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Abstract

Current estimates of the HIV epidemic indicate a decrease in the incidence of the disease in

the undiagnosed subpopulation over the past 10 years. However, a lack of access to care

has not been considered when modeling the population. Populations at high risk for con-

tracting HIV are twice as likely to lack access to reliable medical care. In this paper, we con-

sider three contributors to the HIV population dynamics: at-risk population exhaustion, lack

of access to care, and usage of anti-retroviral therapy (ART) by diagnosed individuals. An

extant problem in the mathematical study of this system is deriving parameter estimates

due to a portion of the population being unobserved. We approach this problem by looking

at the proportional change in the infected subpopulations. We obtain conservative estimates

for the proportional change of the infected subpopulations using hierarchical Bayesian sta-

tistics. The estimated proportional change is used to derive epidemic parameter estimates

for a system of stochastic differential equations (SDEs). Model fit is quantified to determine

the best parametric explanation for the observed dynamics in the infected subpopulations.

Parameter estimates derived using these methods produce simulations that closely follow

the dynamics observed in the data, as well as values that are generally in agreement with

prior understanding of transmission and diagnosis rates. Simulations suggest that the undi-

agnosed population may be larger than currently estimated without significantly affecting

the population dynamics.

Introduction

The human immunodeficiency virus (HIV) progresses in three stages. The first stage lasts

approximately 3 months and individuals in this stage are approximately 10 to 25 times more

effective at transmitting the disease [1–3]. The chronic stage can last from 5-10 years without

medication [4]. This is followed by acquired immunodeficiency syndrome (AIDS) and death

shortly thereafter [1–3]. Individuals with HIV may go many years without diagnosis, during

which time they may expose uninfected individuals to HIV. Efforts to improve the diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0200126 July 25, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dale R, Guo B (2018) Estimating

epidemiological parameters of a stochastic

differential model of HIV dynamics using

hierarchical Bayesian statistics. PLoS ONE 13(7):

e0200126. https://doi.org/10.1371/journal.

pone.0200126

Editor: Dimitrios Paraskevis, National and

Kapodistrian University of Athens, GREECE

Received: November 16, 2017

Accepted: April 29, 2018

Published: July 25, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was partially funded by

National Institute of Health (nih.gov) R01

AI12125903. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. There

was no additional external funding received for this

study.

https://doi.org/10.1371/journal.pone.0200126
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200126&domain=pdf&date_stamp=2018-07-25
https://doi.org/10.1371/journal.pone.0200126
https://doi.org/10.1371/journal.pone.0200126
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


rate include educational programs, as an individual’s perceived risk was shown to be highly

correlated with the individual obtaining multiple HIV tests [5–8]. Several studies have found

a 50% reduction in risky behaviors after diagnosis, including safer sex practices, reduction in

partner number, and medications that reduce viral load [9, 10]. However, diagnosis events

resulting in behavior modification are not thought to be sufficient to eradicate the epidemic

[9, 11].

After diagnosis, infected individuals have the opportunity to take anti-retroviral therapy

(ART) that reduces their viral load and retards the progression of the disease, providing an

improvement in life expectancy [12, 13]. The earlier that ART is received the higher the reduc-

tion in transmission events, particularly if obtained during the initial stage of HIV [1–3]. ART

therapies could eradicate the epidemic in a population with high prevalence of infection even

without the additional effect of behavioral changes [11]. Mathematical models estimate that

the HIV epidemic could be reduced to less than 1% of the population infected (elimination

phase) with universal testing and by providing ART consistently to newly diagnosed individu-

als [14]. However, issues with adherence and resistance are well documented in the literature

[15–20]. Patients tend to report their adherence as much higher than it actually is, but studies

indicate that even low adherence may be sufficient for control of the epidemic [10, 15]. Trans-

mission is rare for individuals on ART, even with relatively high plasma HIV concentrations

[21, 22].

The largest barrier to eradication of the epidemic is lack of access to care, including diag-

nostic services and ART costs or prescriptions. A lack in access to care could create pockets of

undiagnosed individuals while the overall trend appears to be a reduction in the size of the epi-

demic [23]. Various studies report between 50–96% of diagnosed individuals in the U.S. rely

on public medical care to obtain their ART medications [10, 20, 24–26]. Access to care remains

critical, but this has not been considered when modeling the dynamics of the epidemic [5, 6].

Estimates using CD4 levels of newly diagnosed individuals suggest that the undiagnosed

population is decreasing between 2005–2013 in the US [4, 27]. CD4 levels can be used to

estimate the progression of HIV [28]. We consider three possible causes for this decrease

including exhaustion of the at-risk population. The size of the at-risk population is not easy to

estimate since it depends on behavior. High risk populations include individuals in poverty

and men who have sex with men (MSM) [4]. This is particularly critical in the southern U.S.,

where individuals tend to be poor and lack access to medical care [4, 23]. As the at-risk popula-

tion decreases the number of diagnoses will also decrease, which will cause the estimated num-

ber of undiagnosed individuals to decrease.

An additional possibility is that the reduction in number of diagnoses is due to individuals

lacking access to care. HIV is over-represented in impoverished populations where access to

diagnosis and treatment may be more difficult to obtain. In this case, the number of newly

diagnosed individuals is not representative of the number of undiagnosed individuals, and the

estimates will be inaccurate. Finally, the usage of anti-retroviral therapies reduces the viral load

and transmission potential of infected individuals.

The difficulty in studying this system mathematically lies in parameter estimates. A mini-

mal model of this system requires at least three parameters: transmission of the disease, diag-

nosis of the disease, and death due to the disease. Since knowledge about the undiagnosed

population is restricted to those who have been diagnosed, estimates of these parameters are

generally forced to assume that this population is representative of the whole.

In this work we use coupled statistical and mathematical methodology to study the relation-

ships between the three hypothesized causes and their respective population dynamics. We use

hierarchical Bayesian statistics to get estimates for the size of the infected populations and their

proportional changes across the years. These estimates are used to calculate epidemiological
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parameters for a system of stochastic differential equations. Currently we are not aware of any

similar methods in the literature. Such a problem is challenging as the proportional change

across the populations is a hyperparameter controlling the yearly proportions, which each have

their own statistical model. This results in a large model that must be studied numerically.

The resulting simulations give insight into the implications of the estimated undiagnosed

population on epidemiological parameters. Our model suggests that the undiagnosed popula-

tion may be larger than current estimates while recovering population dynamics. The best

recovery of the dynamics observed in the existing data occurs when the increase in the diag-

nosed population due to diagnosis is greater than the decrease in the undiagnosed population.

We hope this study will help inform future efforts to improve the situation of infected individ-

uals and prevent future outbreaks.

Materials and methods

Bayesian statistics

A Markov model where pt centered at qpt−1 is used to estimate the proportional change in the

infected populations over time, where pt is the proportion in the current year and q is the pro-

portional change. These random variables are estimated using Bayesian statistics.

The sampling model is xt * Bin(nt, pt), where nt is population size in the current year. The

random variable q is taken as a hyperparameter for pt. The random variables to be estimated

for each infected subpopulation are q and pt, where t = 2005,. . .,2013. We estimate the random

variables of undiagnosed and diagnosed subpopulations independently.

Prior. The prior for the proportional change q is a gamma distribution.

pðqÞ / qa� 1e� bq

The parameters were chosen so that the prior distribution was centered at the arithmetic

estimates of q obtained from the CDC [4]. The arithmetic estimates were obtained by calculat-

ing:

1

n
Sn

i¼2

pi

pi� 1

The arithmetic estimate for the undiagnosed q (qu) is 0.979, and for the diagnosed q (qd)

1.025. The priors used were GAM(9.79,10) and GAM(10.25,10) so they were centered at 1.

The prior for the random variable pt, the undiagnosed proportion, is a beta distribution

centered at the previous proportion times q. The parameters of the beta distribution are

α = 0.1nt−1 × qpt−1, and β = 0.1nt−1 − α.

pðptÞ / pa� 1

t ð1 � ptÞ
b� 1

In the case where t = 1, the previous undiagnosed proportion is taken to be the expert opin-

ion of 20%, and the diagnosed proportion to be 1−p0(undiagnosed) [29]. The prior for the diag-

nosed population is formulated in the same way. Population sizes were considered in units of

thousands.

Likelihood. The likelihood is a binomial likelihood, representing the chance of selecting

an undiagnosed or diagnosed individual at random from the total infected population. For a

given year t, the proportion of undiagnosed individuals depends on the total number of indi-

viduals:

Lðptjxt; ntÞ / pxt
t ð1 � ptÞ

nt � xt
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where xt is the total number of undiagnosed or diagnosed individuals, and nt is the total number

of infected individuals. The likelihood across all the years is the product of each year’s likelihood.

Lðp1; p2; . . . ; p9jx1; x2; . . . ; x9; n1; n2; . . . ; n9Þ / P9

t¼1
pxt

t ð1 � ptÞ
nt � xt

The likelihood for the diagnosed population was formulated in the same way.

Posterior. The joint posterior distribution is proportional to the priors multiplied by the

likelihoods for all 9 years:

f ðp1; p2; . . . ; p9; qÞ / pðqÞ �P9

t¼1
pðptjq; pt� 1Þ � Lðp1jxt¼1Þ � Lðp2jxt¼2Þ � . . .� Lðp9jxt¼9Þ

/ qa� 1e� bq �P9

t¼1

�
pa� 1

t ð1 � ptÞ
b� 1
� pxt

t ð1 � ptÞ
nt � xt
�

The posterior full conditional of pt for t = 2005,. . .,2012 is:

f ðptjq; pt� 1; ptþ1Þ / P9

t¼1

�
LðptjxtÞ � pðptjq; pt� 1Þ � pðptþ1jq; ptÞ

�

The posterior full conditional of 2013, the 9th year, is:

f ðp9jx9; p8; qÞ / Lðp9jxt¼9Þ � pðp9jq; p8Þ

The full conditional of q does not have a closed form. The forms of the diagnosed random

variables are the same. Random variable estimates were obtained using Metropolis-Hastings

nested within a Gibbs sampler over 100,000 iterations with R version 3.3.3 [30]. The proposal

distribution was a truncated normal distribution since the hyperparameter q cannot be nega-

tive, using package rmutil [31], centered at the previous value of the parameter. Proportions 1

through 9 were sampled consecutively, followed by hyperparameter q. The trace plots quickly

converged within 200 iterations, and the first 2000 samples were removed. Code is provided in

S3 and S4 Files.

Stochastic differential equations

The hyperparameter q was estimated to be 0.982 for the undiagnosed population and 1.036

for the diagnosed population. These were used as a boundary to solve for the epidemiological

parameters in a simple stochastic differential model.

dU ¼ ðqu � 1ÞUdt þ dotdt

dD ¼ ðqd � 1ÞDdt þ dotdt

where U is the undiagnosed and D is the diagnosed populations, and dωt * Nor(0, σ) is

Brownian white noise with units
ffiffiffiffiffiffi
ðtÞ

p
. The variance σ is chosen to be 10% of the size of the

population.

The simplest model is constructed describing the dynamics of the infected subpopulations.

The values of parameters transmission (τ), diagnosis (δ), and death (�) are calculated using the

constraining q:

dU ¼ ðtðU þ DÞ � dU � �UÞdt ð1Þ

ffi ð1 � quÞUdt þ dotdt ð2Þ

¼ � 0:018Udt þ dotdt ð3Þ

dD ¼ ðdU � �DÞdt ð4Þ
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ffi ð1 � qdÞDdt þ dotdt ð5Þ

¼ 0:036Ddt þ dotdt ð6Þ

We consider the parameters pseudo-steady state, and use the 2005 population sizes to esti-

mate them. In addition, we assume that the general population are at steady state, and consider

only the increased death rate due to infection � as 0.01 [4]. The diagnosis rate δ is estimated by:

dU ¼ qdDþ �D ¼
0:046D2005

U2005

¼ 0:165

and the transmission rate τ is estimated by:

tðU þ DÞ ¼ ð1 � quÞU þ dU þ �U

t ¼
0:157U2005

U2005 þ D2005

¼ 0:034

Due to the magnitude of the scale of this system we assume that all events will happen,

and the source of the stochasticity is primarily reporting issues. Tau leap algorithm was used

to preform the stochastic simulations. A time step of 1 year was selected, and the population

at time t+1 is the numerical solution of the population at time t and random noise from a

NOR(0,σ), where σ is 10% of the population at time t0 with units
ffiffi
t
p

. The initial conditions

for the infected populations were sampled from the posterior distributions obtained by the

Bayesian estimates. Calculations were performed in Matlab [32] and code is available upon

request.

The diagnosis rate was calculated using data from [27]. The at-risk population is estimated

as twice the national average rate of self-identified MSM among adults. The mortality rate

increase due to HIV was estimated using data from [4]. All calculations, including the effective

parameter rates, are provided in S1 File.

Results

Bayesian model

Bayesian estimates for the proportions of diagnosed or undiagnosed individuals was obtained

concurrently with the estimated proportional change. The prior distribution was chosen to be

a beta for the proportions and a gamma for the proportional changes. The likelihood function

was a binomial, representing the chance of randomly selecting a diagnosed or undiagnosed

individual from a pool of infected individuals. The posterior did not have a closed form. Due

to the symmetry of the posterior samples we summarize them using their mean and variance.

The posterior means of the proportions for both undiagnosed and diagnosed estimates are

very close to the original data (Fig 1) [27]. The posterior mean of qu is 0.982, and qd is 1.036.

This means that 98% of the undiagnosed population is preserved from year to year, or is drop-

ping by about 2% per year. Similarly, the diagnosed population is increasing by 3.6% per year.

Posterior means and variances are given in Table 1.

Stochastic differential model

The Bayesian estimates of the proportional change in the diagnosed and undiagnosed popula-

tion from 2005 to 2013 were used to determine the epidemiological parameters for a system of

Investigating population dynamics using Bayesian methodology to estimate epidemiological parameters
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stochastic differential equations. The parameters transmission (τ), diagnosis (δ), and death (�)

were calculated using the proportional changes in the respective population.

dU ¼ ðqu � 1ÞUdt þ dotdt ¼ ðtðU þ DÞ � dU � �UÞdt ð7Þ

dD ¼ ðqd � 1ÞDdt þ dotdt ¼ ðdU � �DÞdt ð8Þ

Fig 1. Posterior information obtained from hierarchical Bayesian statistics. Bayesian estimates are shown as hollow squares with error bars

showing standard deviations. Estimated proportion of diagnosed (pink) and undiagnosed (blue) populations recover the estimated proportions

(circles) [27].

https://doi.org/10.1371/journal.pone.0200126.g001

Table 1. Summary statistics of the posterior distribution. The parameter p represents the estimated size of the proportion in that year. The hyperparameter q represents

the estimated proportional change of the population across all years.

Diagnosed Undiagnosed

Parameters Mean Variance Parameters Mean Variance

p2005 0.78 0.0026 p2005 0.22 0.0026

p2006 0.79 0.0026 p2006 0.21 0.0026

p2007 0.80 0.0026 p2007 0.20 0.0027

p2008 0.81 0.0026 p2008 0.19 0.0027

p2009 0.81 0.0026 p2009 0.19 0.0026

p2010 0.82 0.0026 p2010 0.18 0.0026

p2011 0.82 0.0026 p2011 0.18 0.0026

p2012 0.83 0.0026 p2012 0.17 0.0026

p2013 0.84 0.0026 p2013 0.16 0.0026

qd 1.036 0.2355 qu 0.982 0.0939

https://doi.org/10.1371/journal.pone.0200126.t001
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where U is the undiagnosed and D is the diagnosed populations, and dωt * Nor(0, σ) is the

noise term. These base estimates fit the data very well (Fig 2).

Exhaustion of Susceptibles. In the case where the at-risk population is not much larger

than the infected population, the transmission is dependent on the size of both populations.

We estimate the at-risk population size as a fraction of the total infected population:

S ¼ fT

Then this is substituted into the model. The transmission term becomes

tTS ffi tfT2

This gives an effective increase of fτ in the transmission rate (Table 2). This increase

causes the simulations to fail to recover the diagnosed and undiagnosed population dynamics,

although the at-risk population does decrease significantly (Fig 3). This result is intuitive since

the infection rate is increased, but the diagnosis rate is not representative of this rate.

Lack of access to care. Lack of access to care may be conceptualized as pockets of undiag-

nosed individuals who are not being diagnosed. To capture this, we consider the diagnosis rate

Fig 2. Method validation. The method was tested by simulating with the epidemiological parameters calculated using the Bayesian

estimates of the proportional changes as constraints. The mean of 100 stochastic simulations (pink line) is compared with the data

(circles). Proportions are relative to initial proportion.

https://doi.org/10.1371/journal.pone.0200126.g002
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Table 2. Transmission and diagnosis rates are different under the different hypotheses. Average likelihood across both populations and all years (Fig 6, S2 File).

Model Transmission Rate Diagnosis Rate Likelihood

Base model τ(U + D) δU 0.87

Exhaustion of Susceptibles (ES) τf(U + D)2 δU 0.16

Anti-retroviral Therapies (ART) τ(U + 0.04D) δU 0.72

Lack of Access to Care (LAC) τ(U + D) δ0 0.87

ES and ART τf(U + 0.04D)2 δU 0.52

ES and LAC τf(U + D)2 δ0 0.54

ART and LAC τ(U + 0.04D) δ0 0.70

ES, LAC, and ART τf(U + 0.04D)2 δ0 0.58

https://doi.org/10.1371/journal.pone.0200126.t002

Fig 3. Exhaustion of susceptibles. Transmission of the disease is altered to reflect the impact of the size of the at-risk population.

The mean of 100 stochastic simulations (pink line) is compared to the data (circles). Proportions are relative to initial proportion.

https://doi.org/10.1371/journal.pone.0200126.g003
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to be independent of the size of the undiagnosed population. The diagnosis rate is estimated

as:

dU ¼ qdDþ �D ¼
0:046D2005

U2005

� U2005 ¼ 0:036

The resulting equation for the undiagnosed subpopulation then becomes:

dU ¼ ðtðU þ DÞ � d0 � �UÞdt

where δ0 is 0.036. This large reduction in the diagnosis rate recovers the population dynamics

well (Fig 4).

ART usage. Since ART results in a viral load that has low chance of infecting a at-risk

individual, we removed these individuals from the pool of infected individuals able to transmit

Fig 4. Lack of access to care. The effect of undiagnosed individuals lacking access to care affects the rate of diagnosis of the undiagnosed

individuals. The diagnosis rate is held constant to reflect this scenario. The mean of 100 stochastic simulations (pink line) is compared with the

data (circles). Proportions are relative to initial proportion.

https://doi.org/10.1371/journal.pone.0200126.g004
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the disease. Since 96% of diagnosed individuals reported taking anti-retroviral therapies in a

previous study, the transmission term was modified as follows [10].

tðU þ ð1 � 0:96ÞDÞ

Variable or poor adherence on the part of diagnosed individuals is ignored due to the body

of literature indicating that large benefit is gained from even poor adherence [15, 16]. This

gives good recovery of both subpopulation dynamics and agrees best with both undiagnosed

and diagnosed estimates (Fig 5).

Multiple causes

Since it seems likely that most or all of these scenarios affect the infected population simulta-

neously, we analyze all their possible combinations (S1 Fig). The parameters were altered as

Fig 5. Anti-retroviral therapy usage. To reflect the high levels of ART prescription and usage reported by diagnosed individuals this

percentage is removed from the pool of diagnosed individuals able to transmit the disease. The mean of 100 stochastic simulations

(pink line) is compared to the data (circles). Proportions are relative to initial proportion.

https://doi.org/10.1371/journal.pone.0200126.g005
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described in Table 2. To determine the best cause, we quantify the goodness of fit by determin-

ing the relative likelihood of observing the data given the mean and variance of the stochastic

simulations. These probabilities are given in Fig 6 with numerical details in S2 File, as well as

the average probability over the 9 years.

Fig 6. Model fit was quantified by calculating the relative likelihood of observing the data within the simulations.

A higher likelihood is represented by a hotter color. From left to right: Base model, Exhaustion of Susceptibles (ES),

Lack of Access to Care (LAC), Anti-Retroviral Therapy usage (ART), ES and LAC, ES and ART, LAC and ART, and

ES, LAC, and ART. Details provided in S2 File.

https://doi.org/10.1371/journal.pone.0200126.g006
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Lack of access to care, ART usage, or their combined resulted in the best recovery of the

data for both the undiagnosed and diagnosed populations. Under the ART scenario, the

diagnosed population has been reduced by 96%, resulting in a dynamic reduction in the

transmission rate. We originally estimate the transmission rate to be 3.4% of the total infected

population. This is close to the literature estimate of around 4-6% of infected individuals trans-

mitting HIV to an at-risk individual [29, 33]. With the majority of the diagnosed population

removed, the effective transmission rate is much lower. Under the LAC scenario, there is a

constant diagnosis rate. This represents a yearly reduction in the undiagnosed population and

increase in the diagnosed population of 3.6%. This means the diagnosed population grows

faster than the undiagnosed population is reduced. Although lack of access to care in the undi-

agnosed population would mean the data are inaccurate, in our case the best fitting model is

consistent for both subpopulations.

Discussion

We were able to obtain conservative estimates of the proportional changes in the diagnosed

and undiagnosed HIV-infected populations using hierarchical Bayesian statistics. Our esti-

mates suggest that the proportion of infected individuals who are undiagnosed is decreasing

by approximately 2.8% each year from 2005 to 2013, while the proportion of diagnosed indi-

viduals is increasing by approximately 3.6%. We used the proportional change as constraints

on a system of stochastic differential equations. This allowed us to estimate the transmission

and diagnosis rates. We were able to recover reasonable parameter estimates and population

dynamics using this methodology. To learn more about the cause of the decrease in the undi-

agnosed population, we considered some scenarios that would affect the epidemiological

parameters: exhaustion of the at-risk population, lack of access to care, and reduction in viral

load by anti-retroviral therapy.

We were able to recover the diagnosed population dynamics when we altered the parame-

ters to reflect these scenarios with the exception of including exhaustion of susceptibles.

Modeling transmission as a function of the size of the at-risk population caused the size of

the infected populations to increase rapidly. In the other scenarios some interesting dynamics

could be observed in the undiagnosed population. Lack of access to care was simulated by con-

sidering diagnosis rate a constant unaffected by the size of the undiagnosed population. This

resulted in an improvement in the likelihood of observing the data (Fig 6, S2 File). Anti-retro-

viral therapy usage also improved the overall recovery, but this effect was weaker for the undi-

agnosed population dynamics. Although the undiagnosed population size is dependent on the

quality of the data available on the diagnosed population of that year, these results indicate that

the scenarios that maximizes the probability of observing the diagnosed population also maxi-

mizes the probability of observing the diagnosed population estimates.

The observed results suggest that lack of access to care and ART usage contribute to the

infected population dynamics. This is not unexpected. Many individuals with HIV are

reported to lack access to care [23, 34]. In areas with high poverty rates the death rate of

infected individuals is much higher than that of the general population [4, 35]. In 2017 the

New York Times reported groups of untreated individuals in the deep south dying due to their

lack of access to care [23]. The southern US in particular suffers from high rates of STDs and

lack of access to care that exacerbates the spread of HIV [36, 37]. In 2007 the number of unin-

sured individuals had risen by 60% since 2003, with those living in poverty over-represented

[38]. Although the Affordable Care Act increased the number of individuals eligible for Medic-

aid, physician retention issues that continue to plague the majority of rural areas are exacer-

bated with increasing numbers of Medicaid patients [39, 40].
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Both models and studies have shown that providing ART to infected individuals in the

early stages of HIV reduces transmission events and frequency of death due to AIDS [11, 14,

19–22]. Even poor adherence may be enough to control or eradicate the epidemic and increase

quality of life for infected individuals [16–18]. Greater effort must be made to ensure these

populations have access to life-saving treatments.
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