, cholesterol biosynthesis and
mitochondrial function are the main known MeCP2-targeted pathways [250,251]. A drug
prepared for one pathway might not treat the full spectrum of RTT symptoms. However,
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ameliorating one main symptom such as breathing abnormalities may have a considerable
impact on the quality of life for RTT patients [231].

9.6. Clinical Trials

There are several challenges in a clinical trial for a rare disease like RTT. A vast number
of RTT-associated mutations and a limited pool of participants are two of the obstacles.
From several ongoing or completed trials, only rare ones are parallel, randomized, double
blind, and placebo-controlled, and none has reached the level to be used in practice [6,231].

10. Closing Remarks

Today, after almost three decades since the discovery of MeCP2, with its relation to Rett
Syndrome known for over two decades, we are still searching for an effective therapeutic
strategy for this devastating disorder. In this regard, intensive efforts from basic scientists
and clinician scientists have advanced our understanding very significantly. Animal and
cellular models have helped us to take steps towards understanding the pathophysiology of
the disease and mechanistic approaches for therapeutic interventions. However, needless to
say, research on postmortem human brain tissues, despite its difficulties and limitations, can
provide us with invaluable information about the real complex disease condition. Clearly,
due to the many regulatory roles of MeCP2 in the brain, the more we proceed, the more
we face new questions and challenges for finding an ultimate cure for MeCP2-associated
neurodevelopmental disorders such as Rett Syndrome.
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