
ARTICLE OPEN

Intestinal microbe-dependent ω3 lipid metabolite αKetoA
prevents inflammatory diseases in mice and cynomolgus
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Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here,
we demonstrate that microbiota play an essential role in the body’s use of dietary lipids for the control of inflammatory diseases.
We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid
(αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a
linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a
peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity
by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from
macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic
glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose
tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a
novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have
potential for developing therapeutic drugs as well as probiotic food products.
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INTRODUCTION
The incidence of allergic and inflammatory skin diseases and
metabolic disorders, including type 2 diabetes, is increasing.1–3

Accumulating evidence suggests that quantity of dietary lipid is a
critical determinant in the development of inflammatory

diseases.4,5 In addition to the quantity of dietary lipids, their fatty
acid composition plays important roles in the regulation of
inflammatory diseases. In fact, the potential benefits of ω3 fatty
acids in prevention of inflammatory vascular disease were
discovered in a cohort study more than 40 years ago.6 Yet, the
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beneficial effects of ω3 fatty acids in clinical studies remain
debated.7–9

Recent evidence suggests that the metabolism of dietary ω3
fatty acids is a key factor which influences their effectiveness in the
regulation of health and diseases. The conversion of ω3 fatty acids
into bioactive metabolites is mediated by mammalian enzymes
including cyclooxygenase (COX), lipoxygenase (LOX), and cyto-
chrome P450 (CYP).10,11 Eicosapentaenoic acid (EPA), n-3 docosa-
pentaenoic acid (DPA), and docosahexaenoic acid (DHA) are
representative ω3 fatty acids, which exert pro-resolution and anti-
inflammatory properties through their conversion into bioactive
lipid mediators, including EPA-derived resolvins, 17,18-epoxyeico-
satetraenoic acid (EpETE) and 15-hydroxyeicosapentaenoic acid,
n-3 DPA-derived 14-hydroxy DPA, and DHA-derived protectins and
maresins.12–18 These studies highlight that conversion of ω3 fatty
acids into bioactive metabolites is essential for the regulatory roles
of these lipids.
In addition, intestinal bacteria contribute to dietary lipid

metabolism and produce unique, non-mammalian lipid metabo-
lites with potent biologic activities.19–21 For example, Lactobacillus
plantarum AKU1009a use saturation metabolism by bacterial CLA-
HY enzyme to convert ω6 linoleic acid to 10-hydroxy-cis-12-
octadecenoic acid (HYA).19 HYA is further converted to 10-oxo-cis-
12-octadecenoic acid (KetoA) by bacterial CLA-DH enzyme.19

These metabolites exert potent biologic activities.22–27 In addition,
ω3 α-linolenic acid is reportedly metabolized in L. plantarum
AKU1009a, too, with both the ω3 and ω6 forms undergoing the
same transformations. α-Linolenic acid is metabolized to 10-
hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-
12-cis-15-octadecadienoic acid (αKetoA) by CLA-HY and CLA-DH
found in L. plantarum AKU1009a.20,28,29 However, the biologic
activities of αHYA and αKetoA remain unclear.
In this study, we found that αKetoA exerted potent anti-

inflammatory activities for the control of contact hypersensitivity
in both mice and non-human primates and for the amelioration of
diabetes in mice fed a high-fat diet (HFD) through regulating
macrophage activity in a peroxisome proliferator-activated
receptor (PPAR)γ-dependent manner. These results extend our
knowledge by revealing the important roles of bacteria in
accomplishing the health-promoting effects of ω3 fatty acids by
generating the unique intestinal microbial lipid metabolite
αKetoA.

RESULTS
αKetoA and αHYA are ω3 α-linolenic acid-derived and
intestinal bacteria-dependent lipid metabolites
We first sought to examine whether dietary intake of linseed oil,
which is high in α-linolenic acid, increases the amount of αHYA
and αKetoA in mouse feces. We fed mice a diet containing either
soybean oil (Soy-mice) or linseed oil (Lin-mice) for 2 months and
collected feces for the analysis of fatty acid metabolites.
Consistent with the fatty acid composition of the dietary oils,
lipidomic analysis through liquid chromatography–tandem mass
spectrometry (LC-MS/MS) revealed that the amount of α-linolenic
acid was higher in the feces of Lin-mice than in those of Soy-mice
(Fig. 1a). We also found that the amounts of αHYA and αKetoA
were increased in the feces of Lin-mice (Fig. 1a). Furthermore, Lin-
mice also showed increased serum levels of α-linolenic acid, αHYA,
and αKetoA (Fig. 1a).
We next fed a linseed oil-containing diet to mice maintained

under either specific-pathogen-free (SPF) or germ-free (GF)
housing conditions for 2 months. The lipidomic analysis revealed
that the amount of α-linolenic acid in the serum was comparable
between SPF and GF mice (Fig. 1b). In contrast, the amounts of
αHYA and αKetoA were lower or absent in the feces and serum of
GF mice than in those of SPF mice (Fig. 1b). These results
demonstrate that αHYA and αKetoA are lipid metabolites derived

from ω3 α-linolenic acid and that their generation in the intestine
and subsequent absorption into the body is dependent on the
presence of intestinal bacteria.

Contact hypersensitivity is ameliorated by αKetoA through
PPARγ-dependent inhibition of the development of inducible
skin-associated lymphoid tissue (iSALT)
We then examined whether αHYA and αKetoA exert anti-
inflammatory properties. To address this issue, we applied the
2,4-dinitrofluorobenzene (DNFB)-induced murine contact hyper-
sensitivity model, a representative type IV skin allergic inflamma-
tion model that comprises sensitization and elicitation phases. In
the sensitization phase, skin exposure to DNFB activates skin
dendritic cells to migrate to the regional lymph nodes and activate
naive T cells and consequently induce Th1 and Tc1 cells.30 In the
elicitation phase, re-exposure to DNFB induces the development
of iSALT, which enhances the production of IFNγ by skin effector
T cells in situ.30 We orally administered the fatty acid metabolite to
mice from before sensitization and during the experimental
protocol, and we evaluated ear swelling as a representative
inflammatory sign of contact hypersensitivity. We found that
DNFB-induced ear swelling was ameliorated by oral administration
of αKetoA but not αHYA (Fig. 2a). We next examined the
therapeutic effects of αKetoA by administering it orally to mice
at 1 day after elicitation with DNFB and measuring ear swelling the
day after αKetoA administration. We found that αKetoA treatment
effectively ameliorated ear swelling (Fig. 2b). Topical treatment
with αKetoA also exerted anti-inflammatory activity in the
inhibition of ear swelling (Fig. 2c).
We next sought to examine molecular mechanisms of αKetoA in

the amelioration of contact hypersensitivity. The carbon length of
fatty acids is an important determinant of receptor specificity:
short-chain fatty acids are recognized by GPR41 and GPR43,
whereas long-chain fatty acids are recognized by GPR40 and
GPR120.31 In addition, long-chain fatty acids are directly recog-
nized by PPARγ.32 To identify the functional receptor of αKetoA,
we applied specific antagonist treatment in the contact hyper-
sensitivity model, using GW1100, AH7614, and GW9662 as
selective antagonists of GPR40, GPR120, and PPARγ, respectively.
We found that the anti-inflammatory effect of αKetoA was
dependent on PPARγ but not GPR40 or GPR120, according to
ear swelling at 24 h after elicitation (Fig. 2d). This effect continued
48 h after the elicitation (Supplementary Fig. S1). Consistent with
the independence of αKetoA from GPR40 and GPR120 in exerting
anti-inflammatory activity, transforming growth factor (TGF)α-
shedding assays revealed that αKetoA had little activity in
inducing GPR40- and GPR120-mediated signaling when compared
with the positive control, 13-oxo-cis-9,cis-15-octadecadienoic acid
(Supplementary Fig. S2).33

We next sought to examine cellular dynamics in the treatment
with αKetoA. Flow cytometry analysis revealed that αKetoA
decreased the number of IFNγ+ T cells and dendritic cells in the
ear skin in a PPARγ-dependent manner (Fig. 2e). Histologic
analysis revealed that αKetoA disrupted the iSALT structure; this
disruption was dependent on PPARγ but independent from GPR40
and GPR120 (Fig. 2f). These results indicate that the
αKetoA–PPARγ axis ameliorates contact hypersensitivity by
inhibiting IFNγ production by T cells through the disruption of
iSALT formation.
We have developed a hapten-induced contact hypersensitivity

model in cynomolgus macaques.13 In this model, macaques are
sensitized with DNFB on the abdominal skin and then stimulated
with DNFB on the back, thus inducing skin inflammatory signs,
including epidermal hyperplasia and inflammatory cell infiltration
(Supplementary Fig. S3).13 In the current study, we used this
model to address whether αKetoA exerts anti-inflammatory
activity in non-human primates and found that, as in the murine
model, DNFB-induced skin inflammatory signs such as epidermal
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hyperplasia and the accumulation of CD3+ T cells were inhibited
by topical application of αKetoA (Supplementary Fig. S3). These
results show that αKetoA is effective for the treatment of skin
inflammation not only in rodents but also in non-human primates
and therefore is a promising candidate for drug development.

αKetoA inhibited chemokine expression by interfering with
nuclear translocation of NF-kB in macrophages
To identify the target cells of αKetoA, we compared the gene
expression level of Pparg among dendritic cells, T cells, and
macrophages in the skin; dendritic cells and T cells are essential
constituents of iSALT, and macrophages act as iSALT inducer
cells.34 We found that macrophages expressed the highest level of
Pparg among these cells (Fig. 3a). This finding prompted us to
examine whether αKetoA affected the expression of macrophage-

derived chemokines that recruit CXCR2+ dendritic cells for the
formation of iSALT.34 Treatment of mice with αKetoA reduced the
amount of CXCL1 in ear homogenates, with minimal effects on
CXCL2 levels (Fig. 3b and Supplementary Fig. S4a). In addition,
treatment with GW9662 abrogated the effects of αKetoA on
CXCL1 levels, thus indicating their dependency on PPARγ (Fig. 3b
and Supplementary Fig. S4a).
We then prepared bone marrow-derived macrophages and

stimulated them with IL-1α to induce CXCR2 ligands.34 We found
that αKetoA inhibited IL-1α-mediated induction of Cxcl1 and Cxcl2
(Fig. 3c and Supplementary Fig. S4b). To induce Cxcl1 and other
pro-inflammatory cytokines and chemokines, the signaling path-
way from IL-1α activates NF-κB,35 therefore we asked whether
αKetoA inhibited the nuclear translocation of NF-κB, which is an
essential step for NF-κB-mediated gene expression. We found that

Fig. 1 αHYA and αKetoA are ω3 fatty acid- and intestinal bacteria-dependent metabolites. a Mice were fed a chemically defined diet
containing either soybean oil or linseed oil under SPF housing conditions for 2 months, and the amounts of fatty acids in the feces and serum
were analyzed through LC-MS/MS. bMice were fed a chemically defined diet containing linseed oil under either SPF or GF housing conditions
for 2 months, after which the amounts of fatty acids in the feces and serum were analyzed through LC-MS/MS. Each point represents data
from individual mice. Statistical significance was evaluated by using the Mann–Whitney test; ***p < 0.001; **p < 0.01; *p < 0.05; N.S. not
significant.
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Fig. 2 Contact hypersensitivity is ameliorated by αKetoA, but not αHYA, through PPARγ-dependent inhibition of iSALT development. a
Mice orally received αHYA (dose: 1 μg/mouse), αKetoA (dose: 1 μg/mouse), or 0.5% (vol/vol) ethanol dissolved in PBS (vehicle control) on days
−10 to −6, days −3 to 1, and days 4−6; DNFB-induced ear swelling was evaluated on day 7. Data are combined from two independent
experiments. b Mice orally received αKetoA (dose: 10 μg/mouse) or 0.5% (vol/vol) ethanol dissolved in PBS (vehicle control) on the days
indicated 90min before DNFB stimulation on days 0 and 5; DNFB-induced ear swelling was evaluated on day 7. Data are combined from two
independent experiments. c Mice were topically treated with αKetoA (dose: 10 μg/mouse) or 50% (vol/vol) ethanol dissolved in PBS (vehicle
control), 30 min before DNFB stimulation on days 0 and 5, and DNFB-induced ear swelling was evaluated on day 7. Data are combined from
two independent experiments. d Mice were intraperitoneally injected with either GW1100, AH7614, or GW9662 30min before oral
administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90min after oral administration of αKetoA, and ear swelling was
evaluated on day 6. Data are combined from three independent experiments. e Mice were intraperitoneally injected with either GW1100,
AH7614, or GW9662 30min before oral administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90min after oral
administration of αKetoA, and the numbers of IFNγ+ T cells (7-AAD−CD45+TCRβ+IFNγ+) and dendritic cells (7-AAD−CD45+CD11c+F4/80–I-Ab

+CD11b+) were calculated on the basis of total cell numbers and flow cytometric data on days 6 and 7, respectively. Data of IFNγ+ T cells and
dendritic cells are combined from 4 and 2 independent experiments, respectively. f Mice were intraperitoneally injected with either GW1100,
AH7614, or GW9662 30min before oral administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90min after the oral
administration of αKetoA. Ears were obtained on day 7 and frozen sections were stained with hematoxylin and eosin or the indicated
antibodies and reagent. Elicitation (-) indicates mice that were not stimulated with DNFB on day 5 and used as a control. Data are
representative of three independent experiments. Scale bars, 100 μm. Each point represents data from individual mice Statistical significance
was evaluated by using one-way ANOVA; ****p < 0.0001; ***p < 0.001; ** p < 0.01; * p < 0.05; N.S. not significant.
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αKetoA inhibited IL-1α-mediated nuclear translocation of NF-κB in
a PPARγ-dependent manner (Fig. 3d). These results collectively
indicate that the αKetoA–PPARγ axis ameliorated contact hyper-
sensitivity by disrupting iSALT formation through inhibiting NF-κB
activation and chemokine expression in macrophages.

HFD-induced glucose intolerance is ameliorated by αKetoA
through inhibiting adipose tissue inflammation
Given that αKetoA targets macrophages, we examined whether
αKetoA ameliorates other macrophage-associated inflammatory
diseases. Several lines of evidence indicate that obesity is
associated with adipose tissue inflammation due to recruitment
of pro-inflammatory M1 macrophages and contributes to the
development of metabolic disorders, including diabetic glucose
intolerance.36–38 When we fed mice an HFD combined with oral
administration of either αKetoA or vehicle (as a control) for several
months, neither body weight increase nor the weight of the
epididymal adipose tissue differed between the 2 groups,
suggesting that αKetoA did not affect the development of obesity
(Supplementary Fig. S5a–c).
In contrast to obesity-associated phenotypes, we found that the

number of macrophages infiltrated into the epididymal adipose
tissue was decreased by oral administration with αKetoA (Fig. 4a).
Consistently, αKetoA decreased the expression level of the M1
macrophage marker Nos2 and increased that of the M2
macrophage marker Fizz1 in macrophages isolated from epididy-
mal adipose tissues (Fig. 4b). In addition, in vitro assays using bone
marrow-derived macrophages revealed that αKetoA influenced

the polarization of M1 and M2 macrophages. Indeed, αKetoA
decreased the expression levels of the M1 markers Nos2 and Cd86
yet promoted those of the M2 markers Fizz1, Chi3l3, and Arg1
(Fig. 4c, d). The effects of αKetoA on the gene expression levels of
Nos2, Fizz1, and Arg1 were canceled by inhibition of PPARγ (Fig. 4c,
d). These findings were consistent with a previous study showing
the involvement of PPARγ in macrophage polarization to M2
phenotypes.39

In obesity-associated inflammation, adipocytes produce CCL2
and S100A8 for the recruitment of macrophages.36–38,40 Treatment
with αKetoA had little effect on the expression of Ccl2 and S100a8
in adipocytes (Supplementary Fig. S6), suggesting that αKetoA
acted directly on macrophages to inhibit their infiltration into
adipose tissues and to alter macrophage polarization to M2
phenotypes.
In accordance with these findings, intraperitoneal glucose

tolerance test (IPGTT) and insulin tolerance test (ITT) revealed
that αKetoA decreased HFD-induced glucose intolerance (Fig. 5a,
b). We then examined HFD-induced adipose tissue remodeling,
such as the development of crown-like structures and fibrosis,
which play key roles in promoting chronic inflammation and
metabolic disorders.41 Histologic analysis revealed that αKetoA
ameliorated cellular infiltration into epididymal adipose tissues
(Fig. 5c). Furthermore, immunohistochemical analysis using an
anti-F4/80 mAb to visualize macrophages revealed that αKetoA
inhibited the development of crown-like structures (Fig. 5c).
Chronic inflammation in adipose tissue eventually leads to the

development of interstitial fibrosis, which causes adipose tissue

Fig. 3 αKetoA inhibits chemokine expression in macrophages by interfering with the nuclear translocation of NF-κB. a Dendritic cells (7-
AAD−CD45+CD11c+Gr1−F4/80−) and macrophages (7-AAD−CD45+Gr1LowCD11b+) were isolated from mouse ear skin on day 7 of the contact
hypersensitivity model, and the gene expression level of Pparg was measured through reverse transcription and quantitative PCR analysis and
normalized to that of Actinb. Data are combined from two independent experiments. b Ear homogenates were prepared on day 6 and 7 of the
contact hypersensitivity model and examined by ELISA to determine the amount of CXCL1. Data are combined from five independent
experiments. c, d In vitro assay of bone marrow-derived macrophages. Bone marrow cells were incubated as described in the Methods section
and stimulated with IL-1α with or without αKetoA to examine the gene expression level of Cxcl1 (c) and nuclear translocation of NF-κB (d). c
The gene expression levels were normalized to that of Actinb. Data are representative of three independent experiments with similar results
(triplicate assay). d NF-κB and macrophages were visualized by staining with anti-p65 mAb (green) and anti-F4/80 mAb (red), respectively;
nuclei were stained with DAPI (blue). Nuclear translocation of p65 is indicated as a change in the color of the nucleus to turquoise
(arrowheads). Data are representative of three independent experiments. Scale bars, 20 μm. Each point represents data from individual mice.
Statistical significance was evaluated by using one-way ANOVA; ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; N.S. not significant, N.D. not
detected.
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dysfunction and ectopic lipid accumulation; these conditions
subsequently lead to non-alcoholic steatohepatitis, which shows
hepatic insulin resistance due to reduced expression of insulin
receptor β.42 Consistent with the finding that αKetoA inhibited
adipose tissue inflammation and decreased glucose intolerance,
we found that αKetoA prevented the development of adipose
tissue fibrosis, as evaluated by Masson’s trichrome staining
(Fig. 5c). In line with our current findings regarding the contact
hypersensitivity model, the activities of αKetoA in inhibiting the
formation of crown-like structures and fibrosis were dependent on
PPARγ because these activities were abrogated by treatment with
GW9662 (Fig. 5c). These results collectively demonstrate that the
αKetoA–PPARγ axis ameliorates HFD-induced adipose tissue
remodeling without affecting obesity-associated increases in body
weight and epididymal adipose tissues.

Detection of αKetoA in human feces
Given that αKetoA showed anti-diabetic effects in mice, we next
asked whether αKetoA levels are decreased in human diabetic
patients. As it is generally known that ordinary intake of dietary ω3
oil is low in normal life, the fecal αKetoA levels were low and
comparable between healthy people and diabetic patients
(Supplementary Fig. S7a). To assess the correlation between α-
linolenic acid and αKetoA in feces, we then established another
cohort that included participants who consumed various amounts
of dietary α-linolenic acid due to ad libitum intake of α-linolenic
acid-rich linseed-related products. We found that the amount of
αKetoA was positively correlated with that of α-linolenic acid
(Supplementary Fig. S7b). Although the precise effects of αKetoA
on human diabetes are a subject for future study, these findings

collectively suggest that dietary intake of α-linolenic acid
promotes the production of αKetoA in humans.

DISCUSSION
Accumulating evidence suggests that the intestinal microbiome
influences host health and diseases, not only in the intestine but
also in other tissues, including the respiratory tract, central
nervous system, and skin, through the regulation of inflammation,
allergy, and metabolic disorders.43–46 Microbial metabolites of
food materials are known as ‘postbiotics’. Currently postbiotics are
attracting attention as bioactive molecules that likely are
important in the underlying mechanisms through which the
intestinal microbiome can control multiple host organs remotely.
Indeed, we detected αKetoA not only in feces but also in serum in
mice. In addition, αKetoA exerted its anti-inflammatory activities
through regulation of macrophage activities in the skin and
adipose tissue to ameliorate contact hypersensitivity and meta-
bolic disorder. A recent study similarly showed that the microbe-
dependent ω6 linoleic acid metabolite HYA ameliorated metabolic
disorders.47 HYA induced GPR40- and GPR120-dependent
GLP1 secretion from enteroendocrine cells, facilitated glucose
metabolism, and inhibited the development of obesity.47 There-
fore, αKetoA and HYA are both microbe-dependent metabolites of
essential fatty acids that improve glucose metabolism through the
different molecular and cellular bases of the αKetoA–PPARγ axis in
macrophages and the HYA–GPR40 and –GPR120 axes in
enteroendocrine cells. These intestinal microbial metabolites,
which are generated through reduction reactions, are chemically
much more stable than the oxidation metabolites produced by

Fig. 4 αKetoA induces M2 macrophage polarization in the adipose tissue of HFD mice. a Mice were fed either a control diet containing
soybean oil or HFD for 3 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week), and epididymal adipose
tissues were analyzed through flow cytometry. The number of macrophages (7-AAD−CD45+Ly6G−F4/80+CD11b+) was calculated on the basis
of total cell numbers and flow cytometric data. Data are combined from four independent experiments. b After the HFD was fed for 4 months
with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week), macrophages were isolated from epididymal adipose tissues
and examined for gene expression of Nos2 and Fizz1 as markers of M1 and M2 macrophages, respectively. Data are combined from four
independent experiments. c, d In vitro assay of bone marrow-derived macrophages. Gene expression levels were normalized to that of Actinb
and expressed as ratios to control data. Data are combined from six independent experiments. Statistical significance was evaluated by using
one-way ANOVA for comparison of multiple groups and the Mann–Whitney test for two groups; ****p < 0.0001; ***p < 0.001; **p < 0.01; *p <
0.05; N.S. not significant.
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the host, because the reduction metabolites lack the unstable
conjugated double-bond structure. This stability enhances the
usefulness of these intestinal microbial metabolites as postbiotics.
With current dietary habits, people tend to consume only low

amounts of ω3 fatty acids. In agreement with this trend, our
cohort study indicated that Japanese adults generally ingest small
quantities of ω3 fatty acids, which resulted in barely detectable
levels of αKetoA even in the feces of healthy participants. αKetoA
could be increased to more than 1000 pg per 50 mg feces in
humans when they consumed a diet rich in α-linolenic acid, thus
suggesting that these levels would result in an anti-inflammatory
effect. Although αKetoA is not a critical determinant in the
development of diabetes, these findings suggest that increasing
αKetoA levels through increased intake of α-linolenic acid might
ameliorate diabetic inflammation in human patients. We plan to

establish another cohort to directly evaluate the effect of dietary
intake of α-linolenic acid and its metabolism to αKetoA in regard
to the development of diabetes.
It is worth noting that the population having the same amount

of α-linolenic acid contains both αKetoA-high and -low producers,
indicating that the composition of the intestinal microbiota would
affect the level of αKetoA. Conversion of α-linolenic acid to αHYA
is potentially mediated by several types of bacteria, including
Lactobacillus plantarum, L. acidophilus, Streptococcus pyogens,
Stenotrophomonas nitritireducens, and Flavobacterium spp.,11 and
that of αHYA to αKetoA is mediated by L. plantarum and
Flavobacterium spp.19,48 Therefore, rather than dietary supple-
mentation with precursor compounds, a better strategy might be
to take αKetoA itself to obtain suitable anti-inflammatory effects,
because the microbiota differs among people. Several fermented

Fig. 5 HFD-induced glucose intolerance is ameliorated by αKetoA through inhibiting adipose tissue inflammation. a IPGTT was performed
after HFD feeding for 3 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week). b ITT was performed after
HFD feeding for 3.5 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week). c After HFD feeding for
4 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week) and with or without intraperitoneal injection of
GW9662, epididymal adipose tissues were examined histologically. Mice fed with control diet containing soybean oil were used as a control.
Data are representative of four independent experiments (n= 12/group). Scale bars, 100 μm. Statistical significance was evaluated by using
the Mann–Whitney test; **p < 0.01; *p < 0.05.
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foods, including Japanese pickles, Korean kimchi, and German
sauerkraut, are enriched with L. plantarum. Because these foods
are produced through fermentation, they might contain bioactive
microbial metabolites. Therefore, another prospective strategy
involves adding the precursors of bioactive metabolites (e.g., α-
linolenic acid) during fermentation to increase the amounts of
desired bioactive microbial metabolites in food products.
In the contact hypersensitivity model, macrophages play

important roles in the induction of iSALT formation by expressing
CXCR2 ligands, which induces clustering of dermal dendritic
cells.34 We found that αKetoA inhibited iSALT formation by
decreasing the level of the inflammatory chemokine CXCL1.
Consistently, we found that the nuclear translocation of NF-κB,
which plays central roles in triggering inflammation by inducing
the gene expression of pro-inflammatory cytokines and chemo-
kines, including Cxcl1,49 was inhibited by αKetoA in macrophages
in a PPARγ-dependent fashion. This scenario is in accordance with
previous reports indicating that the activation of PPARγ
suppresses NF-κB activation and consequent inflammatory
responses.50,51

NF-κB-mediated gene induction of Tnfa and Il1b is a hallmark of
M1 macrophage polarization.52 Consistent with the finding that
the αKetoA–PPARγ axis inhibited NF-κB activity, αKetoA sup-
pressed polarization to M1 macrophages. In addition, PPARγ
activators are known to induce the polarization of macrophages to
the M2 phenotype,53,54 thus supporting our finding that αKetoA
promoted M2 macrophage polarization. αKetoA simultaneously
inhibited M1 macrophage polarization and promoted M2 macro-
phage polarization, such that both activities contributed to the
inhibition of adipose tissue inflammation. From the viewpoint of
fibrosis, it is worth noting that macrophage production of nitric
oxide plays a key role in the induction of adipose tissue fibrosis.55

Conversely, αKetoA reduced the gene expression of Nos2 yet
promoted that of Arg1 in macrophages, thereby decreasing tissue
levels of nitric oxide.
It is widely accepted that obesity is the critical determinant in

inducing adipose tissue inflammation, which is the mechanism
underlying the development of metabolic disorders.36–38 However,
we found that αKetoA decreased glucose intolerance without
affecting body weight gain, suggesting that obesity does not
always lead to the development of metabolic disorders. The
infiltration of macrophages is a primary event in obesity-induced
adipose tissue inflammation.36–38 In obesity, adipocytes produce
CCL2 and S100A8, which recruit CCR2-expressing pro-inflammatory
M1 macrophages and monocytes to adipose tissue.36–38,40 We
found that αKetoA did not alter the expression levels of Ccl2 and
S100a8; instead, αKetoA—in a PPARγ-dependent manner—pre-
vented macrophages from infiltrating the adipose tissues of obese
mice and inhibited fibrosis and the formation of crown-like
structures. In addition to their effects on macrophage polarization,
agonists of PPARγ (e.g., rosiglitazone and thiazolidinediones)
suppress the chemotaxis of monocyte–macrophages.56,57

Macrophage-specific deletion of PPARγ increases the chemotactic
response to CCL2.58 Mechanisms of PPARγ-mediated suppression
of the chemotactic response include the down-regulation of CCR2
expression.57,58 Given that CCR2 expression is upregulated through
NF-κB signaling in macrophages,59 PPARγ-mediated down-regula-
tion of CCR2 might occur through the suppression of NF-κB
activity. Together, these previous studies suggest that the
αKetoA–PPARγ–NF-κB axis negatively regulates chemotaxis of
pro-inflammatory M1 macrophages and monocytes into adipose
tissue.
GW9662 used in this study is widely employed as a potent,

irreversible, and selective PPARγ antagonist, which acts by
covalently modifying a cysteine residue in the PPARγ ligand-
binding domain.60–63 Indeed, GW9662 inhibits radioligand binding
to PPARγ, PPARα, and PPARδ with pIC50s of 8.48 (IC50= 3.3 nM),
7.49 (IC50= 32 nM), and 5.69 (IC50= 2000 nM), respectively.

However, a recent study identified that GW9662 triggered gene
expression via PPARδ, therefore, the off-target effect existed.64

Based on the fact, we should further address the specific role of
PPARγ by using other methods, including genetically modified
animals and gene knock-down system in a future study.
In summary, αKetoA is found as α-linolenic acid-derived

postbiotics and as such is only extracted from dietary ω3 fatty
acids in the presence of intestinal microbiota. We found that, by
regulating various activities of macrophages, αKetoA exerted
potent anti-inflammatory effects in mice and cynomolgus
macaques, ameliorated skin inflammation, and decreased diabetic
glucose intolerance. These results pave the way for the develop-
ment of new drugs and probiotics, functional fermented foods,
and postbiotics for the treatment of macrophage-associated
inflammatory diseases, including skin inflammation and diabetes.

MATERIALS AND METHODS
Animals
For lipidomics, female C57BL/6J wild-type mice (6 weeks old) were
purchased from Japan SLC (Hamamatsu, Japan), and were maintained for
2 months on chemically defined diets containing 4% (wt/wt) dietary oil
(soybean oil or linseed oil, Oriental Yeast, Tokyo, Japan)65 in the SPF animal
facility at National Institutes of Biomedical Innovation, Health and Nutrition
(NIBIOHN; Osaka, Japan). Male GF mice (ICR background), and their control
ICR mice (age, 6 weeks) were purchased from Japan SLC (Hamamatsu,
Japan); these mice were maintained for 2 months on chemically defined
diets containing 4% (wt/wt) dietary oil (soybean oil or linseed oil) under GF
or SPF conditions, respectively, at NIBIOHN and Oriental Bioservice, Inc. For
contact hypersensitivity studies, female C57BL/6J wild-type mice (age,
7 weeks) were purchased from Japan SLC and maintained for 1 week
before use in experiments in the SPF animal facility at NIBIOHN. These mice
were maintained on a commercially available FR2 regular diet (Funabashi
Farm, Chiba Japan). For diabetes experiments, male C57BL/6J wild-type
mice (age, 8 weeks) were purchased from Japan SLC and CLEA Japan
(Tokyo, Japan), and maintained in the SPF animal facility at NIBIOHN for
3–4 months on HFD composed of chemically defined materials.65 Mice
were maintained under conditions (16:8 h light/dark cycle, 22–24 °C, and
50–60% humidity), with ad libitum access to food and distilled water. Mice
were euthanized by cervical dislocation under isoflurane (Forane, AbbVie,
North Chicago, Illinois, USA) anesthesia.
Male cynomolgus macaques (Macaca fascicularis; age, 2 years; weight; 2

kg) were maintained at the Tsukuba Primate Research Center, NIBIOHN,
according to the “Rules for Animal Care and Management of Tsukuba
Primate Center” and the “Guiding Principles for Animal Experiments using
Non-human Primates” formulated by the Primate Society of Japan. All
experiments were conducted in accordance with the guidelines of the
Animal Care and Use Committee of NIBIOHN (DS25-2, DS26-41, DS27-47,
DSR01-2, and DSR01-3). The study was carried out in compliance with the
ARRIVE guidelines.

LC-MS/MS
LC-MS/MS was performed as reported.66 Data analysis was performed by
using the software Xcalibur 2.2 (ThermoFisher Scientific).

Production of αHYA, αKetoA, and 13-oxo-cis-9,cis-15-
octadecadienoic acid
To prepare αHYA and 13-hydroxy-cis-9,cis-15-octadecadienoic acid from α-
linolenic acid, recombinant E. coli Rosetta2/pCLA-HY and Rosetta2(DE3)/
pET21b-fa-hy1 were used as catalysts, respectively.28,67 To prepare αKetoA
and 13-oxo-cis-9,cis-15-octadecadienoic acid, recombinant E. coli Rosetta/
pCLA-DH was used as the catalyst29 and purified αHYA and 13-hydroxy-cis-
9,cis-15-octadecadienoic acid were used as substrates, respectively. These
recombinants were cultivated in 10mL Luria–Bertani medium at 37 °C for
12 h with shaking at 300 strokes/minute. Seed cultures were each
transferred into 750mL fresh Luria–Bertani medium and incubated at 37
°C for 2 h with shaking at 100 strokes/minute. After the addition of 1.0 mM
isopropyl-β-thiogalactopyranoside, recombinants were incubated at 16 °C
for 12 h with shaking at 100 strokes/minute. After incubation, recombi-
nants were harvested by centrifugation and used as catalysts. The reaction
conditions were as described previously.28,29,67 Reaction products were
purified by using an Isolera One automated flash purification system
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equipped with a SNAP Ultra 10-g cartridge (Biotage, Stockholm, Sweden).
The purity of the products exceeded 95%, according to gas chromato-
graphic analysis.

Induction of contact hypersensitivity in mice
Murine contact hypersensitivity was induced as described previously.13 In
brief, on day 0, the abdominal skin of each mouse was shaved and then
treated with 25 μL of 0.5% (vol/vol) DNFB (Nacalai Tesque, Kyoto, Japan)
dissolved in a mixture of acetone and olive oil (acetone:olive oil, 4:1; both
reagents from Nacalai Tesque). On day 5, the fronts and backs of both ears
were challenged with 0.2% (vol/vol) DNFB (10 μL per site). In some
experiments, mice intraperitoneally received either GW1100 (1mg/kg
body weight; Cayman Chemical, Ann Arbor, MI, USA), AH7614 (1mg/kg
body weight; Tocris Biosciences, Bristol, UK), or GW9662 (1mg/kg body
weight; Abcam plc, Cambridge, UK) which act as selective antagonist for
GPR40, GPR120 or PPARγ, respectively.60,68,69 Ear thickness was measured
by using a micrometer (model MDC-25MJ 293-230; Mitsutoyo, Kawasaki,
Japan). Ear swelling was calculated as: (ear thickness [μm] after DNFB
application)− (ear thickness [μm] before DNFB application)= Δ μm.

Induction of contact hypersensitivity in cynomolgus
macaques
Contact hypersensitivity in cynomolgus macaques was induced as
described previously.13 αKetoA (1500 μg/350 μL) or 50% (vol/vol) ethanol
dissolved in PBS (350 μL) as a vehicle control were applied topically to the
right and left sides of the back, respectively, 30min before DNFB challenge
on days 5 and 7. αKetoA and vehicle control were additionally applied
topically on days 6 and 11. Skin samples were obtained by means of biopsy
on day 12.

Induction of diabetes in mice
Mice were kept for 3–4 months on HFD composed of chemically defined
materials in the SPF animal facility at NIBIOHN.65 During this period, mice
were orally treated with αKetoA (dose, 10 μg/mouse) or 0.5% (vol/vol)
ethanol dissolved in PBS as a vehicle control 3 times each week. In some
experiments, mice intraperitoneally received GW9662 (1 mg/kg body
weight) 30 min before oral administration of αKetoA.

Cell isolation and flow cytometric analysis
Cell isolation and flow cytometry were performed as described
previously.13,40 To avoid non-specific staining, cell samples were blocked
with anti-CD16/32 monoclonal antibody (mAb) (dilution, 1:100; catalog no.
101320, TruStain fcX, BioLegend, San Diego, CA, USA). The following
fluorescently labeled mAb were used for flowcytometric analysis:
AF647–anti-I-Ab (1:100; 116412, BioLegend), APC-Cy7–anti-CD11b (1:100;
101226, BioLegend), PE-Cy7–anti-F4/80 (1:100; 123114, BioLegend),
BV421–anti-CD11c (1:25; 117330, BioLegend), FITC–anti-Gr1 (1:100;
108406, BioLegend), APC-Cy7–anti-CD3ε (1:100; 557596, BD Biosciences),
PE–anti-IFNγ (1:100; 505808, BioLegend), FITC–anti-TCRβ (1:100; 109206,
BioLegend), and BV421–anti-CD45 (1:100; 103133, BioLegend). To stain
intracellular cytokines, cells were treated for 60min with brefeldin A
(1:1000; 420601, BioLegend) during collagenase treatment. After being
stained for viability and cell-surface markers, cells were fixed and
permeabilized (Cytofix/Cytoperm Fixation/Permeabilization Kit, BD Bios-
ciences) according to the manufacturer’s protocol. Dead cells were
detected by using 7-AAD (1:100; 420404, BioLegend) or Zombie-NIR
Fixable Viability Kit (1:100; 423106, BioLegend) and excluded from analysis.
Flow cytometric analysis and cell isolation were conducted by using
FACSAria (BD Biosciences). Data were analyzed by using FlowJo 9.9 (Tree
Star, Ashland, OR, USA).

Histologic analysis
Frozen and paraffin tissues were analyzed histologically as described
previously.13 For staining of paraffin tissues with anti-CD3 mAb (Clone:
CD3-12, GeneTex), antigen retrieval was conducted by heating sections in
1mM EDTA solution (pH 9.0) for 15min in a microwave oven after
deparaffinization. The following antibodies and reagents were used for
immunohistologic analysis: purified-anti-CD3ε mAb (1:100; 100302, for
frozen tissue, BioLegend), purified-anti-I-A/I-E mAb (1:100: 107602,
BioLegend), purified-anti-CD3 mAb (1:100; GTX42110, for paraffin tissue,
GeneTex), purified-anti-F4/80 mAb (1:100; 123102, BioLegend), Cy3–anti-
Armenian hamster IgG (1:200; 127-165-160, Jackson Immunoresearch

Laboratories, West Grove, PA, USA), Cy3–anti-rat IgG (1:200; 712-165-153,
Jackson Immunoresearch Laboratories), AF488–anti-rat IgG (1:200; A-
11006, ThermoFisher Scientific), and BODIPY493/503 (1:1000; D3922,
Molecular Probes, Eugene, OR, USA). Masson’s trichrome staining was
conducted by using Trichrome Stain Kit (Modified Masson’s, ScyTek
Laboratories, Logan, UT, USA), according to the manufacturer’s protocol.
Tissue sections were examined under a fluorescence microscope (model
BZ-9000, Keyence, Osaka, Japan).

ELISA for CXCL1 and CXCL2
The amounts of CXCL1 and CXCL2 proteins in ear homogenates were
analyzed by using Mouse CXCL1/KC Quantikine ELISA Kit (R&D Systems,
Minneapolis, Minnesota, USA) and Mouse CXCL2 Quantikine ELISA Kit (R&D
Systems), respectively, according to the manufacturer’s protocol. In brief,
ear samples were homogenized for 30 sec with one 4.8-ϕ and three 3.2-ϕ
beads in PBS containing protease inhibitor (P8340, Sigma) and centrifuged
(10,000 rpm, 20min, 4 °C); supernatants were collected and used for ELISA
(protein concentration; 4 mg/mL). Absorbance at OD450 and OD570 was
measured by using an iMark microplate reader (Bio-Rad, Hercules,
CA, USA).

Reverse transcription and quantitative PCR analysis
Reverse transcription and quantitative PCR analysis were performed as
described.13 Primer sequences are as follows: Cxcl1 sense, 5′-gactccagcca-
cactccaac-3′; Cxcl1 anti-sense, 5′-tgacagcgcagctcattg-3′; Cxcl2 sense, 5′-
aaaatcatccaaaagatactgaacaa-3′; Cxcl2 anti-sense, 5′-ctttggttcttccgttgagg-3′;
Pparg sense, 5′-gaaagacaacggacaaatcacc-3′; Pparg anti-sense, 5′-gggggtga-
tatgtttgaacttg-3′; Nos2 sense, 5′-ctttgccacggacgagac-3′; Nos2 anti-sense, 5′-
tcattgtactctgagggctgac-3′; Fizz1 sense, 5′-ccctccactgtaacgaagactc-3′; Fizz1
anti-sense, 5′-cacacccagtagcagtcatcc-3′; Chi3l3 sense, 5′-aagaacactgagc-
taaaaactctcct-3′; Chi3l3 anti-sense, 5′-gagaccatggcactgaacg-3′; Arg1 sense,
5′-gaatctgcatgggcaacc-3′; Arg1 anti-sense, 5′-gaatcctggtacatctgggaac-3′;
Cd86 sense, 5′-gaagccgaatcagcctagc-3′; Cd86 anti-sense, 5′-cagcgttac-
tatcccgctct-3′; Actinb sense, 5′-aaggccaaccgtgaaaagat-3′; and Actinb anti-
sense, 5′-gtggtacgaccagaggcatac-3′.

In vitro assay of bone marrow-derived macrophages
Bone marrow cells were prepared from the femurs and tibias of 5- to 8-
week-old C57BL/6J wild-type mice, and the differentiation of macrophages
was induced as described previously34 with modification.
For immunocytochemistry, bone marrow cells were cultured on

microscope cover glasses (18mm; Matsunami, Osaka, Japan); placed in
12-well tissue culture plates (2 × 104 cells/mL/well; Corning, Corning, NY,
USA) containing Dulbecco’s modified Eagle medium (high glucose, Nacalai
Tesque) supplemented with macrophage colony-stimulating factor (50 ng/
mL; Peprotech, Cranbury, NJ, USA), 10% (vol/vol) fetal bovine serum
(Gibco), and 1% (vol/vol) penicillin and streptomycin (Nacalai Tesque); and
incubated at 37 °C in 5% CO2. Culture medium was replaced on days 3, 7,
and 10. On day 7, cells were incubated with GW9662 (1 μM) or 0.1% (vol/
vol) ethanol as a vehicle control for 30min and incubated with interleukin
(IL)-4 (20 ng/mL; Peprotech) and either αKetoA (30 nM) or 0.1% (vol/vol)
ethanol as a vehicle control. On day 10, cells were incubated with GW9662
(1 μM) or 0.1% (vol/vol) ethanol as a vehicle control for 30min and
incubated with IL-1α (10 ng/mL; Peprotech) and either αKetoA (30 nM) or
0.1% (vol/vol) ethanol as a vehicle control for 30min. Cells on the
microplates were fixed with 4% (vol/vol) paraformaldehyde (Nacalai
Tesque) for 20min, washed with PBS, and then permeabilized with 0.5%
(vol/vol) Triton X-100 (Nacalai Tesque) for 5 min. Samples were then
washed with PBS and incubated with 2% (vol/vol) newborn calf serum for
30min for blocking. Then, samples were stained with primary antibodies—
anti-NF-κB p65 rabbit mAb (1:100; 8242, Cell Signaling Technology,
Danvers, MA, USA) and purified anti-F4/80 rat mAb (1:100; 123102,
BioLegend)—for 16 h at 4 °C. Samples were washed with PBS and then
stained with secondary antibodies—AF488–anti-rabbit IgG (1:200; A-11034,
ThermoFisher Scientific) and Cy3–anti-rat IgG (Jackson Immunoresearch
Laboratories; 712-165-153; 1:200)—for 1 h at room temperature. Samples
were then washed with PBS, stained with DAPI, and examined under a
fluorescence microscope (model BZ-9000; Keyence).
For the analysis of chemokine expression, bone marrow cells were

cultured in 6-cm dishes (1 × 105 cells/mL, 5 mL/well; RepCell dishes,
CellSeed, Tokyo, Japan) containing Dulbecco’s modified Eagle medium
(high glucose) supplemented with macrophage colony-stimulating factor
(50 ng/mL), 10% (vol/vol) fetal bovine serum, and 1% (vol/vol) penicillin
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and streptomycin at 37 °C and 5% CO2. Culture medium was replaced on
days 3, 7, and 10. On day 7, cells were incubated with IL-4 (20 ng/mL) and
either αKetoA (30 nM) or 0.1% (vol/vol) ethanol as a vehicle control. On day
10, cells were stimulated with IL-1α (10 ng/mL) with αKetoA (30 nM) or
0.1% (vol/vol) ethanol as a vehicle control. On day 11, mRNA was prepared
from cells and used for reverse transcription and quantitative PCR analysis
of the expression of Cxcl1 and Cxcl2.
To analyze polarization of M1 and M2 macrophages, bone marrow cells

were cultured in 6-cm dishes (1 × 105 cells/mL, 5 mL/well; RepCell dishes,
CellSeed) containing Dulbecco’s modified Eagle medium (high glucose)
supplemented with macrophage colony-stimulating factor (50 ng/mL),
10% (vol/vol) fetal bovine serum, and 1% (vol/vol) penicillin and
streptomycin at 37 °C and 5% CO2. Culture medium was replaced on days
3 and 5. On day 5, cells were stimulated with IFNγ (10 ng/mL; Peprotech) or
IL-4 (20 ng/mL) to induce their differentiation to M1 and M2 macrophages,
respectively.34 Cells were incubated with αKetoA (30 nM) or 0.1% (vol/vol)
ethanol as a vehicle control for 30min before cytokine stimulation. On day
7, mRNA samples were prepared and used for reverse transcription and
quantitative PCR analysis of the expression of Nos2 and CD86 as M1
polarization markers and of Fizz1, Arg1, and Chi3l3 as M2 polarization
markers.

TGFα-shedding assay
TGFα-shedding assays were performed as described previously.70 The
agonistic activities of αKetoA, αHYA, and α-linolenic acid (3 μM) toward
GPR40 and GPR120 were evaluated; 13-oxo-cis-9,cis-15-octadecadienoic
acid was used as the positive control.33

IPGTT and ITT
IPGTT and ITT were performed as described previously71 with modification.
In brief, for IPGTT, mice were fasted overnight (16 h) and then injected
intraperitoneally with D-(+)-glucose (20% solution; 2 g/kg body weight;
Nacalai Tesque). For ITT, mice in the randomly fed state were injected
intraperitoneally with human regular insulin (1.0 U/kg body weight; Eli Lilly,
Indiana, USA). To measure blood glucose levels, blood was obtained from
the tail veil by cutting with a single-edged blade (Feather, Osaka, Japan)
and measured by using One Touch Ultra Vue (LifeScan Japan, Tokyo,
Japan) before and after glucose injection at indicated time points.

Human samples and ethics
Fecal samples were collected from participants in two human cohort
studies. One includes healthy and diabetic patients who were recruited
from Shunan City Shinnanyo Hospital (Shunan City, Yamaguchi, Japan) and
surrounding communities; the other study involves healthy adult
volunteers who were recruited from the communities around NIBIOHN
(Ibaraki City, Osaka, Japan). All experiments were approved by the Ethics
Committee of NIBIOHN (approval numbers: 177-07 and 154-10) and were
conducted in accordance with their guidelines; informed consent was
obtained from all participants. All samples were stored at −80 °C until use.
All participants had no history of cancer, cardiovascular, liver, or
gastrointestinal disease; candidates who took antibiotics, laxatives, or
antiflatulents within a month before sample collection were excluded.

Statistical analysis
Statistical significance was evaluated through one-way ANOVA for
comparison of multiple groups and the Mann–Whitney test for two
groups (Prism 6, GraphPad Software, La Jolla, CA, USA). A P value less than
0.05 was considered to be significant.
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