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Introduction
The hand posture detection is a widely investigated challenge 
and finds application in several research fields, such as assistive 
technology, prostheses control, user interface, game industry, 
and so forth.1-4 The earliest attempts to monitor human hand 
came as glove-like sensors, wherein sensing elements sewn on 
a wearable garment and worn by users calculate the rotation 
between finger bones.5-7 The arising development of process-
ing capability and memory space on modern computers, on its 
turn, led to another well-established approach, namely, the 
computer vision–based optical tracking. In this case, single or 
multiple external cameras track the user hand, eventually using 
markers, and the posture information is recovered from the 
acquired images.8-10

These approaches apart, myographic sensors are popular 
among medical applications (eg, rehabilitation and prostheses 
control) as they recover posture information from muscle activ-
ity, thus can be used to identify not only the posture itself but 
also the motion volition.11-14 These sensors can be further sub-
divided into different families according to the principle of 
operation. For instance, noninvasive surface electromyography 
(sEMG) sensors track the electrical signal required to excite 
the muscles to reproduce given posture, and, although they 
have already been demonstrated for prosthesis control, it is well 
known that sEMG sensors are susceptible to muscular fatigue, 
sweating, skin fat, electromagnetic interference, electrode dis-
placement, and do not offer an intuitive control.15-17 Then, 
there is optical myography (OMG), which explores computer 
vision techniques to monitor forearm deformation due to the 
muscular activities rather than the hand itself. This kind of 
sensor is highlighted mainly by its feasibility and low cost; 

nevertheless, it suffers from the lighting conditions and greatly 
reduces user mobility, because the forearm must remain inside 
the camera field-of-view.18-20 Besides electrical signals and 
forearm visual deformation, it is also possible to monitor mus-
cular activity by measuring the forearm cross-section deforma-
tion via pressure or force sensors, which characterizes an 
approach known as force myography (FMG). As this tech-
nique relies solely on mechanical principles, it is expected to be 
immune to sweating and skin fat, unlike sEMG, and to provide 
acceptable mobility to the user as there is no need to lock the 
forearm position in the space.21,22

Most of FMG sensors are characterized by an array of 
force-sensing resistors (FSR) distributed around the forearm 
by means of a strap, bracelet, or orthosis.23,24 Though this 
setup has an appealing lightweight and low cost of production, 
FSR are susceptible to the external electromagnetic field, 
which is problematic depending on the application. Therefore, 
alternatives have been proposed and successfully demonstrated 
by substituting the resistive sensors with optical fiber force 
sensors. Among the advantages of such an alternative, one can 
list the lightweight, the low cost, the bandwidth of operation, 
and the immunity to the electromagnetic interference, so the 
end FMG sensor would not suffer from the acquisition and 
processing circuit.25 Although optical fiber–based FMG 
systems have been successfully demonstrated to identify vari-
ous postures before, the proposed sensor designs usually had 
limited portability as all processing was performed by a com-
puter, which reduces drastically real-life applications of said 
sensors.26,27

It is, thus, proposed in this work the development and 
demonstration of a portable FMG sensor by migrating all 
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acquisition and processing routines from a computer to a 
microprocessor. Moreover, the traditional components of an 
optical fiber sensor, such as the light-emitting source and pho-
todetectors, have been carefully chosen to minimize the system 
overall size, improving the sensor portability and keeping the 
cost of production.

Materials and Methods
Sensor hardware

The sensor hardware is shown in Figure 1, with all its compo-
nents: light-emitting sources, light detectors, data acquisition, 
and processing unit, and a mechanism to correlate muscle activ-
ities to the light intensity guided by the optical fiber. The sensor 
was designed for 2-channel operation, each has its own light 
emitter-detector pair on 1 of the circuit boards. For the sake of 
visualization, however, only 1 of the channels is connected in 
Figure 1, as another one would share identical setting.

In this project, the LED (light-emitting diode) model HFBR-
1414T (80 µW, 820 nm) and the matching photodetector 

HFBR-2416T (7 mV/µW, 820 nm) of Agilent HFBR-0400 
series were chosen due to their small size, lightweight, and high 
efficiency, which preserve both sensor reliability and user mobil-
ity. The LED emitter is linked by a silica multimode optical fiber 
(MMF, 62.5/125 core/cladding diameters) to the corresponding 
photodetector, which converts light intensity into an analog volt-
age. The combination of LED and MMF provides a wider band-
width of operation and also eliminates the characteristic modal 
noise of MMF, so the sensor is robust against external distur-
bances from the natural movements of the body. If the sensor 
should be sensitive to these movements, however, macrobending 
losses caused by fiber curvature can be avoided by encapsulating 
the bare waveguides inside protective layers as in commercial 
patch cables.28,29 The voltage signal from the photodetector is 
duly boosted by a subsequent amplifier circuit, and high-fre-
quency components are properly removed by a low-pass filter 
before it is converted into the digital domain. The signal is now 
ready for the acquisition and processing unit (Raspberry Pi 3 
Model B microprocessor with Linux operating system, com-
prised of Broadcom Quad Core Bcm2837 chipset with 64 bits, 
1.2 GHz clock, 1 Gb RAM, wireless LAN, and Bluetooth mod-
ules). As can be observed from Figure 1, no additional power 
source is required from the acquisition and amplifier circuits as 
they are connected to the microprocessor. Hence, the whole setup 
can be connected to a power plug or a small portable power bank 
as the Raspberry Pi 3 is supplied by a micro USB of 5 V and 
2.5 A.

An MMF guides light from the LED to its corresponding 
receiver, and external disturbances cause optical loss along the 
fiber. In this sense, a device was specially developed to convert 
the forearm radial contraction into light loss information. The 
optomechanical transducer, shown in Figure 2, was designed in 
Inventor® software, printed using butadiene styrene (ABS) 
material, and is composed of 2 halves. The upper half has 1 
corrugated inner side, with 6 evenly spaced triangular bumps 
and 2 holes near the edges, and an outer side, composed of 3 
identical hollow loci, wherein 1 or multiple Velcro straps go 
through to hold the whole transducer around the user arm. The 

Figure 1. Designed sensor system: (A) Photo and (B) schematics. For the sake of simplicity, only channel 2 was connected to an optical fiber and 

corresponding optomechanical transducer. Channel 1 would be connected likewise. LED indicates light-emitting diode; MMF, multimode fiber.

Figure 2. Optomechanical transducer with upper and bottom halves 

aligned as it would be assembled: (A) Top view and (B) side view.
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bottom half also has a corrugated inner side, with 5 evenly 
spaced triangular bumps, and a plain outer side that touches 
the user skin. It can be seen that the corrugated side of the bot-
tom half is elevated on the edges, forming a U-shape with pro-
tuberances that fit the holes in the inner side of the upper half 
so that the transducer can be easily (dis)assembled. The trian-
gular bumps of both halves measure are disposed as to interca-
late each other with a distance of 0.5 cm in between when the 
transducer is assembled, and are responsible to convey the pres-
sure over the transducer to the MMF running midst the plates, 
causing light loss by microbending.28 Finally, to avoid undesir-
able motions of the optical fiber, such as transversal sliding, 2 
small openings on the protuberances of the bottom half lock 
the optical fiber parallel to the transducer main axis, keeping it 
at the most sensitive area during operation.

Sensor software

Raspberry Pi 3 microprocessor captures the signals from the 
sensor with an acquisition rate of 100 Hz, preprocesses them, 
and then recovers the hand posture information. The sampling 
rate was set at 100 Hz as it should not be expected much pos-
ture variation in an interval of 0.1 seconds as the idea is not to 
process information related to dither or spasms, but the average 
force level produced by forearm muscles in the stationary phase, 
so higher values for the sampling rate should rather increase 
the processing flow instead of resolution. The first preprocess-
ing stage is characterized by a fourth-order digital Butterworth 
low-pass filter with the cutoff frequency set at 200 Hz. This 
value was found empirically as the one that removed better 
eventual noises from the original signal while keeping the low-
frequency components resulting from muscular activities. 
Subsequently, the filtered signal is either submitted to a sliding 
window of 5-second length for sensor calibration or normal-
ized for posture identification.

To recover the posture information, an artificial neural net-
work (ANN) was implemented in Python programming using 
Keras API with TensorFlow backend.30

A feedforward model with 2 input nodes, 9 output nodes, 
and 2 fully connected hidden layers (Figure 3) was selected for 
posture classification. The input layer is fed with data from both 
channels of the sensor, and the first hidden layer has 20 fully 
connected neurons that, by their turn, are fully connected to all 
50 neurons from the second hidden layer. The latter is con-
nected to the competitive output layer via sigmoid function, 
which normalizes all values as the likelihood of the input signal 
belonging to each of the 9 output classes, and the classifier 
returns the class with the highest probability. The hidden layers 
are activated by Rectified Linear Unit (ReLU) function, which 
showed better performance over other activation functions pro-
vided by Keras API for ANN models during the initial tests.

The classifier was calibrated via supervised learning, ie, the 
model parameters are evaluated during the training session as a 

means of the classification error between the estimated and the 
true class. For better training efficiency, the Adam optimiza-
tion error backpropagation algorithm was adopted. A calibra-
tion set of ~9600 samples was collected from every current user, 
and these samples were randomly split into training and valida-
tion sets with a ratio of 0.9/0.1: while the former was used to 
train the model, the latter was used to evaluate its performance 
based on squared error metrics. Reduced classification error, 
however, often means the obtained model parameters are over-
fitted to the calibration samples, so the final classifier should 
fail on general sample sets; therefore, all training sessions were 
limited to a maximum of 100 epochs. Moreover, as the classi-
fier performance is susceptible to the nature of training and 
validation samples, 10-fold cross-validation was implemented 
to better evaluate its performance, as all calibration samples 
would be validation data at least once.31 As the classifier 
parameters would be the same in this analysis as well as in 
practical operation, the performance that is calculated from 
10-fold cross-validation can be further extended for any other 
application.

During the calibration session, the sensor records the sam-
ples regarding the 9 supported postures (“Experimental proto-
col” subsection), by running 6 separate repetition sets, in each 
of which all 9 postures were performed and held for 2 seconds 
each, with a sampling rate of 100 Hz. Considering the interval 
for the transition from 1 posture to another, the samples in 
between do not definitely belong to either. Therefore, the first 
and last few milliseconds of each 2-second interval were disre-
garded for the calibration set, totalizing 1067 samples per pos-
ture and 9603 samples per set.

The recorded calibration samples comprise all postures that 
the sensor supports, so it is possible to visualize the behavior of 
the FMG signals pattern for the postures by fitting these sam-
ples into a joint uniform distribution.32 Moreover, this analysis 
provides a piece of crucial information: the output voltage of 

Figure 3. Classifier ANN model. I1, I2 indicates inputs from channels 1 

and 2, respectively; P: identified posture, corresponds to the one with the 

highest probability among all possible postures (A-H plus N); ANN: 

artificial neural network.
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the transducers for the most and the least loaded configuration. 
As the former corresponds to the minimum and the latter to 
the maximum value the transducers can measure, they are 
hereby called 0-level and 1-level input values.

Although it is known beforehand which calibration samples 
belonged to which posture, external noises could produce a 
sudden voltage rise or drop. Considering that sudden and dras-
tic posture changes hardly happen within the 0.1 seconds 
between one and next sample, a sliding window of 5 seconds 
collects multiple samples at once so the algorithm can evaluate 
whether the sequence of predicted postures is befitting to the 
posture variation behavior along that 5-second interval and 
chose to disregard a calibration sample if not.

Once the sensor is calibrated, the classifier can recover the 
posture information from a given sample. To avoid eventual 
uniform voltage shifts from the power supply, all input samples 
are rescaled within the range of 0 to 1 with the same differen-
tial voltage-level behavior among the postures, so the classifier 
will always have a consistent data set to work on. The mini-
mum and maximum reference values correspond to the 0-level 
and 1-level values calculated during the calibration.

Experimental protocol

The proposed sensor was tested and validated for 9 postures, as 
shown in Figure 4A, selected for their common usage in ges-
ture recognition researches. Posture N corresponds to the neu-
tral position, both the hand and the wrist are relaxed. Posture A 
is the closed fist and posture B is the open hand, the wrist is 
kept relaxed in both. Postures C and D, on the contrary, are 
wave-in and wave-out positions, with extended thumb and fin-
gers. Posture E is similar to posture A, has flexed fingers but an 
extended thumb. Posture F, by its turn, is characterized by a 
relaxed wrist and a pointing index finger. Likewise, posture G 
has a relaxed wrist and the thumb, and the ring and pinky fin-
gers are flexed. At last, posture H is similar to posture B, with 

the difference that the former draws the thumb and all fingers 
together.

It was asked from 5 healthy volunteers with the average age 
of 28.4 ± 6.3 years and limb dimensions as shown in Table 1 to 
sit comfortably on a chair and perform the 9 postures in a pre-
defined shuffled sequence, holding each posture for ~2 seconds. 
To aid the volunteers, a video track with the selected sequence 
is shown to them on a computer screen, so they know easily 
what posture to perform next. The video was created inside a 
virtual reality environment specially developed for this sensor 
that can be further explored as visual feedback of the sensor 
output (Figure 4B). The experimental procedures were duly 
explained beforehand to the volunteers, and all experiments 
were conducted following the Ethical Committee recommen-
dations (CAAE 17283319.7.0000.5404).

Two transducers were placed on to the user forearm, 1 per 
channel (Figure 5). The transducer T1 was attached to the pos-
terior side of the forearm and mainly monitors the activities of 
flexor sublimis digitorum and flexor profundus digitorum mus-
cles, responsible for fingers flexion and wrist flexion/extension. 
The effect of the extensor digitorum, responsible for fingers 

Figure 4. Computer generated environment: (A) Postures A to H plus N of the experimental protocol and (B) virtual reality room for visual feedback.

Table 1. Limb dimensions of the volunteers.

SUBjECT L (CM) C1 (CM) C2 (CM)

1 23.1 ± 0.3 25.8 ± 0.3 17.3 ± 0.2

2 24.9 ± 0.4 29.9 ± 0.3 18.7 ± 0.2

3 24.0 ± 0.2 35.0 ± 0.1 21.2 ± 0.2

4 21.1 ± 0.1 35.1 ± 0.2 22.6 ± 0.2

5 25.0 ± 0.1 32.0 ± 0.3 20.2 ± 0.3

L: length from the elbow to the wrist; C1: circumference of the forearm 
where the transducer T1 is attached; C2: circumference of the forearm 
where the transducer T2 is attached.
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and wrist extension, though subtle, might be sensed as well. 
The transducer T2, on the contrary, was attached on the ante-
rior side of the forearm, near the wrist, and mainly monitors 
the flexor pollicis longus, responsible for thumb flexion.

Results and Discussions
Sensor validation

First, the sensor was evaluated for sensitivity by monitoring the 
voltage signal from channels 1 and 2, connected to transducers 
T1 and T2, respectively, while the volunteer performed the 
sequence of postures. Figure 6 shows the collected signals after 
normalization and low-pass filtering. As it can be observed, each 
posture is described by a distinct behavior from the pair of trans-
ducers, so the sensor is sensitive to posture changes indeed. Also, 
one can note that the first few samples in each interval form 
sudden spikes, after which the signal stabilizes. This behavior is 
common to both channels and was expected as it characterizes 
the transition from the previous to the next posture.

Analyzing the stabilized voltage curve in Figure 6, one notes 
that both T1 and T2 showed the highest values for posture N. 
It is natural to be so, as posture N is the relaxed position and 
therefore applies no additional load upon the transducers.

The closed fist activates all flexors at once, reflecting on the 
voltage drop at both T1 and T2 for posture A. The higher drop 
observed on T1 is coherent to the literature as the load over it 

is increased by the contraction of both finger flexors, whereas 
T2 monitors only the thumb flexor. Similarly, the transducers 
showed the same behavior for posture E, which differs from 
posture A only for the thumb, and the voltage levels were also 
alike. Though the thumb is not flexed in posture E, the voltage 
levels in T1 and T2 were a little lower than the ones for posture 
A, probably due to the thumb extensors on the posterior side of 
the forearm, one near the wrist and another at the middle of 
the forearm length. These muscles are not directly under the 
transducers; nevertheless, their contraction adjusts the muscle 
layers around the forearm and causes a subtle drop on the sen-
sor output compared with posture A.

The transducer T1 showed a higher output than T2 for pos-
ture B, mainly because all finger flexors, as well as the extensors, 
were relaxed, which explains why T1 showed nearly none volt-
age drop. On the contrary, the T2 signal showed a significant 
drop as a consequence of thumb and fingers extensors, all found 
on the back of the forearm. Posture H is comparable with pos-
ture B, both showed the same level response from T2. The 
transducer T1, on the contrary, showed a voltage drop for pos-
ture H due to digits adduction. Postures C and D held the 
thumb and fingers in the same configuration as in posture H; 
nonetheless, the voltage signal showed a very distinct behavior. 
This can be explained by the wrist that no longer is kept in a 
neutral position but is rather flexed or extended. Therefore, the 
signal from T1 is significantly reduced for both, and the levels 
on T2 are adjusted accordingly to the performed posture.

As posture F had the thumb and 3 flexed fingers, its output 
is expected to be like posture A and E. Indeed, the signal from 
T1 is low due to the flexed fingers, showing that the index 
finger alone was not enough to reduce the load over T1 when 
it is not flexed. Moreover, the transition interval apart, the T1 
signal should stabilize about the same level as posture E, and 
the signal from T2 showed a subtle drop due to the flexed 
thumb and extended index finger as both movements are con-
trolled by muscles near the wrist. Posture G, compared with 
posture F, showed a drop at the T2 signal, because of the degree 
of flexion on the thumb. Whereas the thumb tip rested at the 
flexed middle finger in posture F, it now rests at the ring finger. 
The signal from T1, on the contrary, showed a significant rise 
as a result of the combined action of index and middle fingers 
extension.

Posture classif ication

The experimental samples from all volunteers were input into 
the classifier, then the predictions were compared with the 
true condition. The classifier performance is shown in a con-
fusion matrix, wherein each row and each column correspond 
to the predicted and actual posture, respectively (Figure 7). 
The main diagonal, consequently, indicates the true positive 
classifications, whereas all other matrix elements, in this case, 
refer to false-positive classifications. The results in Figure 7 
are the average of all experimental samples from all volunteers. 

Figure 5. Positions of transducers T1 and T2 on user forearm.

Figure 6. Normalized voltage signal captured by channels 1 and 2 for 

postures A-H plus N.
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Each matrix element holds the percentage of the samples pre-
dicted as given posture, according to its row value, considering 
that they actually belonged to given posture, according to its 
column value. The matrix elements whose numeric value is 
not explicitly shown are zeros, for the sake of simplicity.

From Figure 7, one notices that the classifier showed an 
acceptable performance for all 9 postures of the experimental 
protocol, 6 of which had all samples correctly classified. Posture 
F had the lowest per-class precision, fairly with 97.7% of true 
positive classifications, however. A small percentage of posture 
A samples were misclassified as belonging to posture F and 
vice versa, which is understandable considering the similarity 
between the signal output from T1 and T2 for these postures. 
On the contrary, a small percentage of posture E predictions 
actually belonged to posture B, nevertheless they showed very 
distinct behavior from T1 and T2 signals. The misclassified 
samples probably belonged to the transition interval, which 
caused ambiguity before the transducer signal could stabilize 
into the characteristic pattern.

Finally, considering yet the number of true and false classi-
fications, the classifier was evaluated for the general precision 
and accuracy among all users and postures, reaching an average 
precision of 99.5 ± 0.87% and accuracy of 99.8 ± 0.23%, prov-
ing the designed sensor to be valid and reliable.

One must remember, however, that the sensor must be cali-
brated whenever it is put on by the user, even if the calibration 
has already been performed on the same user before because 
one cannot guarantee that the transducers are placed exactly on 
the same spot as they were on the last calibration. This proce-
dure is essential to keep the sensor high accuracy and precision 
as FMG signals pattern is susceptible to user-dependent physi-
cal characteristics despite the anatomical similarities, such as 
skin thickness, the muscular mass, and limb dimensions.23 
However, given that the sensor was calibrated for all 5 test 

subjects, the final precision and accuracy rates were similar for 
all of them despite the differences in their limb dimensions, as 
listed in Table 1. If a universal calibration set has been adopted 
for the volunteers, the sensor should have failed in identifying 
the performed posture.

Although the calibration must be repeated for every user 
and usage, it is enough to run it once until the sensor is taken 
off. During the experiments, it has been observed that a cali-
bration session takes on average 40 minutes to be completed as 
it trains and computes the optimal parameters of the posture 
classifier. Once they are found, on the contrary, the sensor can 
operate smoothly within the sampling rate of 100 Hz, because 
the preceding acquisition and prefiltering routines can be per-
formed in a short period of time by hardware analog circuits or 
mathematical operations on Raspberry Pi 3. Considering yet 
that it is quite difficult for a human being to move drastically 
within 0.1 seconds, the established acquisition rate is enough 
for real-time applications in the future.

Conclusions
An optical fiber–based FMG sensor to recover hand posture 
was demonstrated in this work. The low cost and user mobility 
are the highlights of the proposed design, as the transducer of 
each channel can be easily fabricated via 3-dimensional print-
ing, and the processing unit, the LEDs, and the photoreceptors 
have reduced and portable size. The final classifier showed an 
average precision and accuracy of ~99.5% and ~99.8%, respec-
tively. These values were obtained across 9 postures and vali-
date the sensor feasibility with only 2 channels of operation. It 
is concluded, thus, that the proposed system has potential uses 
in indoor and outdoor environments as user interface in assis-
tive technology and virtual reality applications.33,34 Further 
developments will focus on the identification of dynamic ges-
tures, including the elbow and shoulder motions, as one hardly 
keeps them forever static in practical applications.
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