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Protein hydration is crucial for the stability and molecular recognition of a protein. Water
molecules form a hydration water network on a protein surface via hydrogen bonds. This
study examined the hydration structure and hydrogen bonding state of a protein,
staphylococcal nuclease, at various hydration levels in its crystalline state by all-atom
molecular dynamics (MD) simulation. Hydrophilic residues were more hydrated than
hydrophobic residues. As the water content increases, both types of residues were
uniformly more hydrated. The number of hydrogen bonds per single water asymptotically
approaches 4, the same as bulk water. The distances and angles of hydrogen bonds in
hydration water in the protein crystal were almost the same as those in the tetrahedral
structure of bulk water regardless of the hydration level. The hydrogen bond structure of
hydration water observed by MD simulations of the protein crystalline state was compared
to the Hydrogen and Hydration Database for Biomolecule from experimental protein
crystals.
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INTRODUCTION

In an aqueous environment, there is hydration water on a protein surface (Nakasako et al., 2004; Niimura
et al., 2006; Gnesi et al., 2017). Hydration water plays an important role in the structural dynamics, stability,
and functional expression of a protein (Rupley et al., 1983; Careri et al., 1998). Hydration water not only
forms hydrogen bonds with amino acid residues in proteins but also between water molecules in the
hydration layers. As a result, a hydration water network is formed on the protein surface (Nakasako et al.,
2004). The protein hydration structure has been studied by crystallography. Many hydration water
molecules are observed at cryogenic temperatures by X-ray crystallography (Nakasako et al., 1999).
Hydration structures are efficiently observed at room temperature by neutron crystallography (Niimura
et al., 2006). The structure and dynamics of hydrationwater are examined in protein crystals (Podjarny et al.,
1997). Based on crystal structures, including hydrogen atoms in the ProteinData Bank (PDB), theHydrogen
and Hydration Database for Biomolecules (HHDB © National Institutes for Quantum and Radiological
Science and Technology (QST) licensed under CC BY-SA4.0 International; doi: 10.18908/lsdba.nbdc00495-
000.V002) has been constructed (Niimura et al., 2006). In this database, hydration structures and hydrogen
bonding states observed in the crystal structure analysis of biological macromolecules are summarized.
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Protein hydration has also been analyzed by molecular
dynamics (MD) simulations (Higo et al., 2002). In this MD
simulation in solution, the solvent density and solvent dipole
on the protein surface were in good agreement with the hydration
structure observed by crystal structure analysis, indicating that
the combination of computational and experimental analysis is
effective in protein hydration studies. Most MD simulations of
proteins are performed in solution, but the protein’s
conformation, dynamics, and function are changed in the
crystalline state from in a solution (Li et al., 2017; Srivastava
et al., 2018; Konold et al., 2020). Because the limitation of
crystallography in not analyzing the protein dynamics is
discussed (Srivastava et al., 2018), MD simulations in a
protein crystalline state should be useful to compare them to
experimental protein crystallography. Many MD simulations of
protein crystalline states have been performed (Meinhold et al.,
2005; Hu et al., 2008; Joti et al., 2008; Janowski et al., 2016; Cerutti
et al., 2018). It should be also effective to quantitatively compare
the experimental and calculated protein and hydration structures
in crystals to evaluate the validity of MD simulations. In some
experiments on protein dynamics, such as inelastic and quasi-
elastic neutron scatterings, dielectric relaxation, and terahertz
spectroscopy, hydrated powder proteins are used as samples
(Nakagawa et al., 2010; Yamamoto et al., 2021). MD
simulations of protein dynamics in the crystalline state have
been shown to quantitatively reproduce neutron quasi-elastic
scattering spectra of hydration water as well as protein (Tarek
et al., 1999; Tarek et al., 2000). The structure and dynamics
of biomolecules and hydration water in the crystalline state will
also provide useful information for various spectroscopic
experiments.

Enzyme activity decreases with the decrease in hydration level
(Careri et al., 1998). With decreasing water content, the molecular
mobility of both protein and hydration water decreases, and proteins
become vitrified. Minimum hydration is necessary for enzymatic
activity (Careri et al., 1998), and its threshold hydration level is
correlated to percolation transisiton of hydration water (Careri et al.,
1998; Nakagawa et al., 2010). Protein crystallography and MD
simulations have been performed under varying humidity conditions
to investigate the protein conformation and hydration states at atomic
resolution (Kodandapani et al., 1990; Hu et al., 2008; Takayama et al.,
2011; Trampari et al., 2018; Salinas-Garcia et al., 2019).

In this study, MD simulations of staphylococcal nuclease
(SNase) in the crystalline state were performed at various
hydration levels. The hydration level-dependent hydration
structure and hydrogen bonding states were analyzed. As the
water content increased, amino acid residues on a protein surface
were uniformly more hydrated, and the number of hydrogen
bonds per single water asymptotically approached 4, the same as
bulk water. The distances and angles of hydrogen bonds in
hydration water in the protein crystal were almost identical to
those in the tetrahedral structure of bulk water regardless of water
content. The hydrogen bond structure of hydration water observed
byMD simulations of the protein crystalline state was compared to
the HHDB from the experimental protein crystal.

MATERIALS AND METHODS

MD Simulation of Protein Crystal and
Analysis of the Trajectories
The crystal structure of SNase (PDB code: 1EY0) was used as the
initial simulation structure. The simulated system was
constructed to reproduce the crystal unit cell, having a space
group symmetry of P41 (Figures 1A,B). Missing residues 1 to 5
and 142 to 149 in 1EY0 were modeled based on the nuclear
magnetic resonance structures (PDB code: 1JOR). The system
contained four protein molecules, including crystal water
registered in 1EY0. In addition, water molecules were added
randomly distributed in the empty space in each system (Figures
1C,D) to construct the protein crystal with different hydration
levels (h) from 0.10 to 0.55 (g water/g protein). The number of
water molecules and atoms in the simulation system are
summarized in Supplementary Table S1. To neutralize the
system, 32 chloride ions were randomly placed in the system.
Apart from MD simulations of crystalline proteins, MD
simulations of bulk water were also performed. For the
simulation of bulk water, 440 water molecules were set in a
rectangular box. The periodic boundary condition was imposed,
and the particle mesh Ewald method was used with a cutoff of
10 Å. The AMBER ff14SB force field and the TIP3P water model
were employed. After energy minimization (2000 steps), 2 ns
MDs were performed to equilibrate the systems at 300 K and
1 atm, which were maintained following the Berendsen method
(relaxation time of 1 ps for both) using the program AMBER
(Case et al., 2015). For equilibration MD, the ensemble is NPT.
Successive 4 ns trajectories in the NPT ensemble were obtained
for the analyses. For hydrogen bond analysis, pairs of water

FIGURE 1 | (A) MD simulation system of protein crystals (with periodic
boundary condition) of SNase. The rectangular box indicates the unit cell. (B)
Lengths of the three sides of a rectangular unit cell (lattice constants) are
denoted by α, β, and γ. (C and D) Proteins and water molecules in the
unit cell at hydration levels of h � 0.10 (g water/g protein) and h � 0.40 (g water/
g protein). In this figure, all the atoms outside the unit cell are put inside the unit
cell according to the periodic boundary condition.
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molecules were selected as hydrogen-bonded only if their
interoxygen distance was <3.5 Å and simultaneously the
O–H. . .O angle was > from 120° to 180°. To check the

reproducibility of the simulation results, several simulations
from different initial atomic velocities from a Boltzmann
distribution were performed. The analytical results did not
depend on the trajectories of different times and initial states.
The thermal equilibration of the simulation was checked through
total energy in the system and the temperature. Supplementary
Figure S1 shows the lattice constants and simulation boxes as a
function of the hydration level. As the hydration level increases,
these parameters increase to keep a constant pressure in the
system. As for the distance between proteins in an unit cell, the
contact maps between proteins were calculated (Joti et al., 2008).
At low water content, there is more protein-protein contact, and
at high water content, hydration water enters the gaps between
the proteins, resulting in less protein-protein contact.

RESULTS AND DISCUSSION

Hydration Structure and Distribution of
Water Molecules on the Protein Surface
Figure 2A shows the molecular structure and hydration water of
SNase with the hydration level of h � 0.40 as a snapshot of theMD
trajectory. Hydration water spreads not only on the hydrophilic
surface but also on the hydrophobic surface. Figure 2B shows the
number of hydration water around hydrophilic residues,

FIGURE 2 | (A) Structure of hydrated SNase at h � 0.40 (g water/g
protein). Hydrophilic and hydrophobic residues are blue and gray balls,
respectively. Hydration water molecules whose oxygen atom is within 4 Å
from the protein surface are shown in red. (B) The number of hydration
water as a function of distance from the protein surface for the main chain,
hydrophilic and hydrophobic residues, and whole surface. The distance
between the protein surface and the water molecules was calculated as the
distance between the atoms that make up the protein and the oxygen atoms
of the water molecules.

FIGURE 3 | Distribution of the number of water molecules on (A) hydrophilic residue and (B) hydrophobic residue. Hydration level dependence of the number of
water molecules at (C) hydrogen bond distance (1.8 Å) and (D) VDW contact distance (2.5 Å) for hydrophilic and hydrophobic residues and the main chain.
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hydrophobic residues, and the main chain per protein as a
function of the distance from the protein surface. Hydration
water around the main chain is mainly present at the hydrogen
bond distance (Kumar et al., 2009). This indicates the water
molecules that are hydrogen-bonded to the peptide bonds. For
hydrophilic residues, the first major peak is at the hydrogen bond
distance and the second peak is at the van der Waals (VDW)
distance. For hydrophobic residues, there is more hydration at the
VDW distance than the hydrogen bond distance. This is a
reasonable result because hydrophobic surfaces have fewer
donors and acceptors for hydrogen bonding.

Figures 3A,B shows the distribution of the number of water
molecules on the hydrophilic and hydrophobic residues at
various hydration levels. Data at every hydration level are
shown in Supplementary Figure S2. As shown in Figures
3A,B, the number of hydration water on hydrophilic and
hydrophobic surfaces has the one peak at the hydrogen bond
distance and another peak at the VDW distance at every
hydration level. The former peak is more intense for
hydrophilic surface, and vice versa for hydrophobic one. For
example, hydration water molecules around hydrophilic residues
are hydrogen-bonded to carboxyl groups and amino groups of
amino acid side chains. On the hydrophobic surface, hydrated
water with pentagonal (five-membered) ring structures were
observed (See Supplementary Figure S3). Such characteristic
hydration structures have been previously confirmed by crystal
structure analysis and MD calculations (Teeter et al., 1984;
Lounnas et al., 1994; Nakasako et al., 2004). The shapes of the
distributions in Figures 3A,B change similarly to hydration level.
Figures 3C,D shows the number of hydration water at the two

peaks of the hydrogen bond distance and VDW distance around
hydrophilic residue, hydrophobic one and the main chain as a
function of hydration level. The magnitudes of both peaks increase
with the increase in hydration level.With increasing hydration levels,
the number of hydration water does not increase preferentially
around hydrophilic residues but increases uniformly around
hydrophobic residues as well. This result suggests that hydration
water is spread evenly over the entire protein surface rather than
aggregating on the hydrophilic protein surface.

Figure 4 shows the number of hydrogen bonds per one water
molecule at different hydration levels. As hydration level
increases, the number of hydrogen bonds between water and
water increases, whereas that between water and protein
decreases. The total number of hydrogen bonds per single
water asymptotically approaches 4, the same as bulk water.
The hydrogen bonding with protein is replaced with that with
water. At high hydration levels, approximately one of the four
hydrogen bonds in a single water is bound to the protein and
three are bound between water molecules.

FIGURE 4 | The number of total hydrogen bonds per single water (▲),
between water and water (C), between water and protein (■), between water
and the side chain of the amino acid (□), and between water and the main
chain of the amino acid (○). The dashed line indicates the number of
hydrogen bond per single water in bulk water.

FIGURE 5 | Geometrical distribution of O-H. . .O calculated from MD
simulation (A) between water and water in bulk water, (B)water and water at h
� 0.10 (g water/g protein), (C)water and protein at h � 0.10 (g water/g protein),
(D) water and water at h � 0.40 (g water/g protein), and (E) water and
protein at h � 0.40 (g water/g protein).
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Geometry of the Hydrogen Bond in
Hydration Water
Next, the hydrogen bond structures of watermolecules were analyzed
in a two-dimensional map of distance and angle. Figure 5 shows the
geometrical distribution ofO-H. . .Obetweenwater andwater in bulk
water, between water and water, and between water and protein in
the hydrated crystalline protein at h � 0.10 and h � 0.40. The
distribution data for all hydration levels from h � 0.10 to h � 0.55 are
shown in Supplementary Figure S4. The angle of O-H. . .O is 180°-θ
(see the sketch in Figure 5). The peak in the distribution of O-H. . .O
between water and water in bulk water is located at r � 2.0�A and θ �
15°. This geometrical feature suggests the tetrahedral hydrogen bond
structure of water, as shown in Supplementary Figure S5.
Crystallographic studies of proteins at low temperatures have also
shown the presence of similar hydration water-formed hydrogen-
bonded tetrahedral structures, suggesting their contribution to
protein stability and folding (Nakasako, 2004). The present
analysis shows that the tetrahedral structure of hydration water on
the protein surface is independent of hydration level. The distribution
of r > 3.0 �A at 60° < θ < 90° in bulk water indicates the presence of
water molecules in proximity, but they do not form hydrogen bonds
at this geometric location. The peak in the distributions were also
observed for the geometrical distribution of O-H. . .H of between
water and water (Figures 5B,D) and between water and protein
(Figures 5C,E) in the hydrated protein crystal. These results suggest
that the hydrogen bond structure of hydration water is similar to that
of bulk water, and that the O-H. . .O positional relationship between
water molecules in the hydration layers and protein is also similar to
that of bulk water. The hydrogen bonds of water molecules maintain
their tetrahedral structure regardless of their interaction with proteins
or in a dry environment.

Hydrogen and Hydration in Biomolecules
The HHDB is a database of hydrogen atom positions in biological
macromolecules, such as protein and DNA, and hydration water
molecules, based on the selected PDB data (neutron
crystallography and high-resolution X-ray crystallography).
Figure 6 shows the geometrical distribution of O-H. . .O
between water and water and between water and protein from

the HHDB. Neutron data above 2.0�A resolution are used for the
analysis. In Figure 6A, the two peaks are observed in the
geometrical distribution of O-H. . .O between water and water
at the distance of around 2.0�A and the angle of around 30° and
55°. The distance is equal to the distance obtained by MD
simulation (Figures 5A,B,D). The angle of the peak position
around 30° should correspond to that around 15° in the hydrated
crystalline protein by MD simulations. Although the reason for
the difference is unclear, it could be ascribed to the hydrogen
bond in the tetrahedral geometry. The second peak around 55° is
not observed in the hydrated crystalline protein (Figures 5B,D)
or bulk water (Figure 5A) in the MD simulation. A typical case of
the relative geometry of two water molecules observed at r � 2.5�A
and θ � 55° is shown in Supplementary Figure S6; (Tamada et al.,
2009). In this geometry, a hydrogen bond can be formed. This
arrangement may indicate some kind of hydration water cluster,
although they do not necessarily form a tetrahedral structure. The
water molecules registered in the HHDB may be water molecules
that form hydrogen bonds in some cases; in other cases, water
may be registered against the observed electron density or nuclear
density regardless of hydrogen bond formation. This difference
may lead to the discrepancy between HDDB and MD
calculations. In the geometrical distribution of O-H. . .O
between water and protein, as shown in Figure 6B, the peak
in the distribution is located at r � 2.0�A and θ � 15°. This is in
good agreement with that in the hydrated protein crystalline state
in MD simulation (Figures 5C,E). The geometrical relationship
between water and protein in the HHDB is thought to maintain
the tetrahedron of water molecules, consistent with low-
temperature crystal structure analysis.

CONCLUSIONS

MD simulations shows that, on the surface of hydrophilic residues,
hydration water was abundant at the hydrogen bond distance from
the protein surface. In contrast, on hydrophobic residues, hydration
water wasmore abundant at theVDWdistance than at the hydrogen
bond distance. With increasing hydration levels, both types of

FIGURE 6 | Geometrical distribution of O-H. . .O calculated from HHDB (A) between water and water and (B) water and protein from the HHDB. Neutron data
above 2.0 �A resolution are used for the analysis.
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residues were uniformly more hydrated, and the number of
hydrogen bonds per single water asymptotically approached 4,
the same as bulk water. The hydrogen bond structure of protein
hydration water was shown to be independent of hydration level and
adopt a tetrahedral structure like bulk water. The hydrogen bond
between water and protein observed in the protein crystalline state in
MD simulations is consistent with the hydrogen bond structure of
hydrated water observed in neutron crystallography presented in the
HHDB. In contrast, the hydrogen bonds between water and water
are slightly different from each other. The difference could be the
arbitrary nature of hydrogen bonds in water molecules registered in
the HHDB. MD simulations of proteins in crystalline states should
be useful for the combined analysis of protein hydration by
crystallography, especially neutron crystallography, an effective
tool for analyzing hydrogen and hydration structures.
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