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Abstract: Although many studies have revealed that both air quality and walking activity are dominant
contributors to public health, little is known about the relationship between them. Moreover, previous
studies on this subject have given little consideration to the day-to-day atmospheric conditions
and floating populations of surrounding areas even though most pedestrian count surveys are not
conducted on a single day. Against this backdrop, using the 2015 Pedestrian Volume Survey data
and quasi-real-time weather, air quality, and transit ridership data in Seoul, this study investigates
the relationship between particulate matter (PM)10 and pedestrian street volumes empirically.
The regression results suggest that PM10 concentration determines people’s intention to walk and
affects the volume of street-level pedestrians. The three regression models, which adopted different
spatial aggregation units of air quality, demonstrated that PM10 elasticity of pedestrian volume is
the largest in the borough-level (the smallest spatial unit of air quality alert) model. This means that
people react to the most accurate information they can access, implying that air quality information
should be provided in smaller spatial units for public health. Thus, strengthening air quality warning
standards of PM is an effective measure for enhancing public health.
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1. Introduction

The environment is undoubtedly one of the key components of livability [1], and in particular,
air quality directly determines citizens’ quality of life by affecting individual health and outdoor
activities [2]. Since the Industrial Revolution, the use of fossil fuels and the supply of automobiles
have rapidly increased, and as a result, several advanced cities like London and Los Angeles have
suffered from severe air pollution during the 1940s and 1950s [3]. In the U.S., smog in Los Angeles
gave rise to the enactment of the Air Pollution Control Act in 1955.

South Korea has not avoided this problem. Although air quality has consistently improved, in 2015,
the yearly average PM2.5 concentration in South Korea was 29 µg m−3, which was the second-highest
among the Organization for Economic Co-operation and Development (OECD) countries [4]. The World
Health Organization (WHO) stated that “air pollution is an apparent environmental risk of health,
and particularly particulate matter (PM) affects human health more than any other pollutants” [5],
and air pollution is a key factor that increases the possibility of asthma [6,7] and cardiovascular morbidity
and mortality [8,9]. Exposure to PM2.5 can also trigger cardiovascular diseases (CVD)-related mortality
and nonfatal events, including myocardial ischemia and myocardial infarctions (MIs), heart failure,
arrhythmias, and strokes [8]. Therefore, the smog in Seoul, London, and Los Angeles has been a
cause of many deaths [9], and ambient air pollution is a leading contributor to global diseases, thereby
affecting regional and state economies [10,11].
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Although PM affects individual health, the effect of PM on walking activities has rarely been
investigated [10,12]. Considering the relationship between PM, walking activities, and health levels,
studying the effects of PM on walking is thought to be more helpful in understanding the health effect
mechanisms of PM than directly analyzing the relationship between PM and health. Moreover,
in the field of urban design, pedestrian volume on the streets is one of the most meaningful
indicators [13] because it determines not only a street’s safety and vitality but also a city’s prosperity
and livability [14,15]. However, little is known about the relationship between air quality (in particular,
PM) and street-level walking activities, even though both influence public health.

Against this backdrop, by using data from the 2015 Pedestrian Volume Survey (PVS) and air
quality monitoring stations (AQMSs) in Seoul, this study aims to offer empirical evidence regarding
the impacts of PM on the pedestrian volume on the streets. Since 2009, when the PVS was initiated,
many studies have examined the determinants of pedestrian volume [16,17]. However, they did not
control for weather and atmospheric conditions (in particular, PM10) of the survey day, although the
surveys were not conducted on a single day. In addition, they rarely considered the potential floating
population of the surrounding areas. Using quasi-real-time weather, air quality, and transit ridership
data in Seoul, this study tackles the shortcomings of previous papers, and assuming that people react
to air quality alerts from the government and media. This study also explores the differences in the
spatial unit of alerts and the grade of PM10: “Good” (below 30 µg m−3), “Normal” (30–80 µg m−3),
“Bad” (80–150 µg m−3), and “Very Bad” (over 150 µg m−3).

2. Literature Review

2.1. The Importance of Pedestrian Volume and Measuring Methods

Pedestrian volume on the streets has been considered one of the major contributors to the
success of streets and cities [13]. It determines street safety and attractiveness, neighborhood livability
and vitality, the prosperity of commercial districts, and the revitalization of regional and state
economies [13,14,18–21]. It also enhances the physical and mental health of individuals as well as
the social cohesion of the community [13,22–27]. Accordingly, various researchers have investigated
how to encourage people to walk, by analyzing the relationships between built environments and
pedestrian volume on the streets [16,17].

The data collection method for measuring pedestrian volume generally falls into three
main groups: Self-reported surveys, information and communication technology (ICT)-aided
detection (automated counting), and trained investigator observations (fieldwork and manual
counting) [28]. Most traditional approaches to estimate pedestrian volume use self-reported travel
diary surveys [23,29–32]. Using relatively large random samples covering major metropolitan areas or
national territories, many researchers have revealed that the 5D-variables (density, diversity, design,
destination accessibility, and distance to transit) are the key drivers of walking [33–37]. However,
with this approach, measuring the pedestrian volume of each specific street is challenging and
inaccurate; thus, they generally examined the relationship between the TAZ (transportation analysis
zone)-level built environment and individual-level walking behaviors. Although several studies have
used exact x–y coordinates of the origins and destinations of trips, they still lack information about trip
routes [35], leading to low accuracy in estimating street-level pedestrian volume. The high dependency
on retrospective surveys is also a key limitation of this approach [38].

The second type of research uses automated detection technologies, including GPS, static/mobile
sensor, and video-taping and image recognition (motion detection) techniques to measure pedestrian
volume. Compared to self-reported surveys, GPS obtains the exact information of pedestrian behaviors
(origin, destination, and route of travel) for certain continuous periods [39], allowing for more in-depth
studies that focus on the relationships between micro-level built environments and walking activity.
For example, by using GPS data, Carlson et al. [40] revealed that neighborhood walkability was
positively associated with walking. Moreover, GPS can be used to measure an individual’s physical
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activity, such as total time spent on outdoor activities [41] or certain travel modes [40]. However,
because each participant needs a GPS device and they produce a large amount of data, previous studies
have only applied this technology to a small number of participants of specific target group such as
housewives [42], children [41], and adolescents [39], rather than a large number of general subjects.
Whereas GPS is a more accurate tool than travel diary surveys, it is still inadequate for estimating
pedestrian volume on streets. Rather, this tool is better suited for finding geographical activity patterns
of target groups, including the frequently used street [43] or daily activity realm [39].

Infrared and thermal sensors have also been used as an automatic pedestrian counting
method [44–46]. However, due to the unrestricted movement of pedestrians, the accuracy of this
method is still underdeveloped [47]. Particularly, the technology tends to underestimate the total
number of pedestrians when they move in groups [44]. It is also quite costly.

Similarly, the computer vision technique, which automatically recognizes and counts pedestrians
from still or moving images, has been used in pedestrian volume research [48]. As an example, from
self-taped videos, PlaceMeter [49] extracts the metrics of pedestrian volume and other related attributes
that define street quality such as waiting time in a line, temperature, noise type, level, and number of
tables and chairs available. However, it also requires a large-scale deployment of recorders; thus, it is
also quite costly. In addition, video recording and facial recognition technologies may run the risk of
privacy invasion.

The last approach is the investigator’s field observations. Manual counting and mapping is the
most traditional and intuitive way of measuring pedestrian volume. This has been widely used by
the pioneers of public life studies [14,50,51]. However, due to several shortcomings of this approach,
recently, the automated techniques described above have been preferred. Yin et al. [28] summarized
that significant limitations of the manual counting method are the cost, time, data accuracy, subjectivity,
and availability. The weakest point of this research data is that collecting large and spatially dispersed
samples is extremely difficult and costly [28]. To address this limitation, some city governments have
implemented large-scale public pedestrian volume surveys covering whole areas of a city [17,52].
To develop pedestrian activity and collision models, the city of Montreal collected pedestrian and
traffic volumes in 519 signalized intersections [52], although this is still not as much data as compared
to previous studies. However, the Pedestrian Volume Survey in Seoul, which was conducted from
2009 to 2015, surveyed 1000–10,000 points each year, covering almost all of the major streets of the
city. This survey adopted the manual count, but it resolved most of the limitations described above.
The investigators were hired and trained by the Seoul city government, and although the survey was
conducted by a large number of people, the common standards and protocols minimized human
errors and subjectivity compared to previous studies. Schneider et al. [45] also argued that manual
count methods tend to be more accurate than automated count methods if the observers are properly
motivated, and their fatigue is managed. Moreover, whereas pedestrian count data cannot be acquired
easily as a secondary data source [28], the government opens this data to the public through the Open
Data Portal [53]. This increases the reuse of the data, allowing public verification, and improving
accuracy and availability. Thus, based on the data, several studies have been conducted, and the next
subsection reviews them in detail.

2.2. Determinants of Pedestrian Volume on the Streets

2.2.1. Built Environment and Pedestrian Volume

Using pedestrian volume data, various studies have examined the determinants of walking
activity. Rodríguez et al. [54] examined the associations between built environment characteristics and
observed pedestrian counts of 338 street segments around 63 Bus Rapid Transit (BRT) stations in Bogota.
Their negative binomial regression results demonstrated that sidewalk width, number of crossing aids
(such as signals), and road density were key determinants of pedestrian volume. Among the control
variables, the BRT ridership was positively and significantly associated with the pedestrian counts,
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while the weather conditions (whether it rained or not) were not significant. Ewing et al. [37] also
applied negative binomial regression with pedestrian counts and streetscape measurements data in 588
blocks, New York City. They revealed that not all, but some of the “D” variables (population density,
floor area ratio, and distance to rail) were associated with the walking activity. Using pedestrian counts
of 302 sampled street segments from 2007 to 2010 in Buffalo, New York, Hajrasouliha and Yin [55]
suggested that street connectivity measures have a significant positive impact on pedestrian volumes,
together with the traditional “D” variables (job density and land use mix). Miranda-Moreno et al. [52]
analyzed the impacts of physical environment variables on pedestrian volumes in 519 signalized
intersections in Montreal. They revealed that the conventional density and diversity variables and
transit accessibility and connectivity variables (including the presence of a metro station, number of
bus stops, and average street length) have a statistically positive effect on pedestrian activity. Only one
variable, the percentage of major arterials, had a negative effect.

As explained above, there has been diverse research on this subject that has used PVS data from
Seoul between 2009 and 2015, owing to the strength of the research data. The data collected from
different years have been used, and the subjects have also varied. By using 2009 PVS data, Kang [17]
analyzed the effects of spatial accessibility and centrality on weekday and weekend pedestrian volume,
and Sung et al. [56] focused on the effect of the zoning type. Sung et al. [16] tested Jacobs’s theory [13]
on street life by using 2010 PVS data. Lee et al. [57] and Jang et al. [20] classified the type of street-based
on the surrounding land use and analyzed the effect of the built environment on pedestrian volume by
street type by using 2009 and 2012 PVS data, respectively. Lee and Koo [58], Lee et al. [59], and Lee
et al. [60] focused on geographical differences. Focusing on the surrounding areas of eleven major
subway stations in Seoul, Lee and Koo [58] examined the determinants of pedestrian volume by day
of the week and time of the day. Lee et al. [60] studied the differences between arterial roads and
narrow streets without a sidewalk, focusing on the three main business districts in Seoul. Lee et al. [59]
compared the effects of the physical environment on pedestrian volume by geographically subdividing
Seoul into five sub-regions.

As explained so far, the interests of previous researchers have been very distinctive. However,
the key findings on the effect of the built environment are generally coincidental. First, density-related
variables have a positive association with pedestrian volume. Second, transit accessibility is also a
key explanatory factor of pedestrian volume. While most papers applied this variable in the form of
the existence or several transit stops (stations) within certain areas or distance to the nearest stops
(stations), Jang et al. [20] additionally considered the number of subway station entrances, bus lines,
and daily services. Meanwhile, Rodríguez et al. [54] and Lee et al. [59] used transit ridership, which is
a more straightforward variable, instead of the accessibility variables. Third, commercial land use and
mixed-use are positively associated with pedestrian volume. Forth, higher street connectivity [55] and
centrality [17] are also related to more pedestrian volume. Lastly, for the detailed street conditions,
wider sidewalks and the existence of nearby crossing encourage more walking; conversely, slopes
discourage it. Thus, these significant factors are considered in our regression models.

2.2.2. Weather and Atmosphere Conditions and Pedestrian Volume

While several studies have examined the relationship between the physical environment and
pedestrian volume, the impacts of weather and atmospheric conditions have been rarely considered.
Some studies have explored the impacts of weather conditions on individual-level walking behaviors as
well as street- or city-level pedestrian volume. They revealed that higher temperatures encourage more
walking, while higher humidity and precipitation in general discourages walking [61–63]. In contrast,
Shaaban and Muley [64] demonstrated that a higher temperature rather decreases pedestrian volume in
a hot climate condition such as Doha, Qatar. In addition, a quadratic relationship can be found between
temperature and pedestrian volume; that is, very cold and hot temperatures reduce walking [62].
Accordingly, the impacts of temperature can vary depending on the climate condition of the study area
and season.
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Depending on the type (purpose) of walking, the weather impacts can also vary. Cools et al. [65]
demonstrated that poor weather could lead to cancellations of shopping and leisure trips (discretionary
walking trips), and postponement (time-of-the-day change) and route changes of work/school-related
trips (mandatory walking trips). Vanky et al. [66] also revealed that weather conditions are more
strongly associated with weekend and discretionary travel than with weekday and mandatory travel.
However, they are less related to the duration of the walking trip after the trip was initiated [66].

Although many studies have investigated sustainable urban forms that minimize air
pollution [67–70], little is known about the relationship between air quality and outdoor activities,
and most of the previous research has focused only on the health impacts of air quality [8,9]. As walking
is the most vulnerable travel mode for exposure to air pollution [71] particularly in compact urban
contexts such as Seoul, Korea [11,72,73], we can expect that severe air quality directly reduces pedestrian
volume. Some preference studies have determined that people are more likely to cancel or postpone
their outdoor schedule in the case of bad air quality [74,75]. However, few studies have empirically
verified this tendency with revealed preference data (i.e., real air pollution and behavior data). Using
measured PM level data in Seoul, Yoon [76] demonstrated that higher PM10 decreased sales revenue
after the PM10 level becomes worse than the “Bad” level. Although sales revenue is highly associated
with pedestrian volume, they are not exactly the same, and thus, for this subject, more empirical
research is required.

2.3. Limitations of Previous Studies and Research Questions

In short, although various approaches have been adopted to reveal the key determinants of
pedestrian volume in urban streets, there have been shortcomings in terms of both the methods
and research subjects. For the methods, although most surveys were not conducted on a single
day, previous studies have not controlled for time-dependent variables, such as the weather and
atmospheric conditions of the survey day. In addition, only a few studies controlled for the potential
floating population of the surrounding areas, such as transit ridership. These two factors, therefore,
were controlled for in our analysis.

For the research subjects and content, while the impacts of physical environments have been
thoroughly investigated, little is empirically known about the impact of air quality (such as PM10) on
the pedestrian volume on urban streets. Few studies have explored the micro-scale spatial variations
of air pollution and pedestrian volume.

Against this backdrop, this study aims to address the following three research questions. First,
we investigate how empirically whether air quality (focusing on PM concentration) affects pedestrian
volume in microscopic urban spaces (focusing on a street). If it is influential, our second and third
research questions would be about why and how it affects pedestrian volume. These two questions
are rooted in the hypothesis that people may react to air quality forecasting or alerts provided by
the government and various types of media, as people enact self-protective and information-seeking
behaviors to avoid poor air conditions [75]. Accordingly, as a second research question, we analyze
whether spatial units of measurement, aggregation, and alert can affect the size of the PM10 impact.
Finally, as the third research question, we examine whether people’s behaviors vary depending on
the content of the information provided (i.e., alert/warning grades), as the third research question.
The specific research questions are described in Section 3.2.2, along with the model specifications.

3. Empirical Setting

3.1. Study Area

The study area covers the capital of South Korea, Seoul, which consists of 25 autonomous boroughs
(Gu). The urban form of Seoul is relatively sustainable [17,77], but it is a densely populated area,
where 19.4% of the Korean population (9.9 million people) occupy only 0.6% of the national territory
(605.3 km2) in 2015 [78]. Its gross density is about 17,013 persons/km2, approximately 1.5 times that
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of New York and 3.1 times that of London [17]. Due to its compact, mixed-use, and transit-oriented
urban context, the modal share of public transit, walking, and cycling is relatively high at 72.8% in
2016 [79]. As a result, Seoul is one of the most sustainable cities in the world [17].

Nonetheless, Seoul suffers from serious air pollution problems. In 2015, 102 days exceeded the
WHO standard of PM10 (≤ 50 µg m−3), which is nearly one-third of the year [80]. The nation-wide
yearly average of PM2.5 concentration is also quite high, and this was 29 µgm−3 in 2015, which was the
second highest among the OECD countries after Turkey and twice the average (15 µg m−3). In fact,
air pollution is one of the most serious issues for both the government and citizens in Seoul; therefore,
it is a very suitable area for this study.

3.2. Data, Variables, and Model Specification

To analyze the relationship between PM10 level and pedestrian volume on the streets, a series of
multiple regression analyses were applied, using two main sets of public data in Seoul: (1) air quality
and meteorological data and (2) Pedestrian Volume Survey (PVS) data. The following subsections
describe the model specification of the regression analyses, the measurement methods, and the
definition of the variables.

3.2.1. Pedestrian Volume (Dependent Variable)

To measure pedestrian volume (the dependent variable) on the streets, this study uses 2015 PVS
data in Seoul. The Seoul city government (Seoul Data Center) and National Information Society Agency
in Korea jointly launched this survey in 2009 to investigate street-level pedestrian volume for better
data-driven policies and decision-making, and it was annually conducted until 2015. Namely, the data
we used were the most recent and last investigated.

In the 2015 survey, 1223 spots (streets) were selected through a preliminary field survey. They
covered a considerable portion of Seoul and were relatively evenly distributed. Each street was
investigated three times a week (Tuesday or Thursday, Friday, and Saturday) from October 2 to October
31. From 07:30 to 19:30, every pedestrian was counted, and this was aggregated every five minutes.

The data cleaning was as follows. First, the data gathered from the Thursday survey was
excluded because it was a supplementary survey for the Tuesday survey. It was conducted on only
two days (October 15 and 22), and the number of spots included was quite small (one and three
spots, respectively). Second, we also excluded the data surveyed from October 28 to 31, which
was not provided by the Seoul Open Data Plaza [81] due to data processing errors. Finally, as a
dependent variable, we used the daily pedestrian volume from 2990 observations surveyed in 1207
spots. To convert the distribution closer to normality, a natural log-transformation was applied.

The 2015 PVS data also contains exact X- and Y-coordinates and various physical attributes of the
survey spots, allowing us to analyze the relationship between the physical environment and pedestrian
behavior. However, as mentioned above, it was not surveyed on a single day; thus, we needed to
consider other external factors that might vary depending on the survey date.

3.2.2. Weather and Atmospheric Condition (Test Variables) and the Model Specifications

To measure weather and atmosphere conditions (key test variable) of each street on the PVS
days, this study used air quality and meteorological data in Seoul, October 2015. Widely used
data-producing methods for these data generally fall into four mains groups: (1) measured data,
(2) spatial interpolation, (3) regression modeling, and (4) atmospheric dispersion modeling [76].
In Korean public policy arena, two approaches are mainly used. For short-term forecasting, the Korean
Environment Corporation (KEC) and Korea Meteorological Administration (KMA) use predicted
values from various atmospheric dispersion modeling and numerical weather prediction modeling
systems including the Korean Air Quality Forecasting System [76]. Both systems are used to predict air
quality and weather conditions of the following two consecutive days [82]. The prediction is officially
announced four times each day (05:00, 11:00, 17:00, and 23:00) through various channels including
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privately operated mobile applications and mass media, as well as official public websites such as the
Air Korea [83], KMA [84], and Seoul Metropolitan government websites [85]. The spatial resolution of
the short-term predictions is approximately 1.5–3 km. The forecasting is made using values aggregated
at the city or Gu (autonomous boroughs) level for air quality and dong (the smallest administrative
unit) level for weather conditions [76,82].

This short-term forecasting may help people plan their schedules, affecting their intention to go
outside and walk. However, their final decision relies on real-time conditions, and people can obtain
the atmosphere conditions of where they are located easily and precisely in real-time using GPS and
mobile phones. Therefore, public organizations use measured data for (quasi) real-time alerts and
warnings. This study has also mainly used measured data; spatially interpolated data was also partially
used, but it is also based on the measured data. Measured air quality data covering PM10, PM2.5, SO2,
NO2, CO, and O3 were gathered from air quality monitoring stations (AQMSs) run by KEC in real-time,
and their hourly average levels are publicized every hour on the hour through the diverse channels
mentioned above. The KMA and most local governments operate automated weather stations (AWSs)
that log temperature, precipitation, humidity, wind direction, and speed data at the near-ground level
and these are then provided to the public in ten-minute cycles. In Seoul, 39 AQMSs are currently
operating. Among them, as shown in Figure 1, we only used the data from 25 urban AQMSs, one
station in each of the 25 autonomous boroughs (Gu), because the other 14 stations specifically aim to
measure roadside air quality. Next, among the 56 AWSs in Seoul, we only used the data from 25 AWSs
managed by the Seoul metropolitan government that represent each Gu in Seoul and one reference
AWS located in Namsan mountain. The other 30 AWSs managed by the KMA were excluded.
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Among the various measures explained above, the daily average PM10 concentration, daily lowest
air temperature, and daily total precipitation of each street on the PVS days were selected as the key
test variables. Although PM2.5 has received a great deal of attention recently, we only focused on the
PM10 due to the low accuracy of measuring PM2.5 from the official AQMSs in Seoul. While PM10 data
have been collected since 1995, PM2.5 data were not measured until 2015 and still have many missing
values because of the low accuracy of sensors. Although PM2.5 is not considered, this study can draw
implications for it because PM2.5 and PM10 are almost proportional to each other in Seoul (authors’
calculation using the data from AQMSs).
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In addition to PM10, the lowest air temperature and precipitation were selected for analysis.
Aultman-Hall et al. [62] demonstrated that cold temperatures and rainfall directly and continuously
reduce the aggregate level of walking. Although the other temperature data (average and highest)
measured in AWSs also affect people’s walking behavior, only the lowest temperature variable was
applied to the model to avoid multicollinearity problems. As the average temperature in October 2015
in Seoul, 17.24 ◦C, was quite low, we could predict that people are more sensitive to the minimum
temperature than the maximum temperature as demonstrated by Shaaban and Muley [64] and Vanky
et al. [66]. The variables used were also log-transformed to convert their distribution closer to normality.

To address the research questions of this study explained in Section 2.3, the regression models were
diversified based on the weather and atmospheric condition variables, particularly PM10. As explained
above, the questions generally stemmed from the assumption that people behave based on the
information they receive from the government and the media.

First, the effects of weather and atmospheric conditions on pedestrian volume can vary depending
on how they are measured and how people are notified. In this way, the spatial unit of measurement,
aggregation, and alerts can be a dominant factor because people may choose their behaviors based on
the official forecast or real-time information provided by the government media rather than their senses.
Thus, this study applies three different regression models depending on the spatial measurement
unit of weather and atmospheric condition variables: Si (a city in Korean), Gu (a borough in Korean),
and a 30 m × 30 m cell. Weather and atmospheric conditions were originally measured from the
AWS and AQMS of each Gu, and therefore, they were directly used as a representative value of
each Gu. Si-level variables were also defined using the information that was officially measured
and announced by government organizations. Although more micro-level information was not
provided, it may affect people’s behaviors. Therefore, we applied additional cell-level (30 meters × 30
meters) weather and atmospheric condition variables that were estimated using the Kriging ArcGIS
technique based on the values of the 26 AWSs and 25 AQMSs. Among the three levels of variables,
only Si and Gu-level information can be accessed in various ways, cell-level information cannot be
obtained, and the differences in the values of each cell cannot be precisely predicted or recognized [74].
Thus, we can expect that people, and hence the pedestrian volume, may respond sensitively to the
Gu-level information.

Second, people’s behaviors can vary depending on the content of the information provided (i.e.,
alert/warning grades based on air pollution intensity). Hence, we applied three stratified regression
models based on the grade of the PM10. PM10 concentrations are presented as a numerical value, but they
are also provided as grades with warning images so that people can easily recognize them. The Ministry
of Environment in Korea uses a four-grade alert/warning system for PM10 based on the expected
health concerns: “Good” (below 30 µg m−3), “Normal” (30–80 µg m−3), “Bad” (80–150 µg m−3), and
“Very Bad” (over 150 µg m−3). We reclassified these as “Good,” “Normal,” and “Bad” (over 80 µg m−3)
because the value did not exceed 150 µg m−3 on the PVS days. We can expect that people react more
sensitively to PM10 level when the grade is worse [76].

All the regression models described above applied as a form spatial regression (spatial-lag or
spatial-error models of GeoDaSpace software, The University of Illinois at Urbana-Champaign, Illinois,
The United States of America) to consider spatial autocorrelation of pedestrian volume data.

3.2.3. Physical Environment and Other Control Variables

To examine the impacts of the key test variables described above, we controlled for other dominant
factors that could explain pedestrian volume on the streets. As illustrated in Table 1, we classified the
type of walking that determines pedestrian volume based on the outdoor activity typology [86] and
whether pedestrian’s current location is the origin, destination, or route of the passage. Table 1 also
illustrates some of the determinants of pedestrian volume (i.e., control variables) on the streets and
their expected explanatory power by the type of walking.
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Table 1. Determinants of pedestrian volume on the streets and their expected explanatory power by
type of walking.

Type of
Outdoor

Activity [86]
Possible Type of Walking on a Street

Control Variables and Their Expected Explanatory Power

Fixed and Floating Populations in Surrounding
Areas Physical

Environment
# of Residents # of Workers # of Public

Transit Users

Necessary
activities

A. The street or nearby area is the origin of
the walking trip # # 4 4

B. The street or nearby area is the destination
of the walking trip # # 4 4

C. The street or nearby area is on the route of
the walking trip 4 4

Optional and
social activities

D. The street or nearby area is the origin of
the wandering and other related activities # # #

E. The street or nearby area is the destination
or on the route of the wandering and other
related activities

# #

#: This variable is expected to explain the variation of pedestrian volume on the streets extensively; 4: This variable
is expected to explain the variation of pedestrian volume on the streets partially; ## of residents, # of workers: # of
people who live or work in nearby areas; ## of public transit users: # of people who take, transfer, or get off the bus
or subway in nearby areas (areas of 400 m from the Pedestrian Volume Survey (PVS) center).

Most of all, the fixed and floating population of the surrounding areas of survey spots were
expected to explain the variation in pedestrian volume more than the other variables, as they can be
directly converted into pedestrians on the streets. In addition, as they can be measured in various
ways, we considered as many approaches as possible with the data available. First, we controlled for
the number of residents and workers in the surrounding areas (i.e., fixed population) and this was
expected to explain the variations in walking trips and other discretionary activities where the origin
or destination was the survey site or its surrounding area (type A, B, and D; see Table 1). To this end,
the population and job density of the census tract, where the survey site is located, were applied in the
models, and because the area of the census tract varies, we used density-type variables instead of the
total number of residents and workers.

Second, we also controlled for floating populations, including wandering and passing-by
pedestrians moving to specific destinations or transit stations. By controlling for the transit ridership,
we could additionally explain the variations in wandering and other related activities where the
destination or route is in the survey site or its surrounding area (type C and E) as well as type A and
B explained above (see Table 1). Using Smart Card Data in Korea, the total number of passengers
boarding and getting off at all bus stops and subway stations within 400 meters (quarter-mile) of the
survey spot on survey day was measured as a control variable in the model. As public transit users
include a significant proportion of residents or workers in the area, the first and second approaches are
not entirely exclusive. However, because the PVS was conducted over several days, it is appropriate
to reflect the number of transit users on each survey day as a way to explain the pedestrian volume
variables that vary from day-to-day. Along with weather and atmospheric condition variables,
this can partially address the fundamental limitations of prior studies that have used the PVS data.
The four log-transformed population-related variables (population and job density and bus and subway
ridership) can be expected to explain the variations in pedestrian volume extensively.

Next, as argued by Gehl [86], the quality of the physical environment can also affect the number of
people on a street. To control for land use of the surrounding area, three dummy variables volume (i.e.,
control variables) on the streets were used, with green areas as the reference group. In Korea, all land
in urbanized areas is designated as one of these four land-use types, and the uses cannot overlap.
In general, people tend to walk and stay more in commercial streets with a variety of tenants [20,59].

As control variables, we also applied street type and the specific physical conditions of the survey
spots. As this information is included in the PVS data, most previous papers also controlled for them.
With regard to street type, “streets with sidewalk” and “streets without a sidewalk (shared street)”
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were defined as dummy variables, and “streets with a sidewalk, but shared with bicycles” functioned
as a reference group in the model. When it comes to street condition, we controlled for sidewalk
width, number of traffic lanes, and a series of dummy variables such as the presence of a centerline,
obstacles, braille blocks, slopes, fences, and crosswalks. Regarding the presence of obstacles, the PVS
data defines all types of street furniture as obstacles to walking, and previous papers have used it in
this way [59,87,88]. We, therefore, reclassified this into street furniture and obstacles. Street furniture
includes essential elements for creating a pedestrian friendly environment such as streetlights, road
signs, letterboxes, and trees. However, obstacles include undesirable street elements that obstruct
the safe and convenient passage of pedestrians on the street, including on-street parking, illegal
newsstands, and standing signboards. Here, these dummy variables were measured based on their
presence within 50 m from the survey spot, and the presence of slopes was entirely determined by
the trained investigator’s perception. These physical environment variables partially or extensively
explained the variations in the outdoor activities.

Lastly, the day of the week of the PVS was also considered: Friday and Saturday were dummy
variables, and Tuesday was a reference group. Depending on the location, the impact of the day of the
week was expected to vary. In general, pedestrian volume of the inner-city area is expected to be larger
during the weekdays compared to the weekend.

As explained above, the dependent variable (pedestrian volume) and three main test variables
(PM10 concentration, lowest air temperature, and precipitation) were log-transformed to convert their
distribution closer to normality. In other words, the regression analysis adopted a double-log function;
thus, we could interpret the coefficients of the weather and atmospheric condition variables as the
elasticity of pedestrian volume.

4. Results

4.1. Preliminary Analysis: PM10 Concentration and Pedestrian Volume in Seoul

Figure 2 illustrates average PM10 concentration and pedestrian volume over ten PVS days in
October 2015. As shown, whereas daily pedestrian volume was relatively constant except for October
27, PM10 concentration was volatile to some extent. It was difficult to ascertain any apparent tendency
toward the relationship between both variables.

The result of averaging by day is shown in Figure 3. It illustrates that the average daily pedestrian
volume on weekdays (Tuesday) was smaller than on weekends (Friday and Saturday). In particular,
the pedestrian volume on Friday was the largest, although it had the highest PM10 concentration level.

To examine the spatial relationships between the two variables in detail, we mapped Gu-level PM10

concentration and pedestrian volume on a randomly selected single day, October 16 2015 (Figure 4).
Figure 4 illustrates that the PM10 concentration level was higher in the southwestern area than in the
northeast area of the city. While Seodaemun-gu had the lowest concentration, Yangcheon-gu was
ranked the highest. However, the locations of the pedestrian hub (larger than 50,000) seemed to be
irrelevant to the PM10 hot spots. Rather, they were concentrated in three main business districts in
Seoul: Jongro-gu, Gangnam-gu, and Yeongdeungpo-gu. In contrast, the northeast areas with clean
air were dominated by residential use and had a small volume of pedestrians. This implies that the
pedestrian volume on the streets was also determined by other external factors besides air quality.
Therefore, we tested the impact of air quality after taking other factors into account by applying the
spatial regression approach.



Int. J. Environ. Res. Public Health 2019, 16, 4833 11 of 23

Int. J. Environ. Res. Public Health 2019, 16, x 11 of 23 

 

 
Figure 2. Average particulate matter (PM)10 concentration and pedestrian volume by the date of the 
survey (October 2015; source: authors’ calculations using air quality and PVS data in Seoul). 

 
Figure 3. Average PM10 concentration and pedestrian volume by the day of the week (October 2015; 
source: authors’ calculations using air quality and PVS data in Seoul). 

Figure 2. Average particulate matter (PM)10 concentration and pedestrian volume by the date of the
survey (October 2015; source: Authors’ calculations using air quality and PVS data in Seoul).

Int. J. Environ. Res. Public Health 2019, 16, x 11 of 23 

 

 
Figure 2. Average particulate matter (PM)10 concentration and pedestrian volume by the date of the 
survey (October 2015; source: authors’ calculations using air quality and PVS data in Seoul). 

 
Figure 3. Average PM10 concentration and pedestrian volume by the day of the week (October 2015; 
source: authors’ calculations using air quality and PVS data in Seoul). 

Figure 3. Average PM10 concentration and pedestrian volume by the day of the week (October 2015;
source: Authors’ calculations using air quality and PVS data in Seoul).



Int. J. Environ. Res. Public Health 2019, 16, 4833 12 of 23

Int. J. Environ. Res. Public Health 2019, 16, x 12 of 23 

 

To examine the spatial relationships between the two variables in detail, we mapped Gu-level 
PM10 concentration and pedestrian volume on a randomly selected single day, October 16 2015 
(Figure 4). Figure 4 illustrates that the PM10 concentration level was higher in the southwestern area 
than in the northeast area of the city. While Seodaemun-gu had the lowest concentration, Yangcheon-
gu was ranked the highest. However, the locations of the pedestrian hub (larger than 50,000) seemed 
to be irrelevant to the PM10 hot spots. Rather, they were concentrated in three main business districts 
in Seoul: Jongro-gu, Gangnam-gu, and Yeongdeungpo-gu. In contrast, the northeast areas with clean 
air were dominated by residential use and had a small volume of pedestrians. This implies that the 
pedestrian volume on the streets was also determined by other external factors besides air quality. 
Therefore, we tested the impact of air quality after taking other factors into account by applying the 
spatial regression approach. 

 
Figure 4. Gu-level PM10 concentration and pedestrian volume (October 16 2015; source: authors’ 
calculations using air quality and PVS data in Seoul). 

4.2. Impact of Weather and Atmospheric Condition on Pedestrian Volume by the Spatial Unit of Alert 

Table 2 and Appendix A respectively present the series of spatial and ordinary least squares 
(OLS) regression results of the log-transformed daily pedestrian volume by spatial measurement unit 
of weather and atmospheric condition variables. Moran's I values, presented in Appendix A, were 
statistically significant in all models, indicating the presence of spatial autocorrelation. Accordingly, 
we applied both spatial-lag and spatial-error models, and found that the spatial-error model has a 
better goodness of fit than the spatial-lag model based on the Lagrange Multiplier (LM) lag and error 
test. The lambda (λ) values in Table 2 indicated spatial autocorrelation across survey spots for 
pedestrian volume. The explanatory power (R-square) of the spatial-error models (0.539 in average) 
was larger than the OLS models (0.417 in average) and those of previous papers [16,17,20,56,59] that 
used the same data. Although the variance inflation factor (VIF) values are not reported in Table 2 
and Appendix A owing to the limited space, no multicollinearity was found. 
  

Figure 4. Gu-level PM10 concentration and pedestrian volume (October 16 2015; source: Authors’
calculations using air quality and PVS data in Seoul).

4.2. Impact of Weather and Atmospheric Condition on Pedestrian Volume by the Spatial Unit of Alert

Table 2 and Appendix A respectively present the series of spatial and ordinary least squares
(OLS) regression results of the log-transformed daily pedestrian volume by spatial measurement unit
of weather and atmospheric condition variables. Moran’s I values, presented in Appendix A, were
statistically significant in all models, indicating the presence of spatial autocorrelation. Accordingly,
we applied both spatial-lag and spatial-error models, and found that the spatial-error model has
a better goodness of fit than the spatial-lag model based on the Lagrange Multiplier (LM) lag and
error test. The lambda (λ) values in Table 2 indicated spatial autocorrelation across survey spots for
pedestrian volume. The explanatory power (R-square) of the spatial-error models (0.539 in average)
was larger than the OLS models (0.417 in average) and those of previous papers [16,17,20,56,59] that
used the same data. Although the variance inflation factor (VIF) values are not reported in Table 2 and
Appendix A owing to the limited space, no multicollinearity was found.

In the Gu level model, the PM10 concentration variable was negatively and significantly associated
(at p-value < 0.05) with the pedestrian volume on the survey day, after considering the other factors.
This implies that PM10 concentration can discourage people’s outdoor activities in a microscopic urban
space like a street (the first research question), and it provides empirical evidence to add to the existing
body of literature on air pollution and outdoor activities.

To address the second research question, we compared the elasticities of pedestrian volume in
each model and their explanatory power. As shown in Table 2, the PM10 elasticity of pedestrian
volume (walking demand) was larger in the Gu-level model than in the Si- and cell-level models.
The Gu-level model demonstrated that when the PM10 concentration increased by 1%, the amount
of daily pedestrian volume on the streets decreased by 0.121%. In addition, the explanatory power
(R-square) of the Gu-level model (0.121) was also slightly larger than the other two models (0.085 and
0.064), although the difference was negligible. We tentatively conclude that people respond more
sensitively to the Gu-level information of PM10 concentration, as expected.
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Table 2. Spatial regression models of log-transformed daily pedestrian volume by the spatial alert unit
of weather and atmospheric condition variables.

Variable
Si-Level Model Gu-Level Model Cell-Level Model

Spatial Error Spatial Error Spatial Error

Coef. z Coef. z Coef. z

Lambda (λ) 0.707 *** 29.167 0.706 *** 29.070 0.708 *** 29.262
Constant 6.755 *** 5.877 6.476 *** 5.526 6.766 *** 5.840

Weather and atmosphere condition
log_PM10 concentration −0.085 −1.631 −0.121 ** −2.286 −0.064 −1.232
log_lowest temperature 0.022 0.223 0.152 1.233 −0.023 −0.201

log_precipitation −0.035 ** −2.083 −0.029 * −1.824 −0.033 ** −2.028
Population

log_population density −0.211 ** −2.072 −0.206 ** −2.022 −0.209 ** −2.052
logjob density −0.029 −0.524 −0.025 −0.447 −0.029 −0.821

logbus ridership 0.266 *** 12.538 0.266 *** 12.536 0.266 *** 12.511
logsubway ridership 0.041 *** 10.890 0.040 *** 10.880 0.040 *** 10.882

Land use
Residential 0.342 *** 3.665 0.341 *** 3.645 0.3417 *** 3.657
Commercial 0.481 *** 4.656 0.481 *** 4.653 0.481 *** 4.650

Industrial 0.238 * 1.768 0.241 * 1.787 0.238 ** 1.762
Street type

With a sidewalk 0.616 *** 10.764 0.615 *** 10.754 0.615 *** 10.744
Without a sidewalk (shared

with pedestrians and
vehicles)

0.530 *** 7.088 0.531 *** 7.096 0.529 *** 7.070

Street condition
Sidewalk width 0.062 *** 7.846 0.062 *** 7.837 0.062 *** 7.831
# of traffic lanes 0.020 ** 2.389 0.021 ** 2.424 0.020 ** 2.372

Presence of centerline −0.119 ** −2.045 −0.120 ** −2.059 −0.118 ** −2.020
Presence of street furniture −0.078 −1.356 −0.077 −1.348 −0.078 −1.348

Presence of obstacle 0.378 *** 5.734 0.377 *** 5.720 0.379 *** 5.750
Presence of braille block 0.029 0.797 0.027 0.773 0.030 0.826
Presence of street slope −0.289 *** −7.214 −0.290 *** −7.232 −0.290 *** −7.229

Presence of fence 0.139 *** 3.576 0.138 *** 3.562 0.139 *** 3.578
Presence of crosswalk 0.207 *** 5.426 0.207 *** 5.420 0.207 *** 5.425

Day of the week
Friday 0.011 0.299 0.022 0.601 0.017 0.449

Saturday 0.055 1.329 0.037 0.892 0.068* 1.650
Summary Statistics

N 2990
Adjusted R-square 0.539 0.539 0.539
Robust LM error 324.154 *** 314.508 *** 328.838 ***

Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but shared
with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01.

The results on the other weather variables also demonstrated similar patterns. The Gu-level
model demonstrated that when the precipitation increased by 1%, the pedestrian volume decreased by
−0.029%, respectively. This reconfirms previous empirical evidence [62,64,66]. The Si- and cell-level
models also showed similar results.

These results imply that people are more likely to consider Gu-level weather and air quality
information (the smallest spatial unit of real-time air quality alert) when they decide their outdoor
activities. This is simply because a large number of people’s daily activities are confined to specific
regions, and not the whole city of Seoul, and the atmospheric conditions of Seoul are different by
region, as shown in Figure 4. Based on the results, we also suggest that people cannot accurately
recognize the atmospheric conditions of microscopic units of space (smaller than Gu), as demonstrated
by Semenza et al. [74], or even if they do, the effect of the information on their behavioral choices is
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limited. So, in reality, it is impossible for ordinary people to recognize or predict real-time differences
between the atmospheric conditions of different regions, and subsequently, people’s behavior is highly
dependent on the information that is publicized. Oltra and Sala [75] (p.869) argued that “attention
to air quality levels and worry are important predictors of self-protective and information-seeking
behavior”. Therefore, the spatial unit of forecast or real-time alert is expected to have a large role in
people’s reaction to PM10.

The results of the other control variables were generally as expected. Focusing on the Gu-level
model, the key results were interpreted as follows. First, different types of population and land-use
variables were significantly associated with pedestrian volume at the significance level of 0.01.
In particular, the public transit ridership variables, which represent the floating population of the
surrounding areas, constituted the independent variables that best explained the dependent variable.
The results demonstrated that the pedestrian volume on the street increased by 0.266 and 0.040 percent,
respectively, when the number of bus and subway users within 400 meters from the survey spot
increased by 1 percent. Most of the previous studies have revealed that higher accessibility induces
a larger volume of pedestrians on the streets. However, this study more directly reflects the daily
floating population using transit ridership variables, while previous studies has applied its driving
forces (i.e., physical facilities) in the form of the existence or density of transit stops, or distance to
the nearest stops [17,56,57,59]. The existing approaches may be better to draw policy implications
for public transportation facilities (such as how close and how much should be deployed). However,
our approach, which can more accurately explain the variance in the daily amount of walking, would
be desirable, if we aimed to better control for the determinants of pedestrian volume in order to more
precisely grasp the impacts of the key variable (i.e., PM10). In other words, our approach is better for
understanding the impacts of PM10 on pedestrian volume.

Among two fixed population variables, which were defined as the population and job density of
the census tract, only population density showed a negative association with the pedestrian volume.
It simply indicates areas with high population density would represent outlying residential areas, and,
of course, less people walk in those areas than in inner-city areas.

The land-use variables also demonstrated reliable results. As previous studies revealed [17,20,56,59],
commercial, residential, and industrial land attracts a larger amount of people, compared to green
areas. For the street type variables, the results suggest that “streets with pedestrian-only sidewalk” and
“streets without a sidewalk (i.e., shared street)” are more likely to attract more pedestrians, compared
to “streets with pedestrian/bicycle mixed sidewalks”. This implies that Korea’s policy of sharing
pedestrian space with bicycles instead of providing exclusive lanes for bicycles has led to a more
dangerous environment than mixed spaces with pedestrians and vehicles. However, no empirical
consensus has been reached on this subject in previous studies because they used PVS data from
different years that defined the type of street differently.

Lastly, the street condition (i.e., street design quality) variables also affected the pedestrian volume.
As expected, and as previous papers have consistently revealed, wider streets provide more favorable
environments for pedestrians, whereas sloping streets do not. In addition, the results demonstrated
that streets with nearby crosswalks and a larger number of traffic lanes accommodate more pedestrians,
and this is consistent with all of the previous studies that have used PVS data. Crosswalks can attract
and guide people, and a larger number of traffic lanes represent a higher hierarchy of the street.
The presence of fences is also positively associated with a larger volume of pedestrians. This means
that when the other conditions are the same, more people want to walk in a safer environment where
independent pedestrian space is secured. This has been verified by Jang et al. [20].
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In contrast, the results revealed that the presence of centerlines is negatively associated with
pedestrian volume. This is related to specific road conditions in Seoul. Seoul has many narrow streets
without a sidewalk, which are called i-myeon-do-ro in Korean (back roads), and pedestrians and
vehicles share these streets [89]. In this context, people tend to perceive the i-myeon-do-ro without
centerlines as more pedestrian-oriented spaces, because centerlines are a typical symbol of streets for
vehicles [90,91]. In contrast, when the other dimensions are the same, people may regard i-myeon-do-ro
with centerlines as streets for motorized transportation, and this could limit safe and convenient
walking [90,91]. Next, whereas the coefficient of the street furniture variable, which was expected to
encourage street activities, was insignificant, the presence of obstacles, which was expected to disturb
continuous walking, was positively and significantly associated with pedestrian volume. These seem to
be contradictory to our expectation and general knowledge. However, Lee et al. [60] also demonstrated
that pedestrian volume could be large in places with specific obstacles. This means that the street
facilities that we considered to be obstacles might be a physical feature of pedestrian-concentrated areas.

4.3. Comparing the Coefficients of PM10 in Three Stratified Models by Grade

To address the last research question of whether PM10 alert/warning grade affects the level of
PM10 elasticity of pedestrian volume (walking demand), three stratified models by grade were applied.
The models included the Gu-level weather and atmospheric condition variables and other control
variables. The “log precipitation” and “day of the week” variables were excluded because all of
the cases equaled zero in the models. This was indispensable as this section aims to compare the
coefficients of the three models.

Consistent with the models in Table 2, we employed OLS regressions (presented in Appendix B)
and LM lag and error test. The statistics showed that spatial-lag model has better goodness of fit
for “Good” model, while spatial-error model is better for “Normal” and “Bad” models. Table 3
illustrates the results of the three stratified spatial regression models. The adjusted R-squares of all of
the models were large enough, and no multicollinearity was found even though some of the variables
were excluded. The result of each variable was also similar to the models suggested in Table 2. Thus,
only the coefficients of the PM10 variables were interpreted.

In “Good” and “Bad” of the models, the PM10 concentration variable was negatively and
significantly associated with pedestrian volume on the survey day. However, the size of the coefficient
(elasticity) varied depending on the models. Specifically, when the PM10 level was larger than 80 µg
m−3 (“Bad” grade), and after taking other factors into account, a 1 percent increase in the average daily
PM10 was associated with a decrease of pedestrian volume by 1.147%. The decreasing rate (0.652%)
was much smaller in the “Good” grade model with a PM10 level lower than 30 µg m−3. This implies
that the worse the PM10 level, the more sensitive people are to the increase in PM10 concentration,
which reduces outdoor activities.

Surprisingly, the result showed that the PM10 concentration variable was not significantly
associated with pedestrian volume when in the “Normal” (30–80 µg m−3). Yoon [76] revealed that as
PM10 concentration increases, sales revenue increases when the PM10 level is lower than 109 µg m−3.
Based on this result, Yoon argued that “people are indifferent about PM10 concentration until the level
gets worse than the “Bad” category” [76] (p. 364). These results lead us to the conclusion that the
starting point of the “Bad” grade of the PM10 level can be a psychological threshold value, leading to
people refraining from going out and walking.
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Table 3. Spatial regression models of log-transformed daily pedestrian volume by the grade of PM10.

Variable
Good (< 30 µg m−3) Normal (30 µg m−3 ≤

PM10 < 80 µg m−3) Bad (≥ 80 µg m−3)

Spatial Lag Spatial Error Spatial Error

Coef. z Coef. z Coef. z

Rho (ρ) 0.411 *** 5.867
Lambda (λ) 0.559 *** 16.777 0.516 *** 8.218

Constant 2.904 1.562 5.420 *** 4.384 2.619 0.533
Gu-level weather and atmosphere condition

log_PM10 concentration −0.652 *** −2.610 −0.072 −1.005 −1.147 ** −2.117
log_lowest temperature 0.708 *** 3.051 0.106 0.834 1.132 0.936

Population
log_population density −0.066 −0.475 −0.239 ** −2.333 0.276 1.511

log_job density −0.067 −1.156 0.075 1.291 −0.045 −0.436
log_bus ridership 0.251 *** 6.652 0.318 *** 11.829 0.302 *** 6.448

log_subway ridership 0.045 *** 5.798 0.039 *** 8.477 0.052 *** 6.726
Land use

Residential −0.070 −0.309 0.325 *** 2.836 0.455 ** 2.031
Commercial 0.100 0.407 0.518 *** 4.108 1.010 *** 3.854

Industrial 0.033 0.117 0.244 1.474 0.386 1.352
Street type

With sidewalk 0.712 *** 5.463 0.610 *** 8.385 0.915 *** 6.849
Without sidewalk (shared with

pedestrians and vehicles) 0.425 ** 2.125 0.516 *** 5.562 0.804 *** 4.779

Street condition
Sidewalk width 0.064 *** 3.025 0.062 *** 6.499 0.109 *** 5.987
# of traffic lanes 0.057 *** 2.758 0.011 1.019 0.031 * 1.697

Presence of centerline −0.241 * −1.668 −0.202 *** −2.759 −0.123 −0.940
Presence of street furniture −0.267* −1.868 −0.036 −0.491 0.152 1.114

Presence of obstacle 0.301* 1.894 0.438 *** 5.249 0.641 *** 4.152
Presence of braille block −0.111 −1.355 0.095 ** 2.096 −0.011 −0.125
Presence of street slope −0.180 ** −2.060 −0.326 *** −6.407 −0.129 −1.307

Presence of fence 0.315 *** 3.340 0.099 ** 2.014 0.078 0.802
Presence of crosswalk 0.298 *** 3.221 0.147 *** 3.093 0.255 ** 2.811

Summary Statistics
N 608 1874 508

Adjusted R-square 0.456 0.559 0.550
Robust LM lag/error 14.6429 *** 74.0529 *** 21.4013 ***

Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but shared
with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01.

5. Conclusions

Using 2015 PVS data and air quality data in Seoul, this study investigated the relationships
between PM10 concentration and pedestrian volume on the streets, focusing on the differences in
the spatial unit of alert and the grade of PM10. In particular, compared to previous papers using the
same public data set, this study captured the PM10 elasticity of pedestrian volume more precisely,
by controlling for the daily floating population in the surrounding areas of the survey spot using
SmartCard data. The key findings and implications of the three research questions are summarized
as follows.

First, this study reconfirms the conventional belief that PM10 concentration affects people’s
intention to walk, and decreases pedestrian volume, particularly on a street level. Specifically, when
the PM10 concentration increases by 1%, the daily pedestrian volume on the streets decreases by 0.121%.
This implies that poor outdoor air quality not only harms people’s health but also depresses the local
economy. Thus, political efforts to vitalize streets, invigorate the commercial sector, and revive the
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local economy by attracting more people must be made alongside efforts to improve the air quality of
the city.

Second, the three regression models adopted different spatial aggregation units of air quality
variables and suggest that PM10 elasticity of the pedestrian volume is larger in the Gu-level model than
in the Si- and cell-level models. This demonstrates that people respond more sensitively to Gu-level
information of PM10 concentration. This is simply because the Gu is the smallest spatial unit of air
quality alert that people can access in Korea and people cannot recognize the atmospheric conditions
of a microscopic unit of space such as a street [74]. This means that spatial units of alert can be a critical
factor that influences people’s intention to walk. If the spatial unit of alert is larger than what people
require, people may not be able to identify the exact atmospheric conditions of the specific places
where they walk. Accordingly, they may not be aware that the atmospheric condition is worse than
the information they acquired, and may damage their health by going ahead with outdoor activities,
or conversely, may fail to recognize that the level is better than the alert, and may not be able to
perform their activities because they will avoid going outside. Subsequently, air pollution information
should be provided in smaller spatial units. Indeed, people are increasingly demanding a higher
spatial resolution of PM10 information for their health. However, this requires a denser installation of
AQMSs, which would lead to higher operating costs. Thus, future studies should find optimal (i.e.,
cost-and-benefit balanced) spatial units of alert for better policies.

Finally, from the three stratified regression models by PM10 alert grade, we found that people are
more likely to refrain from walking on a street when the alert reaches the “Bad” grade; the lowest value
of the “Bad” grade (i.e., 80 µg m−3) can act as a psychological threshold. The “Bad” grade alert and its
warning image can also be a definite and effective signal that alters people’s behaviors. This result
supports the effectiveness of the policies that have tightened the PM10 standards to alleviate the health
effects of PM10 that have been highlighted in many diverse studies [8,9,92]. In 2018, to enhance public
health, the Korean government strengthened air quality forecasting and warning standards for PM2.5

in line with international standards. For PM10, however, there is still room for improvement because
the standards are much less strict than the WHO standards. The empirical evidence highlighted in this
paper supports the idea that this approach (i.e., strengthening air quality warning standard for PM) is
an effectual measure for public health.

This study has several shortcomings. Most of all, the two key variables, PM10 concentration and
pedestrian volume, have high seasonal fluctuations, and due to climate change, the deviation from year
to year has been increasing recently. The causes of PM10 and its spread also differ greatly from region
to region. However, the results presented in this study were limited to the small space-time range of
Seoul, Korea, in October 2015. Although we used a relatively large dataset from a metropolitan area to
increase its generalizability, it is still limited due to its particular study area and period. Therefore, our
findings need to be compared against further research focusing on diverse cities (including different
types of streets) and extended periods (including different seasons, days of the week, and time of
the day). Fortunately, as part of its smart city initiative, the Seoul Metropolitan Government recently
announced a plan to install 50,000 public IoT sensors that measure air quality and pedestrian volume,
which is expected to enable more long-term research.

Next, the analytical approach of this study could not consider the individual characteristics
of pedestrians. Accordingly, this study did not determine whether each pedestrian’s actions were
determined by the PM10 levels. Depending on the purpose of walking, the effect of PM10 can also
vary. To address this issue, individual-level surveys are required; however, these are costly and
time-consuming. As the level of detail of the survey increases, the target areas and samples we can
focus on will decrease, and this tradeoff is a fundamental limitation of this field.
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Appendix A Multiple Regression Models of Log-Transformed Daily Pedestrian Volume by the
Spatial Alert Unit of Weather and Atmospheric Condition Variables

Variable
Si-Level Model Gu-Level Model Cell-Level Model

OLS OLS OLS

Coef. t Coef. t Coef. t

Constant 5.062 *** 7.937 4.314 *** 6.521 4.839 *** 7.499
Weather and atmosphere condition

log_ PM10 concentration −0.169 *** −2.912 −0.247 *** −4.339 −0.149 *** −2.609
log_lowest temperature 0.076 0.713 0.419 3.217 0.102 0.803

log_precipitation −0.059 *** −3.151 −0.051 *** −2.872 −0.058 *** −3.188
Population

log_population density −0.194 *** −3.734 −0.178 *** −3.423 −0.186 *** −3.592
log_job density 0.076 *** 2.753 0.081 2.922 0.078 2.821

log_bus ridership 0.330 *** 17.500 0.329 *** 17.440 0.330 *** 17.436
log_subway ridership 0.047 *** 13.558 0.047 *** 13.566 0.047 *** 13.540

Land use
Residential 0.309 *** 3.214 0.304 *** 3.169 0.307 *** 3.192
Commercial 0.538 *** 5.070 0.542 *** 5.113 0.536 *** 5.046

Industrial 0.319 *** 2.636 0.318 *** 2.627 0.321 *** 2.646
Street type

With a sidewalk 0.685 *** 11.468 0.683 *** 11.452 0.683 *** 11.427
Without a sidewalk (shared

with pedestrians and
vehicles)

0.579 *** 7.449 0.579 *** 7.456 0.574 *** 7.377

Street condition
Sidewalk width 0.083 *** 9.929 0.082 *** 9.935 0.083 *** 9.913
# of traffic lanes 0.017 * 1.941 0.018 ** 2.038 0.017 * 1.938

Presence of centerline −0.223 *** −3.660 −0.228 *** −3.749 −0.223 *** −3.656
Presence of street furniture −0.026 −0.417 −0.026 −0.419 −0.025 −0.395

Presence of obstacle 0.487 *** 6.975 0.482 *** 6.906 0.487 *** 6.976
Presence of braille block 0.004 0.107 0.004 0.111 0.003 0.099
Presence of street slope −0.239 *** −5.740 −0.240 *** −5.783 −0.240 *** −5.779

Presence of fence 0.132 *** 3.162 0.132 *** 3.155 0.133 *** 3.168
Presence of crosswalk 0.176 *** 4.371 0.179 *** 4.437 0.178 *** 4.409

Day of the week
Friday 0.007 0.163 0.019 0.449 0.004 0.098

Saturday 0.076 1.586 0.030 0.646 0.084 1.786
Summary

N 2,990
Adjusted R-square 0.417 0.418 0.416

Log likelihood −3946.19 −3943.49 −3948.17
Akaike info criterion 7940.39 7934.98 7944.34

Schwarz criterion 8084.46 8079.05 8088.41
Statistics

Moran’s I 35.616 *** 35.362 *** 35.737 ***

Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but
shared with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; ***
Significant at p < 0.01.
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Appendix B Multiple Regression Models of Log-Transformed Daily Pedestrian Volume by the
Grade of PM10

Variable
Good (<30 µg m−3)

Normal (30 µg m−3 ≤

PM10 < 80 µg m−3)
Bad (≥80 µg m−3)

OLS OLS OLS

Coef. t Coef. t Coef. t

Constant 6.377 *** 3.436 4.530 *** 5.4852 −0.830 −0.193
Gu-level weather and atmosphere condition

log_ PM10 concentration −0.691 *** −2.647 −0.176 ** −2.318 −1.213 ** −2.224
log_lowest temperature 0.816 *** 3.421 0.259 * 1.922 2.365 ** 2.203

Population
log_population density −0.167 −1.161 −0.242 *** −3.882 0.274 ** 1.969

log_job density −0.017 −0.283 0.127 *** 3.684 −0.010 −0.129
log_bus ridership 0.269 *** 6.875 0.358 *** 14.837 0.303 *** 6.403

log_subway ridership 0.045 *** 5.495 0.045 *** 10.300 0.053 *** 6.486
Land use

Residential 0.008 0.032 0.350 *** 2.966 0.492 ** 2.108
Commercial 0.242 0.941 0.556 *** 4.294 1.070 *** 3.978

Industrial 0.280 0.947 0.307 ** 2.028 0.332 1.202
Street type

With sidewalk 0.702 *** 5.145 0.599 *** 7.890 0.936 *** 6.833
Without sidewalk (shared

with pedestrians and
vehicles)

0.340 1.627 0.525 *** 5.492 0.857 *** 4.901

Street condition
Sidewalk width 0.068 *** 3.053 0.074 *** 7.368 0.118 *** 5.840
# of traffic lanes 0.057 *** 2.641 0.012 1.113 0.024 1.215

Presence of centerline −0.250 * −1.658 −0.273 *** −3.605 −0.233 * −1.672
Presence of street furniture −0.278 * −1.856 −0.017 −0.221 0.202 1.393

Presence of obstacle 0.350 ** 2.105 0.454 *** 5.225 0.730 *** 4.488
Presence of braille block −0.125 −1.465 0.057 1.212 −0.001 −0.006
Presence of street slope −0.173 * −1.887 −0.287 *** −5.421 −0.106 −1.060

Presence of fence 0.316 *** 3.206 0.115 ** 2.215 0.027 0.262
Presence of crosswalk 0.345 *** 3.576 0.107 ** 2.142 0.241 ** 2.481

Summary
N 608 1,874 508

Adjusted R-square 0.425 0.423 0.488
Log likelihood −805.982 −2443.86 −648.26

Akaike info criterion 1653.96 4929.72 1338.52
Schwarz criterion 1746.58 5045.97 1427.36

Statistics
Moran’s I 9.674 *** 19.758 *** 8.275 ***

Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but
shared with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; ***
Significant at p < 0.01.
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